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ABSTRACT

Many analysis and machine learning tasks require the availability

of marginal statistics on multidimensional datasets while providing

strong privacy guarantees for the data subjects. Applications for

these statistics range from finding correlations in the data to fitting

sophisticated prediction models. In this paper, we provide a set of

algorithms for materializing marginal statistics under the strong

model of local differential privacy. We prove the first tight theo-

retical bounds on the accuracy of marginals compiled under each

approach, perform empirical evaluation to confirm these bounds,

and evaluate them for tasks such as modeling and correlation test-

ing. Our results show that releasing information based on (local)

Fourier transformations of the input is preferable to alternatives

based directly on (local) marginals.
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1 INTRODUCTION

Modern data-driven applications must guarantee a high level of

privacy to their users if they are to gain widespread acceptance. The

current de facto standard for privacy is differential privacy, which

imposes a statistical requirement on the output of a data release

process. Considerable effort has been invested into achieving this

guarantee while maximizing the fidelity of the released information,

typically with the assistance of a centralized trusted third party

who aggregates the data. However, there is growing importance

placed on algorithms which dispense with the trusted aggregator,

and instead allow each participant to ensure that the information

that they reveal already meets the differential privacy guarantee in

isolation. This gives the local differential privacy (LDP) model.

The model of Local Differential Privacy combines the statistical

guarantees of differential privacy with a further promise to the user:

their information is never visible to anyone else in its raw form,
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Table 1: Attributes of NYC taxi dataset

Attribute Explanation

CC Has customer paid using credit card?

Toll Has customer paid toll?

Far Is journey distance ≥ 10 miles?

Night_pick Is pickup time ≥ 8 PM?

Night_drop Is drop off time ≤3 AM?

M_pick Is trip origin within Manhattan?

M_drop Is trip destination within Manhattan?

Tip Is tip paid ≥ 25% of the total fare?

Trip/Attributes M_pick M_drop CC Tip . . .

1 Y N N Y . . .

2 N Y Y N . . .
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Figure 1: Trip Data

M_pick/M_drop Y N

Y 0.55 0.15

N 0.10 0.20

Figure 2: 2-way marginal

and they retain “plausible deniability” of any sensitive information

associated with them. Local differential privacy has been adopted

in Google Chrome via the RAPPOR tool to collect browing and

system statistics [18], and in Apple’s iOS 10 to collect app usage

statistics [2]. It is consequently already deployed for information

gathering over a user base of hundreds of millions of people. So far,

work in the LDP model has focused on relatively simple computa-

tions: collecting basic frequency statistics about one dimensional

data (e.g. identifying popular destinations on the web). But this

one-dimensional view of the world does not capture the rich set of

correlations that real data exhibits, as in the following case study.

Motivating example: movement patterns. Consider the collec-

tion and release of statistics on movement patterns of individual’s.

Each trip is a multidimensional object, including origin and destina-

tion, timings, tip, and mode of payment. All of these should be con-

sidered private, as they can potentially be used to determine an in-

dividual’s work/home locations, social habits and lifestyle. Figure 1

shows an example taxi trip dataset, where each journey is described

in terms of a number of (binary) attributes. “Anonymized” taxi trip

data from New York City still made it possible to stalk celebrities,

https://doi.org/10.1145/3183713.3196906
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identify drivers doing good business, and infer home/work loca-

tions of frequent visitors to adult entertainment clubs. However,

there are many positive potential uses of this type of data when it is

represented as statistical marginal tables. Put simply, a marginal ta-

ble records the (empirical) probability distribution between a set of

attributes. A taxi service provider could learn more about the travel

needs, habits and preferences of customers in a particular market,

e.g. which areas are most popular during the night versus during the

day. We would want to test the validity of any correlations found

by subjecting them to statistical hypothesis tests. Beyond just find-

ing correlations, we may be interested in more complex analysis

such as describing the probabilistic relationship between cause and

effects by modeling features as a Bayesian Network. This could

help to predict demand in different areas at different times, reduce

customer waiting times, and provide expected revenues. It could

even infer customer satisfaction with different drivers by compar-

ing average tip amounts across collections of comparable journeys.

Such graphical models rely on the computation of conditional prob-

ability tables (CPTs), which are derived directly from marginals.

All these tasks can be accomplished given information about the

population-level correlations between particular combinations of

attributes, which can be derived from the marginal distributions be-

tween small numbers of attributes–typically, two-way or three-way

marginals suffice. Figure 2 shows a marginal table which confirms

that most trips are short and originated and terminated within the

Manhattan region and shows strong degree of correlation between

pickup and drop off locations. Consequently, our objective is to

allow such tables to be computed accurately on demand from data

collected privately from a large user population. □
Thus, the contingency, or marginal, table is “the workhorse of

data analysis” [4]. These statistics are important in and of them-

selves for understanding the data distribution, and identifying

which attributes are correlated. They are also used for query plan-

ning and approximate query answering within database systems. A

variety of fundamental inference and machine learning tasks also

rely on accurate marginals capturing the correlations. E.g. many

algorithms in statistical language modeling/predictive text [26] and

association rule mining (market basket analysis) compute low order

marginals as a preprocessing step. Furthermore, for multivariate

distributions where direct sampling is infeasible or too costly, low

dimensional marginals serve as building blocks [9, 29] to compute

accurate approximations. Hence, we identify low-order (2-way and

3-way) marginals as our main focus.

It is therefore not surprising that much work on private data

analysis has studied the problem of materializing and releasing

marginals while achieving some privacy guarantee. It is clear that

the information described by marginals is potentially very sensitive,

as it collates and reveals information about individuals. A canonical

example of privacy leakage is when a cell in a marginal table refers

to just one person or a few individuals, and allows the value of

an attribute to be inferred. For instance, a marginal table relating

salary and zip code can reveal an individual’s income level when

they are the sole high earner in a region. While this problem has

been well-studied under centralized differential privacy, when we

desire to protect individuals under the stronger model of local DP,

there is limited prior work ([20] for 2-way marginals); in this paper,

we seek to give strong guarantees for arbitrary marginals.

Our Contributions. In this work, we provide a general framework

for marginal release under LDP, with theoretical and empirical

analysis. First, we review prior work (Section 2), and provide back-

ground on methods to support private marginal release (Section 3).

We describe a set of new algorithms that give unbiased estimators

for marginals, which vary on fundamental design choices such as

whether to release information about each marginal in turn, or

about the whole joint distribution; and whether to release statis-

tics directly about the tables, or to give derived statistics based on

(Fourier) transforms of the data. For each combination, we argue

that it meets the LDP guarantee, and provide an accuracy guarantee

in terms of the privacy parameter ϵ , population size N , and also the

dimensionality of the data,d , and target marginals, k (Section 4). We

perform experimental comparison to augment the theoretical under-

standing in Section 5, focusing mostly on the low-degree marginals

that are of most value. Across a range of data dimensionalities and

marginal sizes, the most effective techniques are based on working

in the Fourier (Hadamard) transform space, which capture more

information per user than methods working directly in the data

space. The use of Hadamard transform for materializing marginals

was considered by early work in the centralized differential pri-

vacy model, but has fallen from favor in the centralized model,

supplanted by more involved privacy mechanisms [12, 23, 39]. We

observe that these other mechanisms do not easily translate to

the local model. Concurrent with the development of this work,

the Hadamard basis has found application in protocols for LDP

frequency estimation [10]. There, incorporating the transform pre-

serves the accuracy guarantees, while reducing the communication

cost. In our setting, we show that the transform can both improve

accuracy and reduce communication cost. The endpoint of our

evaluation is the application of our methods to two use-cases: build-

ing a Bayesian model of the data, and testing statistical significance

of correlations. These confirm that in practice the Hadamard-based

approach is preferable and the most scalable in terms of communi-

cation and computation cost. We summarize the results in Table 2.

Our methods are eminently suitable for implementation in existing

LDP deployments (Chrome, iOS) for gathering correlation statistics.

2 RELATEDWORK

Differential Privacy (DP) [13, 15, 16], unlike its precursor privacy

definitions, provides semantic mathematical promises on individ-

uals’ privacy, interpreted as statistical properties of the output

distribution of a randomized algorithm. Formally, an algorithm A

meets the ϵ-DP guarantee if, over pairs of inputs D,D ′ that differ
in the presence of a single individual, its output A(D) satisfies

Pr[A(D) = x]

Pr[A(D ′) = x]
≤ exp(ϵ), (1)

where x is any permitted output. The model has risen in popularity

and adoption compared to earlier attempts to codify privacy (such

as k-anonymity and ℓ-diversity [30, 37]), which can leak sensitive

information. It has been a topic of inquiry for diverse research

communities including theory [40], datamanagement [31], machine

learning [38], and systems/programming languages [33]. We focus

on two directions: the emergent model of local differential privacy

(Section 2.1), and private marginal release (Section 2.2).



2.1 Local Differential Privacy (LDP)

Initial work on differential privacy assumed the participation of a

trusted aggregator, who curates the private information of individu-

als, and releases information through a DP algorithm. In practice,

individuals may be reluctant to share private information with the

central data curator. Local differential privacy instead captures the

case when each user independently (but collaboratively) releases

information on their input through an instance of a DP algorithm.

This model was first suggested by Evfimievski et al. [19] under the

name of γ -amplification, with an application to mining association

rules. Duchi et al. [14] studied a generalization of that model as

a local version of DP, and proposed a minimax framework with

information theoretic bounds on utility.

The canonical LDP algorithm is randomized response (RR), first

developed in the context of survey design in the 1960s [42]. Users

who possess a private bit of information flip it with some prob-

ability p to have plausible deniability of their response. Collect-

ing enough responses shared through this mechanism allows an

accurate estimate of the population behavior to be formed. Ran-

domized response is at the heart of many recent LDP algorithms,

most famously Google’s deployment of RAPPOR [18], where RR

is applied to a Bloom filter encoding a large set of possible URLs.

In a follow-up paper, Fanti et al. [20] extend RAPPOR’s ability to

identify strings which are frequent across the user distribution,

building them up piece by piece. However, their solution is some-

what specific to RAPPOR’s case and does not offer any guarantee on

the accuracy. Apple’s implementation uses sketching to reduce the

dimensionality of a massive domain [2, 5, 10]. Microsoft telemetry

data collection involves rounding and memoization technique for

periodic measurement of app usage statistics under LDP [11].

There is a growing theoretical understanding of LDP. Kairouz et

al. [27, 28] study how to estimate the frequency of a single categor-

ical attribute, and propose optimal generalizations of randomized

response. Closest to our interest is work on generating a histogram

under LDP, or identifying the peaks in the input (heavy hitters).

This can be viewed as the problem of estimating a one-dimensional

marginal distribution. The state of art asymptotic lower bound and

matching algorithm are due to Bassily and Smith [6]. They adapt

ideas from dimensionality reduction (i.e. the Johnson-Lindenstrauss

lemma) to build a primitive to estimate the weight of a single point

in the distribution; this is used to find all heavy hitters. Qin et al.

adapt this approach to the related problem of identifying heavy

hitters within set valued data [36]; Chen et al. use it on spatial

data to build user movement models under LDP [8]. Wang et al.

describe optimizations that consider asymmetric randomized re-

sponse and hashing to reduce variance [41]. We apply some of these

methods in our setting in Appendix B.2, but find that they do not

scale to the range of input dimensions that we consider. Nguyên et

al. describe a general approach for data analysis under LDP with

multiple rounds [34]. They propose an orthogonal measurement

basis isomorphic to the Hadamard transform, but only for 1D data.

2.2 Publishing Marginals Privately

Marginal tables arise in many places throughout data processing.

For example, an OLAP datacube is the collection of all possible

marginals of a data set. Consequently, there has been much work

to release individual marginals or collections of marginals under

privacy guarantees. To the best of our knowledge, these all assume

the trusted aggregator model. The motivations for these algorithms

— accurate statistics collection, data analysis, model building etc. —

are just as compelling under the model of LDP which removes the

trusted aggregator. We discuss a representative set of approaches,

and whether they can be applied under LDP.

Laplace Noise. The baseline for differential privacy is the sensi-

tivity and noise approach: we bound (over all possible inputs) the

“sensitivity” of a target query in terms of the amount by which the

output can vary as a function of the input. Adding noise from an

appropriate distribution (typically Laplace) calibrated by the sen-

sitivity guarantees privacy. This approach transfers to LDP fairly

smoothly, since the sensitivity of a single marginal on N users is

easy to bound by O(1/N ) [15]. A variant is to apply this to a trans-

formation of the data, such as a wavelet or Fourier transform [4, 43].

Our contribution is to refine and analyze how to release marginals

via transformations under the related guarantee of LDP.

SubsetMarginal Selection.When the objective is to release many

marginals — say, the entire data cube — the above approach shows

its limitations, since the sensitivity, and hence the scale of the noise

grows exponentially with the number of dimensions: 2
d
. Ding et

al. [12] compute low dimensional marginals by aggregating high

dimensional marginals, chosen via a constrained optimization prob-

lem and a greedy approximation. This solution does not translate

naturally to LDP, since each user has access to only her record and

may come up with a different subset locally compared to others.

MultiplicativeWeights. Several approaches use themultiplicative

weight update method to iteratively pick an output distribution [22–

24]. For concreteness, we describe a non-adaptive approach due to

Hardt et al. [23]. The method initializes a candidate output uniform

marginal, and repeatedly modifies it so that it is a better fit for

the data. To ensure DP, it uses the exponential mechanism [32] to

sample a k-way marginal whose projection at a certain point in the

true data is far from the corresponding value for the candidate. The

candidate is then scaled multiplicatively to reduce the discrepancy.

The sampling and rescaling step is repeated multiple times, and the

convergence properties are analyzed. The number of steps must be

limited, as the “privacy budget” must be spread out over all steps

to give an overall privacy guarantee. Applying the exponential

mechanism in this way does not obviously extend to the LDPmodel.

In particular, every user’s single input is almost equally far from

any candidate distribution, so it is hard to coordinate the sampling

to ensure that the process converges. A natural implementation

would have many rounds of communication, whereas we focus on

solutions where each user generates a single output without further

coordination.

Chebyshev polynomials. Thaler et al. view a dataset as a linear

function on marginals, and represent each record of a dataset via

a γ -accurate Chebyshev polynomial [39], whose coefficients can

be perturbed for privacy. This is intended to be faster than multi-

plicative weights solutions which must range over an O(2d )-sized
representation of the data. This approach could plausibly be adapted

to LDP, although the steps required are far from immediate.

In summary, the LDP requirement to perturb elements of every

single record independently (which are sparse in our case) while



preserving the underlying correlations is not yet met by prior work,

and so we must give new algorithms and analyses.

3 MODEL AND PRELIMINARIES

In line with prior work [4], our main focus is on data represented by

binary variables. This helps to keep the notation uniform, and high-

lights the key challenges. We discuss the modifications necessary

to accommodate more general attributes in Section 7.

In our setting, each user i has a has a private bit vector ji ∈

{0, 1}d that represents the values of the d (sensitive) attributes for

i . It is often more convenient to view the user’s data instead as an

indicator vector ti of length 2
d
with 1 at exactly one place ji and

0’s at remaining positions. The domain of all such ti ’s is the set of
identity basis vectors I

2
d×2d . This ‘unary’ view of user data allows

us to model the full contingency table correspondingly as a vector

(histogram) of length 2
d
with each cell indexed by η ∈ {0, 1}d

storing the count of all individuals with that exact combination of

attribute values. This encoding is also called one hot encoding.

An untrusted aggregator (e.g. a pollster) is interested in gathering

information on these attributes from the population of users. Un-

der the LDP model, the aggregator is not allowed (on legal/ethical

grounds) to collect any user i’s records in plain form. The gathered

data should allow running queries (e.g. the fraction of users that

use product A,B but notC together) over the interaction of at most

k ≤ d attributes. We do not assume that there is a fixed set of

queries known a priori. Rather, we allow arbitrary such queries

to be posed over the collected data. Our goal is to allow the accu-

rate reconstruction of k-way marginal tables under LDP. We now

formalize Local Differential Privacy (Section 3.1), and introduce

examples and notation for computing marginals (Section 3.2).

3.1 Local Differential Privacy

Local differential privacy (LDP) requires each data owner to per-

turb their output to meet the DP guarantee. Any two tuples ti , t
′
i ∈

I
2
d×2d are considered adjacent, with | |ti − t

′
i | |1 = 2 i.e. ti , t

′
i are

adjacent if they differ in their positions of 1’s. LDP upper bounds

the ratio of probabilities of seeing the same outcome for all adja-

cent tuples. The definition is obtained by applying the differential

privacy definition of equation (1) to a single user’s data.

Definition 3.1 (ϵ-local differential privacy (LDP) [14]). A random-

ized mechanism F is differentially private with parameter ϵ iff for

all pairs of adjacent input tuples ti , t
′
i ∈ I2d×2d , and every possible

output tuple R (k ≤ d), we have

Pr[F (ti ) = R] ≤ eϵ Pr[F (t ′i ) = R] (2)

When we aggregate in the LDP model, the above definition

ensures that we cannot confidently distinguish whether R is an

outcome of F (ti ) or F (t
′
i ), yielding plausible deniability to user i .

Note that in LDP each user does reveal their presence in the input.

The model allows each user to operate with a different privacy

parameter, but for simplicity we state our results using a value of ϵ
which is shared by all users (in common with other work on LDP).

Basic Private Mechanisms. We describe primitives for LDP on

simple inputs, which form building blocks for our protocols.

Randomized Response (RR):We first formally define the classic mech-

anism for releasing a single bit bi under privacy by having the user

lie with some probability [7]. In its simplest form, randomized

response has each user i report the true value of their input (bi )
with probability pr >

1

2
. Otherwise, i gives the opposite response

(1 − bi ). It is immediate that RR admits differential privacy with

eϵ =
pr

1−pr , by considering the probabilities of the four combina-

tions of input and output. Its simplicity has made it popular in

practical systems [2, 18, 34].

Budget Splitting (BS) and Randomized Response with Sampling (RRS):

When each user holdsm pieces of information, a first approach is

to release information about allm via a mechanism that achieves

(ϵ/m)-LDP on each, thus effectively splitting the “privacy budget”

ϵ (BS). Standard composition results from the DP literature ensure

that BS meets ϵ-LDP [15]. However, in general, accuracy is im-

proved if we instead sample one out ofm pieces of information and

release this with ϵ-LDP [6], and this is confirmed by our analysis of

our protocols. In particular, if a user’s information is represented as

a binary vector of dimensionm, we can uniformly sample an index

j with probability ps = 1/m, and use Randomized Response with

parameter pr to release the value found there.

We often encounter cases where a user holds a sparse vector:

exactly one entry is 1, and the rest are 0. The random sampling

approach applied to the entries of the vector has the disadvantage

thatmost likelywewill sample a zero entry, limiting the information

revealed. We discuss two alternative approaches, which extend

randomized response in different ways.

Preferential Sampling (PS): The first extension of RR is a natural

generalization (aka Generalized Randomized Reponse [28], Direct

Encoding [41]), which we label Preferential Sampling. Given a

sparse vector t ∈ I2m×2m such that |t | = 1 and t[j] = 1, we sample

an index ℓ according to the following distribution:

ℓ =

{
j : t[j] = 1, with probability ps

j ′ : j ′ ∈R [m] \ {j}, with probability 1 − ps

In other words, we report the true index with probability ps , while

each incorrect index is reported with probability
1−ps
m−1 . Whenm = 2

this mechanism is equivalent to 1 bit randomized response. Consid-

ering these two output probabilities, we immediately have:

Fact 3.1. The output of preferential sampling meets LDP with

eϵ =
ps

1−ps ·m − 1.

Rearranging, we set ps = (1 + (m − 1)e
−ϵ )−1 to obtain ϵ-LDP.

Parallel Randomized Response (PRR): A second approach is applym
independent instances of RR, each with parameter ϵ/2. We refer to

this as Parallel Randomized response (PRR) (also known as Basi-

cRAPPOR [18] and Unary Encoding [41]). Note that the output of

PRR is anm-bit string which is not guaranteed to be sparse.

Fact 3.2. Parallel Randomized Reponse applied to a sparse vector

t meets ϵ-LDP.

This fact follows by observing that for adjacent inputs ti and t ′i ,
and a particular output R in (2), the probabilities associated with all

but two output bit locations in R are identical (and so cancel in the

ratio Pr[F (ti ) = R]/Pr[F (t ′i )] = R). We are left with the probabilities

associated with the locations ji and j
′
i (i.e. the locations 1 bits in the

two adjacent inputs). The probability ratio for each of these bits is

exp(ϵ/2) from ϵ
2
-RR, so their product is exp(ϵ), as required by (2). In



recent work, Wang et al. [41] set the probability of keeping the sole

1 to be
1

2
, and the probability of retaining each 0 to be (1 + eϵ )−1,

to slightly improve the variance of this mechanism.

3.2 Marginal Tables

Notation and preliminaries. Recall that we model each user i’s
bit vector ti ∈ I2d×2d as a vertex in ad-dimensional Hamming cube.

Then we can restrict our attention only on a subset of k dimensions

of interest by summing (marginalizing) out cells of non-essential

dimensions. This is formally captured by the following definition.

Definition 3.2 (Marginal operator). Given a vector t ∈ R2
d
, the

marginal operator Cβ : R2
d
⇒ R2

k
computes the summed fre-

quencies for all combinations of values of attributes encoded by

β ∈ {0, 1}d , where |β |, the number of 1s in β , is k ≤ d .

For example, for d = 4 and β = 0101 (which encodes our interest

in the second and the fourth attribute), the result of C0101(t) is
the projection of t on all possible combinations of the second and

fourth attributes with remaining attributes marginalized out. Each

of the 2
k
entries in the vector C0101(t) stores the total frequency

of combinations of the k attributes identified by β . We make use

of the ⪯ relation, defined as α ⪯ β iff α ∧ β = β . For convenience

of expression, we abuse notation and allow Cβ (t) to be indexed by

{0, 1}d rather than {0, 1}k , with the convention that entries α such

that α ⪯̸ β are 0. Under this indexing, the entries in a marginal can

be written in the following way:

∀γ ⪯ β Cβ (t)[γ ] =
∑
η:η∧β=γ t[η] (3)

The condition η ∧ β = γ selects all indices η ∈ {0, 1}d whose value

on attributes encoded by β are γ .

Example 3.1. Let d = 4 and β = 0101. Then, applying (3):

C0101(t)[0000] = t[0000] + t[0010] + t[1000] + t[1010]
C0101(t)[0001] = t[0001] + t[0011] + t[1001] + t[1011]
C0101(t)[0100] = t[0100] + t[0110] + t[1100] + t[1110]
C0101(t)[0101] = t[0101] + t[0111] + t[1101] + t[1111]

All indices in {0, 1}d contribute exactly once to one entry in C0101
.

Definition 3.3 (k-way marginals). We say that β identifies a k-
way marginal when |β | = k . For a fixed k , the set of all k-way

marginals correspond to all

(d
k
)
distinct ways of picking k attributes

from d . We refer to the set of full k-way marginals as encompassing

all j-way marginals sets, ∀j ≤ k .

Note that the (unique) d-way marginal corresponds to the com-

plete input distribution. Since a single user’s input ti is sparse i.e.
contains just a single 1 (say at index ji ), any marginal β of ti will
also be sparse with just one non-zero element. The relevant index

in Cβ (ti ) is given by the bitwise operation ji ∧ β .

Definition 3.4 (Marginal release problem). Given a set of N users,

our aim is to collect information (with an LDP guarantee) to allow

an approximation of any k-way marginal β of the full d-way dis-

tribution t =
∑N
i=1 ti/N . Let Ĉβ be the approximate answer. We

measure the quality of this in terms of the total variation distance

from the true answer Cβ (t), i.e.

1

2

∑
γ ⪯β |Ĉ

β [γ ] − Cβ (t)[γ ]| = 1

2
∥Ĉβ − Cβ (t)∥1

The marginals of contingency tables allow the study of interest-

ing correlations among attributes. Analysts are often interested in

marginals with relatively few attributes (known as low-dimensional

marginals). If we are only concerned with interactions of up to at

most k attributes, then it suffices to consider the k-way marginals,

rather than the full contingency table. Since during the data collec-

tion phase we do not know a priori which of the k-way marginals

may be of interest, our aggregation should gather enough infor-

mation from each user to evaluate the set of full k-way marginals

for some specified k . Our aim is to show that we can guarantee a

small total variation distance with at least constant probability
1
.

We will express our bounds on this error in terms of the relevant

parameters N , d , k , and the privacy parameter ϵ . To facilitate com-

parison, we give results using the Õ notation which suppresses

factors logarithmic in these parameters.

Marginals andBasis Transforms. Since the inputs andmarginals

of individual users are sparse, the information within them is con-

centrated in a few locations. A useful tool to handle sparsity and

“spread out” the information contained in sparse vectors is to trans-

form them to a different orthonormal basis. There are many well-

known transformations which offer different properties, e.g Taylor

expansions, Fourier Transforms, Wavelets, Chebyshev polynomi-

als, etc. Among these, the discrete Fourier transformation over the

Boolean hypercube—known as the Hadamard transform—has many

attractive features for our setting.

Definition 3.5 (Hadamard Transformation (HT)). The transform

of vector t ∈ R2
d
is θ = ϕt where ϕ is the orthogonal, symmetric

2
d × 2d matrix with ϕi, j = 2

−d/2(−1)⟨i, j ⟩ .

Consequently, each row/column in ϕ consists of entries of the

form ± 1

2
d/2 , where the sign is determined by the number of 1 bit

positions that i, j agree on, denoted as an inner-product ⟨i, j⟩. It
is straightforward to verify that any pair of rows ϕi ,ϕ j satisfy
⟨ϕi ,ϕ j ⟩ = 1 iff i = j , and the inner product is 0 otherwise. Hence ϕ

is an orthonormal basis for R2
d
. Given an arbitrary vector t , we say

that its representation under the HT is given by the 2
d
Hadamard

coefficients (denoted as θ ) in the vector θ = ϕt . These properties
of HT are well-known due to its role in the theory of Boolean

functions [35]. In our case when ti has only a single 1 (say at index

ℓ), the Hadamard transform of ti amounts to selecting the ℓth basis

vector of ϕ, and so θ j = ϕ j, ℓ . We rely on two elements to apply the

Hadamard transform in our setting. The first follows from the fact

that the transform is linear:

Lemma 3.6. ϕ(
∑n
i=1 ti/N ) =

1

N
∑n
i=1(ϕti )

That is, the Hadamard coefficients for the whole population are

formed as the sum of the coefficients from each individual. The

second ingredient due to Barak et al. [4] is that we can write any

marginal β ∈ C as a sum of only a few Hadamard coefficients.

Lemma 3.7 ([4]). Hadamard coefficients Hk = {θα : |α | ≤ k} are
sufficient to evaluate any k-way marginal β . Specifically,

Cβ (t)γ =
∑
α ⪯β

⟨ϕα , t⟩
∑

η:η∧β=γ

ϕα,η =
∑
α ⪯β

θα
( ∑
η:η∧β=γ

ϕα,η
)

(4)

1
All our methods allow the probability of larger error to be made arbitrarily small.



Considering Example 3.1, to compute the marginal correspond-

ing to β = 0101, we just need the four Hadamard coefficients

indexed as θ0000,θ0001,θ0100 and θ0101. Moreover, to evaluate any 2-

way marginal from d = 4, we just need access to the

(
4

0

)
+

(
4

1

)
+

(
4

2

)
=

11 coefficients whose indices have at most 2 non-zero bits, out of

the 2
4 = 16 total coeffcients.

4 PRIVATE MARGINAL RELEASE

We identify a number of different algorithmic design choices for

marginal release under LDP. By considering all combinations of

these choices, we reach a collection of six distinct baseline algo-

rithms, which we evaluate analytically and empirically, and identify

some clear overall preferred approaches from our subsequent study.

We describe our algorithms in terms of two dimensions:

View of the data. The first dimension is to ask what view the al-

gorithm takes of the data. We are interested in marginals, so one

approach is to project the data out into the set of marginals of in-

terest, and release statistics about those marginals. However, since

any marginal can be obtained from the full input distribution by

aggregation, it is also possible to work with the data in this form.

How the information is released. The canonical way to release data

under LDP is to apply Randomized Response. As discussed in Sec-

tion 3.1, when the user’s data is represented as a sparse input vector,

we can instantiate this by sampling a cell in their table, and applying

Randomized Response (the randomized response with sampling,

RRS, approach); by reporting a single cell index (via the preferential

sampling approach (PS)); or parallel randomized response (PRR)

to report information on the vector. The alternative approach we

study is to apply the Hadamard transform: the user’s table is now

represented by a collection of coefficients, each of which can take

on one of two possible values. We can then sample one Hadamard

coefficient, and report it via randomized response (we call this the

HT approach). Note that it is not meaningful to apply preferential

sampling or parallel RR after Hadamard transform, since the input

no longer meets the necessary sparsity assumption.

4.1 Accuracy Guarantees

In order to analyze our algorithms, we make use of bounds from

statistical analysis, in particular (simplified forms of) the Bernstein

and Hoeffding inequalities:

Definition 4.1 (Bernstein and Hoeffding inequalities). Given N
independent variables Xi such that E[Xi ] = 0, |Xi | < Mi , and

Var[Xi ] = σ 2 for all i . Then for any c > 0,

Pr

[
|
∑N
i=1 Xi |

N > c
]
≤


2 exp(− Nc2

2σ 2+ 2c
3
maxi Mi

) (Bernstein ineq.)

2 exp(− N 2c2

2

∑N
i=1 M

2

i
) (Hoeffding ineq.)

These two bounds are quite similar, but Bernstein makes greater

use of the knowledge of the variable distributions, and leads to

stronger bounds for us when we can show σ 2 < M = maxi Mi .

Wewill show that our combination of techniques provides results

which are unbiased, accurate, and private to estimate a parameter

of the population f , such that 0 ≤ f ≤ 1, using N observations.

Constructing unbiased estimators. It is straightforward to de-

rive versions of the baseline operators (RRS, PS etc.) which are

unbiased – that is, we derive values such that simple summation

of these values provides a random value whose expectation is the

sum of the input values. For concreteness, we describe the process

for Preferential sampling to illustrate this step.

Recall that preferential sampling reports an index ℓ which is

claimed to be the location of the sole 1 in the given input table

of size 2
k
. For convenience, we write D = 2

k − 1. Given the N
reports, let Fj be the fraction of times that j is reported, and let fj
be the true fraction of inputs that have a 1 at location j. Then the

expected reports of j come from the proportion of times the input

is j and it is correctly reported (ps fj ), plus the proportion of times

the input is not j but j is chosen to be reported ((1− fj )
1−ps
D ). Thus

E[Fj ] = ps fj + (1 − ps )
1−fj
D

Rearranging this provides an unbiased estimator,
ˆfj =

DFj+ps−1
Dps+ps−1 .

Master Theorem for Accuracy. To analyze the quality of the

different algorithms, we provide a generalized analysis that can

be applied to several of our algorithms in turn. We assume that

each user input is in {−1, 1} in the proof, but we will also be able

to apply the theorem when inputs range over other values.

Theorem 4.2. Let each ti be a sparse vector where one entry is

{−1, 1}, and the rest are zero. When each user i uniformly samples an

input element j with probability ps and applies randomized response

with pr to construct t
∗
i , for c > 0 we have

Pr

[
|
∑N
i=1 t

∗
i [j] − ti [j]|

N
≥ c

]
≤ 2 exp

(
−

Nc2ps (2pr − 1)

2pr (2
1−pr
2pr−1 +

c
3
)

)
Intuitively, this theorem lets us express the (total variation) error

in a marginal as a function of parameters ps and pr . We will choose

values of c that make this probability constant — this implies (for

example) that c should be chosen proportional to 1/
√
Nps . Hence,

we capture how the error decreases as N increases, and how it

increases as the number of items being sampled from increases. For

ease of reading, we defer all proofs to the Appendix.

4.2 Input Perturbation Based Methods

The three approaches which work directly on the input data require

a two-step analysis: first we consider the accuracy of reconstruction

of some global information (e.g. the full distribution), then we ana-

lyze the accuracy of aggregating this to give the required marginal

β . Throughout we assume that 2
d
is at least Õ(N ), i.e. the number

of users N participating is at least proportional to the number of

cells in the full distribution (2
d
). This is natural, since it requires

our methods which sample cells from the full input to have at least

constant probability of probing any given cell. Now we spell out

the details of our input perturbation based algorithms. For all of

our algorithms, each user i uses the one-hot encoding for her input,
so ti ∈ I2d×2d .
Parallel Randomized Response On Input (InpRR). The most

direct application of LDP here is to add noise to all 2
d
locations.

Perturbation: Each user i perturbs their value ti at every index ℓ ∈

2
d
using

ϵ
2
-RR (PRR) to get t∗i ∈ R

d
and sends it to the aggregator.

Aggregation: We reconstruct a version of the full input t∗ by sim-

ply unbiasing and summing all these contributions (and dividing

by N ); any desired marginal β is obtained by taking Cβ (t∗), i.e.
computing that marginal of the reconstructed input.



Algorithm 1 User’s routine for InpHT

1: procedure InpHT(ti )

2: Let ji ∈ {0, 1}
d
be the signal index of ti ∈ I2d×2d .

3: Randomly sample a coefficient index ℓi ∈ Hk .

4:
ˆθi ← RR(−1⟨ji , ℓi ⟩) ▷ Randomized response on (scaled) θℓi

5: Send (
ˆθi , ℓi )

Algorithm 2 Aggregator’s routine for InpHT

1: Θ∗[0] = 1 ▷ 0th Hadamard coefficient is always 1.

2: Aggregator fills table H from tuples ( ˆθi , ℓi ) as Hi [ℓi ] = ˆθi .
3: for all j ∈ T do

4: Θ∗[j] ← 2
−d

∑N
i=1 H

∗
i [j]/(2p−1)
Nj

. ▷ Nj is the frequency count

of index j.

InpRR though simple, does not scale well with d as expected. It is

also potentially costly to apply, since each user needs to materialize

and communicate 2
d
pieces of information. Applying our general

analysis allows us to bound the error (total variation distance) in

the returned marginal.

Theorem 4.3. InpRR achieves ϵ-LDP and guarantees that

∥Cβ (t) − Cβ (t∗)∥1 = Õ
(
2
(d+k )/2

ϵ
√
N

)
with constant probability.

Preferential Sampling On Input (InpPS). Our second method

uses preferential sampling to report a (noisy) index, so sends d bits.

Perturbation: Each user i samples the input signal index j with
probability ps , then reports the selected index to the aggregator.

Aggregation: The reconstructed distribution t∗ is found by apply-

ing the unbiasing to each noisy report (Section 4.1), and computing

the average. As in the previous case, we can obtain any desired

marginal by aggregating the reconstructed distribution.

Theorem 4.4. InpPS achieves ϵ-LDP and guarantees that with

constant probability we have for a target k-way marginal β

∥Cβ (t) − Cβ (t∗)∥1 = Õ
(
2
d+k/2

ϵ
√
N

)
.

Consequently, we get a guarantee for InpPS in terms of total

variation distance of Õ
(
2
k/2

2
d

ϵ
√
N

)
. This exceeds the bound of the

previous algorithm by a factor of 2
d/2

, so we expect the former to

be more accurate in practice.

Random Sampling Over Hadamard Coefficients (InpHT). In

this method, user i takes the HT of her input and perturbs a uni-

formly sampled coefficient and releases it via Randomized Re-

sponse. According to Lemma 3.7, we do not need to sample from

all coefficients; we need only the set of coefficients T sufficient

to reconstruct the k-way marginals. T consists of those coeffi-

cients whose d-bit (binary) indices contain at most k 1’s. There

are |T | =
∑k

ℓ=1

(d
ℓ

)
= O(dk ) of these, which can be much smaller

than the 2
d
parameters needed to describe the full input.

Perturbation: Each i samples a coefficient index ℓi ∈ T uniformly

and computes a scaled-up version of the ℓi th Hadamard coefficient

θi as θi = (−1)
⟨ji , ℓi ⟩

. She then perturbs θi with ϵ-RR as
ˆθi and

releases the tuple (ℓi , ˆθi ).

Aggregation: The aggregator then unbiases, averages and rescales

each noisy coefficient θ j to estimate
ˆθ j . These can then be used to

reconstruct any target marginal β via the application of Lemma 3.7

to generate Cβ (t∗).
For completeness, Algorithms 1 and 2 spell out the transforma-

tions steps followed by user and aggregator in InpHT. Note that

the communication per user can be encoded using 1 bit to describe

the output of RR
ˆθi , plus at most d bits to specify ℓi , the sampled

coefficient. We apply Theorem 4.2 to this setting to bound the total

variation distance between true and reconstructed marginals.

Theorem 4.5. InpHT achieves ϵ-LDP, and with constant probabil-

ity we have for any target k-way marginal β

∥Cβ (t) − Cβ (t∗)∥1 = Õ
(
(2d )k/2

ϵ
√
N

)
.

Comparing this to the previous results, we observe that the

dependence on 2
k/2/(ϵ√N ) is the same. However, our full anal-

ysis shows a dependence on

√
T in place of

√
2
d
. Recall that T =∑k

ℓ=1

(d
k
)
< 2

d
for k < d . For small values of k , this is much im-

proved. For example, for k = 2,

√
T < d in InpHT compared to a

2
d/2

term for InpRR.

4.3 Marginal Perturbation Based Methods

Our next methods are the analogs of the Input perturbation meth-

ods, applied to a randomly sampled marginal rather than the full

input. For brevity, we omit the formal proofs of these results and

instead provide the necessary intuition, since they are mostly adap-

tations of the previous proofs.

RR On A RandomMarginal (MargRR). InMargRR, user i ma-

terializes a random marginal βi ∈ C, then perturbs it using PRR.

Perturbation: User i samples a random marginal βi ∈ C, and eval-

uates its 2
k
indices (Cβ (ti )) on her input. Note that Cβ (ti ) is also

sparse. The user then perturbs each index of Cβ (ti ) with
ϵ
2
-RR

(PRR) and sends the tuple ⟨Cβ (t∗i ), βi ⟩ to the aggregator.

Aggregation: The aggregator sums up the perturbed marginals

received from all users and unbiases them.

Analysis (outline). As with InpRR, it is immediate that the method

achieves ϵ-LDP, since each perturbed marginal index is specific to

the input, and is obtained via RR which is ϵ-LDP.We require at most

d bits to identify which marginal was chosen, plus 2
k
bits to encode

the user’s perturbed marginal. In terms of accuracy, the analysis

is also very similar to InpRR. The difference is that we are now

considering sampling from

(d
k
)
marginals, each of which contains

2
k
pieces of information. So where before we had a dependence

on 2
d
, the method now also depends on 1/ps =

(d
k
)
= O(dk ). Thus,

via Theorem 4.3, we obtain a bound on the error in each entry of

each marginal of Õ(
√
dk

/
ϵ
√
N ). Summing this over the 2

k
entries

in the marginal, we obtain a total error of Õ
(
2
kdk/2

ϵ
√
N

)
.

PS On A Random Marginal (MargPS). As an alternative ap-

proach to MargRR, we can use preferential sampling (Section 3.1)

to perturb the sampled marginal. We can pick the entry in the

randomly sampled marginal which contains the 1 and apply prefer-

ential sampling on it. For small marginals (i.e. small k), this may be

effective. Otherwise the algorithm is similar toMargRR, and we



build all the required marginals by averaging together the (unbi-

ased) reported results from all participants.

Analysis. The behavior of this algorithm can be understood by

adapting the analysis of InpPS. Since we work directly with the

marginal of size k , we now obtain a bound in terms of 2
3k/2

where

before we had 2
d+k/2

. However, the effective population size is split

uniformly across the

(d
k
)
differentmarginals. Consequently, the total

variation distance is Õ
(
2
3k/2dk/2

ϵ
√
N

)
. This exceeds the previous result

by a factor of 2
k/2

, but for small k (such as k = 2 or k = 3), this can

be treated as a constant and the other factors hidden in the big-Oh

notation may determine the true behavior. The user sends d bits to

identify the sampled marginal, plus k bits to identify the sampled

index within it.

Hadamard Transform Of A Random Marginal (MargHT).

MargHT also deviates from MargRR only in how the chosen mar-

ginal is materialized: it takes the Hadamard transform of each user’s

sampled marginal, and uses RR to release information about a ran-

domly chosen coefficient. These are aggregated to obtain estimates

of the (full) transform for each k-way marginal β . Note that this
method does not share information between marginals, and so does

not obtain as strong a result as InpHT.

Analysis. Here, pr is the same as in InpHT, but we are now sam-

pling over a larger set of possible coefficients: each marginal re-

quires 2
k
coefficients to materialize, and we sample across T =

O(dk ) marginals. This sets ps = O((2d)−k ). We obtain that σ 2 =

O((2d)k/ϵ2) and M = O((2d)k/ϵ). Thus, we bound the absolute

error in each reconstructed coefficient by Õ
(
dk/2

ϵ
√
N

)
, by invoking

Theorem 4.2 with these values and then applying the rescaling by

2
−k

. We directly combine the 2
k
coefficients needed by marginal

β , giving total error Õ( 2
3k/2dk/2

ϵ
√
N
), similar to the previous case. The

communication cost is d bits to identify the marginal, and k + 1 bits
for the index of the Hadamard coefficient and its perturbed value.

Summary of marginal release methods. Although different in

form, all three marginal based methods achieve similar asymptotic

error, which we state formally as follows:

Lemma 4.6. Two marginal-based methods (MargPS andMargHT)

achieve ϵ-LDP and with constant probability the total variation dis-

tance between true and reconstructed k-way marginals is at most

Õ( 2
3k/2dk/2

ϵ
√
N
). For MargRR, the bound is Õ( 2

kdk/2

ϵ
√
N
).

Comparison of all methods. Comparing all six methods, a de-

pendence on a factor of 2
k/2ϵ
√
N is common to all. Marginal-based

methods multiply this by a factor of at least (2d)k/2, while input
based methods which directly materialize the full marginal (InpRR

and InpPS) have a factor of 2
d
. The input Hadamard approach In-

pHT reduces this to just dk/2. Asymptotically, we expect InpHT to

have the best performance. However, for the parameter regimes

we are interested in (e.g. k = 2), all these bounds could be close in

practice. Hence, we evaluate the methods empirically to augment

these bounds. The time cost of all methods is linear in the size of

the communication: each user’s time cost is proportional to the

size of the message sent, while the aggregator’s time is propor-

tional to the total size of all messages received, to simply sum up

derived quantities. Table 2 summarizes these bounds, showing the

Table 2: Summary of communication and error bounds.

Method Communication cost Error behavior

InpRR 2
d

2
k/2

2
d

InpPS d 2
k/2

2
d

InpHT d + 1 2
k/2dk

MargRR d + 2k 2
kdk/2

MargPS d + k 2
3k/2dk/2

MargHT d + k + 1 2
3k/2dk/2

communication cost (in bits), along with the leading error behavior

(supressing logarithmic factors and the common factor of ϵ/
√
N ).

4.4 Expectation-Maximization Heuristic

While materialization of marginals has not been the primary focus

of prior work, a recent paper due to Fanti et al. does suggest an alter-

native approach for the 2-way marginal case [20]. The central idea

is for each user to materialize information on all d attributes, and

to use post-processing on the observed combinations of reported

values to reach an estimate for a given marginal.

In more detail, each user independently perturbs each of the d
(binary) attributes via (ϵ/d)-randomized response, i.e. using Bud-

get Sharing (BS). To reconstruct a target marginal distribution, the

aggregator applies an instance of Expectation Maximization (EM).

Starting from an initial guess (typically, the uniform marginal), the

aggregator updates the guess in a sequence of iterations. Each it-

eration first computes the posterior distribution given the current

guess, applying knowledge of the randomized response mechanism

(expectation step). It then marginalizes this posterior using the

observed values of combinations of values reported by each user,

to obtain an updated guess (maximization step). These steps are

repeated until the guess converges, which is then output as the

estimated distribution. As noted by Bassily and Smith [6], this is

a plausible heuristic, but does not provide any worst case guaran-

tees of accuracy. We compare this method, denoted InpEM, to the

algorithms above in our experimental study. In summary, we find

that the method provides lower accuracy than our new methods.

In particular, we see many examples where it fails: the EM proce-

dure immediately terminates after a single step and outputs the

prior (uniform) distribution.
2
. We compare InpEM with best of our

methods in Section 5.4.

5 EXPERIMENTAL EVALUATION

We have two goals for our empirical study: (1) to give experimental

confirmation of the accuracy bounds proved above; and (2) to show

that our algorithms support interesting machine learning/statistical

tasks using our marginal computing machinery as primitives. We

implement our methods with standard Python packages (Numpy,

Pandas) and perform tests on a standard Linux laptop.

We give our main experimental results on varying parameters N ,

k and d for our algorithms in this section. Additional experiments

on ϵ and alternative primitives are given in Appendix B.

2
Figure 3 in the Appendix quantifies this in more detail, and shows some parameter

settings where the method fails universally.



Figure 3: Attribute correlation heatmap of NYC taxi data

5.1 Experimental Setting

Datasets used.We use two sample datasets for our experiments:

NYC Taxi Data [1]. This dataset samples trip records from all trips

completed in yellow taxis in NYC from 2013-16. Each trip record

can be viewed a unique anonymous rider’s response to a set of

survey questions about her journey. Some of the attributes are GPS

co-ordinates/timestamps of pick-up/drop-off, payment method, trip

distance, tip paid, toll paid, total fare etc. From this (very large) data

set, we select out the 3M records having pickup and/or drop-off

locations inside Manhattan. We obtain the 8 binary attributes for

each trip listed in Table 1. We observe in this dataset that most

journeys are short, and so attribute pairs such as pickup/drop-

off locations/times, tip-fraction and payment mode are strongly

correlated. Meanwhile, most other attribute pairs are negatively

correlated, or only weakly related. Figure 3 gives a heatmap for the

strength of pairwise associations using the Pearson coefficient.

Movielens [25]. This dataset comprises over 20M records from over

150K anonymous users who rate nearly 40K unique movie titles.

Each title belongs to one or more of 17 genres such as Action,

Comedy, Crime, Musical etc. From this, we derive a dataset to

encode “video viewing” preferences. We first find the top-1000

most rated movies in each genre. We assign each user a vector of

preferences ti ∈ {0, 1}
d
. For each user i , a bit at index j ∈ [d] is 1 if

i has rated at least one of the top 1000 movies of genre j and zero

otherwise. In this data, most attribute pairs are postively correlated.

Default ParametersAnd Settings. In each experimental instance,

we sample (with replacement) a set of random unique records/users

(50K ≤ N ≤ 0.5M) as a power of 2 from the total available popu-

lation. We vary ϵ from 0.2 (higher privacy) to 1.4 (lower privacy).

Note that the theory shows that ϵ and N are tightly related: decreas-

ing ϵ means N must be increased to obtain the same accuracy. Some

prior work on LDP e.g. [34] studies a smaller regime of ϵ values,
at the expense of a much larger user population. Our experiments

adopt the probability settings for Parallel Randomized Response

due to Wang et al. [41], although we find that these make little

difference compared to the “vanilla” Randomized Response prob-

abilities. We begin our experimental study by sampling (without

replacement) a small subset of dimensions d (3-8), and increase to

larger dimensionalities for our later experiments. Per our motiva-

tion (Section 1), we focus on small marginals (k = 1, 2, 3). We repeat

each marginal reconstruction 10 times to observe the consistency

in our results, and show error bars.

5.2 Impact of varying population size N
We aim to understand howmuch a privately reconstructedmarginal

Cβ (t∗) deviates from its non-private counterpart Cβ (t) when β is

drawn from the set of k-way marginals. First, we fix ϵ = 1.1 and

vary N for different choices of d,k . For our initial comparison, we

keep d’s moderate ({4, 8, 16}), as this suffices to distinguish the

methods which scale well from those that do not.

Experimental Setting. Figure 4 shows plots for total variation

distance in reconstruction of k-way marginals as we vary N for all

combinations of k ∈ {1, 2, 3} and d ∈ {4, 8, 16} on the movielens

dataset with ϵ = ln(3) ≈ 1.1 fixed throughout the experiment. Each

grid point shows the mean variational distance of all k = 1, 2, 3

marginals. The values of parameters d and k vary across the rows

and columns of the figure, respectively.

Experimental Observations. A high level observation across the

board is how the error reduces as N increases for all 6 algorithms.

This agrees with the analysis that error should be proportional to

1/
√
N , i.e. error halves as population quadruples. We also see an

increase in error along columns (rows) as k (d) increases, although
the dependency varies for different algorithms.

Our second observation is that the performance of InpPS decays

rapidly as a function of d , consistent with the accuracy bound of

2
d
. Typically, InpPS’s error does not reduce as with N . This is

because the probability of outputting the signal index becomes so

small for larger d’s that each user responds with a random index

most of the time. This means that the perturbed input distribution

does not contain much information for our estimators to invert

the added noise with precision. One surrogate for the accuracy

of the algorithms is the number of statistics materialized in each

case. For d = 8,k = 2, InpPS construct 2
8 = 256 values, while the

marginal-based methods are working on

(
8

2

)
× 2k = 112 values. As

a result, the number of data points per cell is proportionately more

forMargHT,MargPS thus improving their accuracy. On the other

hand, the input-based method InpHT convincingly achieves the

lowest (or near lowest) error across all parameter settings.

Breaking the algorithms down by the cardinality of the marginal

(k), note that for k = 1 then the primitives RR and PS are effectively

the same. Further, for a givenmarginal, there is only onemeaningful

Hadamard coefficient needed, and so we expect the Hadamard-

based methods to behave similarly. Indeed, the methodsMargPS,

MargRR,MargHT, and InpHT are largely indistinguishable in their

accuracy. For the larger 2-way and 3-way marginals, we see more

variation in behavior. The input-based methods do not fare well:

InpPS has very large errors for even smaller d values (d = 4 and

d = 8), and InpRR is similar once d = 16. We observe that MargPS

achieves better accuracy than MargRR. This supports the idea

that the former method, which preferentially reports the location

of each user’s input value, can do better than naive randomized

response, even though this is not apparent from the asymptotic

bounds. Interestingly, on this data we see that the difference in

performance of MargPS andMargHT is tiny, andMargPS turns

out to be a better algorithm. For d = 16, MargHT starts as a better

algorithm but is outperformed byMargPS.

InpRR is among the better methods for smaller values of d and

k’s. However, we advise against InpRR for large d’s since it takes

time proportional to 2
d
to perturb all cells of each user. Similarly,



Figure 4: Mean total variation distance for 1, 2, 3−way marginals over the movielens dataset as N varies

Figure 5: Effect of varying k .

the use of MargRR is also hard to justify from an execution time

standpoint when k gets larger, since it materializes the full marginal

and applies randomized response to each cell.

Across all experiments, we find that InpHT achieves the best

accuracy most consistently, and is very fast in practice.

5.3 Impact of increasing marginal size k
In this work, our main focus has been on relatively low order

marginals (k ≤ 3), as we find this setting most compelling. However,

our algorithms work for any k ≤ d . In this section, we allow k to

vary, and again measure accuracy on the taxi data set.

Experimental Setting: In this experiment, we set N = 2
18, eϵ =

3,d = 8 and vary k from 1 to 7 (Figure 5). Note that we expect to

see the strongest results for InpHT when k ≤ d
2
; as k approaches d ,

we require more Hadamard coefficients, and the theoretical bound

converges to that of the other input based methods.

Experimental Observations: We observe that, in line with ex-

pectations, InpHT is the method of choice for k ≤ d/2. For larger k ,
InpRR appears competitive in terms of accuracy. However, there are

some notable disadvantages to InpRR, as it carries with it a much

higher communication cost: the method has to send the whole

input distribution, rather than a single Hadmard index and value.

The aggregator’s work is consequently higher as well. This ratio

is 28 when d = 8, rising to nearly 4000 for d = 16. Other methods

become less accurate more quickly. The absolute error does start to

grow as k increases, even in the best case. However, note that a total

variation distance of 0.125 in a marginal with k = 5 corresponds to

an average absolute error of 0.125/32 ≈ 0.004 per entry.

5.4 Impact of increasing dimensionality d
Experimental Setting. Now that we have established the rela-

tive performance of our algorithms, we compare to an alterna-

tive method that works in the case k = 2, denoted InpEM (Sec-

tion 4.4). We consider a larger range of values of the dimensionality



Figure 6: Total variation distance for k = 2 on NYC Taxi Trips Data For larger d’s.

d , (achieved by duplicating columns) and show the results in Fig-

ure 6. For InpEM, we fix the convergence threshold to Ω = 0.00001,

i.e. stop when the change in the current guess is below Ω.
Experimental observations.We see that the InpEM gives reason-

able results that improve as ϵ is increased. However, the achieved
accuracy is several times worse than the unbiased estimators InpHT

and MargPS. There are additional reasons to not prefer InpEM: it

lacks any accuracy guarantee, and so is hard to predict results. It is

also slow to apply, taking several thousand or tens of thousands of

iterations to converge. In some cases, the convergance criteria are

immediately met by the uniform distribution, which is far from the

true marginal. We omit formal timing results for brevity; however,

convergence time was observed to grow linearly with d . Weakening

the convergence criterion (i.e. increasing the stopping parameter

Ω) even slightly led to much worse accuracy results than the al-

ternative methods. In contrast, our unbiased estimators are found

instantaneously.

Remark. It is reasonable to ask whether EM decoding schemes

can be developed for other methods for recovering marginals. We

performed a set of experiments on this approach (details omitted

for space reasons); our conclusion is that while this can be applied

to our algorithms, there is no improvement compared to the direct

construction of unbiased estimators.

6 APPLICATIONS AND EXTENSIONS

Since each cell of a k-way marginal is a joint distribution of a set of

k attributes and can be used to determine conditional probabilities,

marginals are useful in machine learning and inference tasks. In

this section, following our motivational use case, we perform (1)

association testing among attributes (2) dependency trees fitting.

For both tasks, 1 and 2-way marginals are sufficient. Based on the

accuracy results, we useMargPS and InpHT for these tasks. Finally,

we discuss how to apply our results to non-binary attributes.

6.1 Association Testing

We often want to check if two variables A,B are independent or

not i.e. we want to know if Pr[A,B] ≈ Pr[A] Pr[B]. The χ2 test

of independence compares the observed cell counts to expected

counts assuming the independence (null hypothesis) and compute

the χ2 value (see e.g. [3]). It then compares this value to the critical

Figure 7: χ2 test values on N = 256K NYC taxi trips, ϵ = 1.1.

value p for a given confidence interval (usually 0.95). If χ2 > p, we
conclude that A,B are dependent (rejecting the null hypothesis).

For a 2-way marginalm, the χ2 statistic is
∑
j ∈{0,1}2

(t [j]−E[t [j]])2
E[t [j]] ,

where E[t[j]] is the expected value at t[j].
Experimental setting. We use the taxi data for supporting this

task since this dataset has a good mix of correlated/weakly corre-

lated attributes (Figure 3). As mentioned above, there are strong

positive associations in the taxi data among the pairs ⟨Night_pick,

Night_drop⟩, ⟨Toll, Far⟩ and ⟨CC, Tip⟩ and expect the test to de-

clare them as dependent. Similarly, we expect the test to declare

the pairs ⟨M_drop, CC⟩, ⟨Far, Night _pick⟩ and ⟨Toll, Night_pick⟩

to be independent.

Experimental observations. Figure 7 compares privately and

non-privately computed χ2 values with the critical value (computed

with 1 degree of freedom and with confidence interval of 95%
3
)

over log scale. We observe that non-private and private χ2 values
are quite close in most cases for InpHT (note the log scale on the

y-axis, which tends to exaggerate errors in small quantities). On the

other hand, MargPS often commits the type I error (thus failing
to reject the null hypothesis) for the pairs ⟨Toll, Night_pick⟩, ⟨Far,

Night_pick⟩ and occasionally for pairs ⟨M_drop , CC⟩, since the

test statistic is close to the critical value in these cases.

3
Gaboardi et al. in [21] suggest increasing p since comparing a differentially private

χ 2
statistic to a noise unaware critical value may not lead to a good significance level

even for large N . We do not perform correction in this test, and leave developing

robust correlation tests under LDP for future work.



Figure 8: Total mutual information of trees on movielens

6.2 Bayesian Modeling

Exact estimation of a joint distribution for d discrete variables could

be computationally infeasible for large d’s. Chow and Liu in [9]

proposed an algorithm for approximating a joint distribution of a

set of discrete variables using products of distributions involving

no more than pairs of variables. Since each variable in the approxi-

mation depends on at most one more variable, the task of finding

such approximation can be thought as finding a tree that optimizes

a particular distance metric. They prove that a tree configuration

that maximizes total mutual information among edges is an optimal

approximation of the joint distribution in question. This insight

converts the intractable optimization problem of finding such tree

to an easy problem of finding a maximum weight spanning tree.

Concretely, all we have to do is treat all random variables as nodes

in an empty graph and find a tree that maximizes the total edge

weight. Once a tree is learnt, any high dimensional joint distribution

of interest can be learnt by multiplying conditional probabilities

that can found using marginals.

The center piece of this algorithm is computation of mutual

information between

(d
2

)
pairs of variables. Mutual information

between two discrete variables A,B ∈ {0, 1} is given as

MI (A,B) =
∑
i, j ∈{0,1}2 Pr[A = i,B = j] log Pr[A=i,B=j]

Pr[A=i] Pr[B=j]

Experimental setting. Note that the Chow-Liu algorithm finds a

tree from the equivalence class of trees fitting the given data and

are not unique. Moreover, there could be many others trees with

different topologies achieving near optimal MI score. Therefore,

our aim in this section is to compare total MI from privately and

non-privately learnt trees. For this purpose, we use the movielens

dataset with d = 10.

Experimental observations. Figure 8 compares the total (true)

MI from 200K users for various ϵ values (error bars show variation

over different subsets of sampled records). We once again see that

MI of trees computed with InpHT marginals is nearly the same as

the non-private computation. MargPS is less accurate at low ϵ’s
but catches up with InpHT as ϵ increases. We conclude that InpHT

gives a robust solution for this approach.

6.3 Categoric Attributes

We now consider how to apply these methods over more general

classes of input – in particular, over cases where the input is non-

binary, but ranges over a larger set of possible categories r > 2.

Suppose now we have d categoric attributes with cardinalities (in-

dexed in order of size for convenience) r1 ≥ r2 ≥ . . . ≥ rd , and

wish to find marginals involving subsets of at most k attributes. We

describe two approaches to handling such data.

Binary encoding methods using our algorithms.Many of our

algorithms suchMargRR,MargPS, InpPS, InpRR will generalize

easily in this case, since they can be applied to users represented as

sparse binary vectors. The Hadamard-based methodsMargHT and

InpHT can also be generalized if we rewrite the input in a binary

format, i.e. we create a fresh binary attribute for each possible cate-

goric value in an attribute (aka “one-hot encoding”). However, we

can more compactly encode an attribute value that takes on r possi-
ble values using ⌈log

2
r⌉ bits, and consider this as the conjunction

of ⌈log
2
r⌉ binary attributes. Consequently, we state a result (based

on our strongest algorithm for the binary case) in terms of the

effective binary dimension of the encoded data, d2 =
∑d
i=1 ⌈log2 ri ⌉;

and the binary dimension of k-way marginals k2 =
∑k
i=1 ⌈log2 ri ⌉:

Corollary 6.1. Using InpHT on binary encoded data, we achieve

ϵ-LDP, and with constant probability we have for any target k-way
marginal β on binary encoded data,

∥Cβ (t) −Cβ (t∗)∥1 = Õ
(
(2d2)k2/2

ϵ
√
N

)
Consequently, this provides an effective solution, particularly

for data with low cardinality attributes. We can see the impact

of this encoding from our experiments on varying k (Figure 5).

Observe that total variation distance over data encoded into k2
binary attributes is equivalent to total variation distance on binary

data for a marginal of size k = k2 attributes. For example, the error

on a 2-waymarginal over attributes with four possible values would

look like that for a k = 4 attribute binary marginal (as in Figure 5).

Orthogonal Decomposition. It is natural to ask whether there

are alternative decompositions for categorical data which share

many of the properties of the Hadamard transform (orthogonal,

requiring few coefficients to reconstruct low-order marginals). One

such approach is the Efron-Stein decomposition [17] which is a gen-

eralization of Hadamard transform for non binary contingency

tables. Similar to HT, it is possible to extract a set of Efron-Stein co-

efficients necessary and sufficient to evaluate a full set of a k−way
marginals. One could then design an algorithm similar to InpHT

that adds noise to a random coefficient, allowing an unbiased es-

timate to be constructed by an aggregator. We conjecture that for

low order marginals, a scheme based on such decomposition will

be among the best solutions.

7 CONCLUDING REMARKS

We have provided algorithms and results for the central problem

of private release of marginal statistics on populations. Our main

conclusion is that methods based on Fourier (Hadamard) transfor-

mations of the input are effective for this task, and have strong

theoretical guarantees in terms of accuracy, communciation cost,

and speed. Although the technical analysis is somewhat involved,

the algorithms are quite simple to implement and so would be

suitable for inclusion in current LDP deployments in browsers

and mobile devices: it would require only small modifications to

RAPPOR or iOS to incorporate them.
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A DEFERRED PROOFS

In this appendix, we provide the detailed technical proofs for the

claimed privacy and accuracy properties of our algorithms.

Proof of Theorem 4.2. We first consider the input of a single

user subject to randomized response, and obtain an unbiased es-

timate for their contribution to the population statistics. This lets

us combine the estimates from each user to compute an unbiased

estimate for the population, whose variance we analyze to bound

the overall error.

Let ti [j] ∈ {−1, 1} be i’s unknown true input at location j and
t∗i [j] be the unbiased estimate of ti [j]. First, we derive the values
we should ascribe to t∗ to ensure unbiasedness, i.e. E[t∗i [j]] = ti [j].

1. When j is sampled (with probability ps ) and ti [j] = 1, we set

t∗i [j] = x/ps with probability pr and t
∗
i [j] = y/ps otherwise.

2. When j is sampled (with probability ps ), and ti [j] = −1, we set
t∗i [j] = y/ps with probability pr and x/ps otherwise.

3. When j is not sampled, we implicitly set t∗i [j] = 0.

We can encode these conditions with linear equations:

prx + (1 − pr )y = −1 (5)

pry + (1 − pr )x = 1 (6)

Solving, we obtain x = 1

(2pr−1)
and y = − 1

(2pr−1)
. As we require

pr >
1

2
, we have x > 0 and y = −x < 0. We now analyze the

(squared) error from using these parameters. Define a random vari-

able for the observed error as Yi [j] = t∗i [j] − ti [j]. Observe that

E[Yi [j]] is 0, and

|Yi [j]| ≤
1

ps

(
1 +

1

2pr − 1

)
=

2pr
ps (2pr − 1)

:= M .



Furthermore, |Yi [j]| is symmetric whether ti [j] = 1 or −1. Then:

Var[Yi [j]] = E[Y 2

i [j]]

=
prps

p2s

�� 1

2pr − 1
− 1

��2 + (1 − pr )ps
p2s

��
1 +

1

2pr − 1

��2 + (1 − ps )12
≤

pr
ps

(
2pr − 2

2pr − 1

)
2

+
(1 − pr )

ps

(
2pr

2pr − 1

)
2

+ (1 − ps )

=
4

ps (2pr − 1)2
(pr (1 − pr )

2 + (1 − pr )p
2

r ) + (1 − ps )

=
4pr (1 − pr )

ps (2pr − 1)2
+ (1 − ps ) := σ

2. (7)

Nowwe consider the effect of aggregating N estimates of the j’th
population parameter. Using Bernstein’s inequality (Definition 4.1),

we can bound the probability of the error being large based on the

boundM on the absolute value of the Yi [j]’s.

Pr

[
|
∑N
i=1 Yi [j] |
N ≥ c

]
≤ 2 exp

(
− Nc2

2σ 2+ 2cM
3

)
≤ 2 exp

(
− Nc2

2(
pr (1−pr )
ps (2pr −1)2

+1)+
2cpr

3ps (2pr −1)

)
= 2 exp

(
− Nc2

2pr
ps (2pr −1)

(
2(1−pr )
(2pr −1)

+ c
3
)+2

)
(8)

This provides us with the statement of the theorem. □

Proof of Theorem 4.3. Wefirst analyze the accuracywithwhich

each entry of the full marginal t[j] is reconstructed, then combine

these to obtain the overall result. Consider an arbitrary index j ∈ 2d ,
since InpRR is symmetric across all indices. To achieve ϵ-LDP, we set

pr =
eϵ/2

1+eϵ/2
, andps = 1. For the purpose of analysis only, we reduce

the problem so that we can apply Theorem 4.2, by applying a remap-

ping from {0, 1} to {−1, 1}: we replace ti [j] with t ′i [j] = 2ti [j] − 1.
Observe that the absolute error in reconstructing t ′i [j] is only a

constant factor of that in reconstructing t ′i [j]. Writing α = eϵ/2,
then we have the variance of the local errors Yi [j] = (ti [j] − t

∗
i [j])

is (substituting these values of pr and ps into (7)):

Var[Yi [j]] ≤ 4

pr (1 − pr )

(2pr − 1)2
+ 1 − 1 = 4

( 1

1+α )(1 −
1

1+α )

( 2

1+α − 1)
2

= 4

α
(1+α )2

( 1−α
1+α )

2

=
4α

(1 − α)2
=

4eϵ/2

(eϵ/2 − 1)2
.

The reconstruction of the full input distribution is t∗ =
∑N
i=1 t

∗
i /N .

We can make use of the inequalities
1

eϵ/2−1
≤ 1

ϵ and 1 < eϵ/2 < 4

for 0 < ϵ < 2 to bound the variance and substitute into (8).

Pr[|tj − t
∗
j | > c] ≤ 2 exp

(
−

Nc2

2 · (4 8

ϵ 2 ) +
2·8c
3ϵ

)
Setting c to 9N−1/2 1ϵ

√
log 2

d+1/δ bounds this probability to

2 exp

(
−

81
1

ϵ 2 log 2
d+1/δ

32

ϵ 2 +
16

3

9

ϵ 2

√
2
d
log 2

d+1/δ
N

)

<2 exp
(
−
81 log(2d+1/δ )

32 + 48

)
≤ δ/2d

This ensures that this error probability is less than δ/2d for any

index j. This limits the error in each of the 2
d
estimates to being

Õ( 1ϵ

√
1

N ), by applying a union bound.

We construct the target marginal β via the marginal operator,

so Ĉβ = Cβ (t∗). Each entry t∗[j] is an unbiased estimator for t[j]
whose absolute value is bounded by c with probability 1−δ . Condi-

tioning on this event, we compute Ĉβ [γ ] =
∑
α ⪯γ t

∗[α], summing

over the 2
d−k

values of α ⪯ γ . The error in this quantity is then

at most Õ(c
√
2
d−k ), applying a Hoeffding bound (Definition 4.1).

Finally, summing the absolute errors over all 2
k
entries γ in the

target marginal β , we have probability at least 1 − δ that the total

variation distance is Õ( 2
k
2
(d−k )/2

ϵ
√
N
) = Õ( 2

(d+k )/2

ϵ
√
N
). □

Proof of Theorem 4.4. Similar to Theorem 4.2, we define ran-

dom variables Yi [j] which describe the error in the estimate from

user i at position j. The proof is a bit more complicated here, since

these variables are not symmetric. Consider user i who samples a

location under PS, such that the correct location is sampled with

probability ps , and each of the D = 2
d − 1 incorrect locations is

sampled with probability (1 − ps )/D. Following the analysis in Sec-

tion 4.1, we report
D+ps−1
Dps+ps−1 for the location which is sampled, and

ps−1
Dps+ps−1 for those which are not sampled. For convenience, define

the quantity ∆ = Dps + ps − 1. The choice of ps (which depends

on D and ϵ) ensures that ∆ > 0. There are two cases that arise:

(i) ti [j] = 1. With probability ps , location j is sampled. The contri-

bution to the error at this location is

D+ps−1
∆ − 1 = 1

∆ (D + ps − 1 − Dps − ps + 1) =
D
∆ (1 − ps ).

Else, with probability 1 − ps , j is not sampled, generating error

ps−1
∆ − 1 =

ps−1−Dps−ps+1
∆ = D

∆ ps for |t
∗
i [j] = ti [j]|.

(ii) ti [j] = 0. With probability
1−ps
D , we sample this j, giving error

D+ps−1
∆ − 0. Otherwise, the contribution to the error is

ps−1
∆ .

We define a random variable Yi [j], which is the error resulting

from user i in their estimate of ti [j]. Note that an upper boundM
on Yi [j] is D/∆. We compute bounds on Y 2

i , conditioned on ti [j].

E[Yi [j]2 |ti [j] =1] = ps
(D
∆
(1 − ps )

)
2

+ (1 − ps )
(
ps

D

∆

)
2

= ps (1 − ps )
(D
∆

)
2

≤ (1 − ps )
D2

∆2

E[Yi [j]2 |ti [j] =0] =
1 − ps
D

(
D + ps − 1

∆

)
2

+

(
1 −

1 − ps
D

) (
ps − 1

∆

)
2

=
1 − ps

∆2

(
1

D
(D + ps − 1)

2 +
D + ps − 1

D
(1 − ps )

)
=

1 − ps

D∆2
(D + ps − 1)(D + ps − 1 + 1 − ps )

= (1 − ps )(D + ps − 1)/∆
2 ≤ (1 − ps )D/∆

2

To bound the error in t∗[j], wemake use of the (unknown) param-

eter fj , the proportion of users for whom ti [j] = 1. We subsequently

remove the dependence on this quantity. We now write

E[Yi [j]2] ≤ (1 − ps )
D

∆2
(fjD + (1 − fj )) := σ

2

j



Using this in the Bernstein inequality (Definition 4.1), we obtain

Pr

[
|
∑N
i=1 Yi [j] |
N ≥c j

]
≤ 2 exp

(
−Nc2j

/ (
2σ 2j +

2c jM
3

))
= 2 exp

©­«−
Nc2j

2(1 − ps )
D
∆2
(fjD + (1 − fj )) +

2c jD
3∆

ª®¬
If we write Ψj =

√
fjD + 1 − fj , then setting c j =

√
3D ln(2/δ )
∆
√
N

Ψj is

sufficient to ensure that this probability is at most δ .When we apply

the marginal operator Cβ to the reconstructed input t∗, each of the

2
k
entries is formed by summing up (D + 1)/2k (unbiased) entries

of t∗. Write f ′γ =
∑
j∧β=γ fj , and define Ψ′γ correspondingly as√

f ′γ (D − 1) +
D+1
2
k . Applying the Hoeffding bound (Definition 4.1),

we obtain that each Cβ (t∗)[γ ] has error at most

√
3D ln(2/δ )
∆
√
N

Ψ′γ with

probability at least 1 − δ .

We can now sum the error across all (D + 1)/2k indices γ . First,∑
γ ⪯β

ψ ′γ =
∑
γ ⪯β

(f ′γ (D − 1) +
D + 1

2
k
)
1

2

≤

√
2
k
( ∑
γ ⪯β

f ′γ (D − 1) +
D + 1

2
k

) 1

2

=
√
2
k+1 · D

where the inequality is due to Cauchy-Schwarz, and we use that

the f ′γ s are a probability distribution, and sum to 1. Then we have a

bound on the total variational error error of marginal construction

by summing over all indices γ as∑
γ ⪯β

c ′γ

2

=
1

2∆

√
D

N

√
3 ln 2/δ

∑
γ ⪯β

Ψ′γ ≤
2
k/2D

∆
√
N

√
3

2
ln 2/δ

We next simplify the term D/∆ as follows. Recall that theory sets

ps = (1 + De
−ϵ )−1. Then

D

∆
=

D

(D + 1)/(1 + De−ϵ ) − 1
=

D(1 + De−ϵ )

D + 1 − 1 − De−ϵ

=
1 + De−ϵ

1 − e−ϵ
=

1

1 − e−ϵ
+

D

eϵ − 1

When D is very small, in particular when D = 1, this reduces

to a similar error as for the RR case. Assuming that ϵ is at most a

constant (say, 8), we can upper bound this expression by O(D+1ϵ ).

Hence, the total variational error is bounded by Õ( 2
k/2(D+1)
ϵ
√
N
). □

Proof of Theorem 4.5. The proof proceeds along the same lines

as for Theorem 4.3. We set pr = eϵ /(1 + eϵ ) to ensure that InpHT

meets ϵ-LDP. Recall that, from Lemma 3.6, our aim is to compute

Hadamard coefficients as the normalized sum of the coefficients

from each user. To apply the Master theorem (Theorem 4.2), we first

multiply up each coefficient by the 2
d/2

factor from the Hadamard

coefficients θ (Definition 3.5). Since each user’s input vector has

only a single 1 entry, this ensures that each θi [j] is either −1 or +1.
Now the θi and θ

∗
i s represent theT necessary and sufficient (scaled

up) Hadamard coefficients, and so we set ps = 1/T . We write the

Table 3: Failure rate for InpEM on taxi dataset for small ϵ

.

N d k ϵ Failed/Total Marginals

2
16

8 1 0.2 3/8

2
18

8 2 0.1 15/28

2
16

8 2 0.2 3/28

2
16

12 2 0.2 19/66

2
18

16 2 0.1 120/120

2
18

16 2 0.2 72/120

2
19

24 2 0.2 276/276

variance of the errors in these estimates Yi [j], and obtain

Var[Yi [j]] = 4T
pr (1 − pr )

(2pr − 1)2
+ 1 =

4Teϵ

(eϵ − 1)2
+ 1 = O(T /ϵ2)

Substituting this variance bound into (8), we obtain

Pr

[
|
∑N
i=1 Yi [j] |
N ≥ c

]
≤ 2 exp

(
− Nc2

O (T /ϵ 2+Tcϵ )

)
Setting c proportional to N−1/2 1ϵ

√
T · logT /δ ensures that this

probability is at most δ/T for any given Hadamard coefficient j
(again using that N is large enough). This bound then holds for all

T with probability 1 − δ , using the union bound.

In order to translate this into a bound on the accuracy of recon-

structing a marginal, we make use of Lemma 3.7, that the marginal

can be expressed in terms of a linear sum of Hadamard coefficients.

Adapting (4), we have that∑
γ ⪯β

|Cβ [γ ] − Ĉβ [γ ]| ≤
∑
γ ⪯β

�� ∑
α ⪯β

(θα − ˆθα )
∑

η∧β=γ

ϕα,η
��

To bound this quantity, we observe that:

(i) There are 2
k
such γ ⪯ β to consider.

(ii) There are similarly 2
k
such α to consider, and the above analysis

bounds (θα − ˆθα ) ≤ c/2d/2, once we rescale the coefficients back

down. Since the
ˆθα are unbiased estimators bounded by c2−d/2, by

the Hoeffding inequality, we have that the sum of 2
k
of these is at

most 2
k/2−d/2c with probability at least 1 − δ .

(iii) Given γ ⪯ β , there are 2d−k such η to consider, and so we have

|
∑
η∧β=γ ϕα,η | ≤ 2

d−k
2
−d/2 = 2

d/2−k
.

Then the total variational error is (multiplying these three quan-

tities together) 2
k
2
k/2−d/2c2d/2−k = c2k/2 = Õ

(
2
k/2
√
T

ϵ
√
N

)
. □

B ADDITIONAL EXPERIMENTS

In this section, we provide additional experimental insight and

comparison. Table 3 shows experiments using the method of Fanti

et al. [20]. We then consider the impact of varying ϵ , and some

additional comparisons with “frequency oracles”.

B.1 Impact of privacy parameter ϵ

Experimental Setting. We fix N to 2
18 ≈ 0.25M movielens users

(sampled with replacement) and change ϵ . We increase d (resp., k)
along columns (rows) and vary 0.4 ≤ ϵ ≤ 1.4 to see the effect on

utility in Figure 9.

Observations: We observe a decline in error as we increase the

privacy budget ϵ . Once again we see that InpPS, InpRR,MargRR



Figure 9: Mean total variation for 1, 2, 3−way marginals for

N = 256K movielens users as ϵ varies.

are unfavorable for k ≥ 2. MargPS’s accuracy gets better than

MargHT with increase in ϵ , although MargHT is preferable to

MargPS for small ϵ values when d and k are larger. Yet again,

InpHT consistently outperforms all other algorithms across all

configurations. The main takeaway from these experiments is the

confirmation that the algorithms with the best theoretical bounds

on performance are borne out to be the best in practice. In general,

InpHT is our first preference followed byMargPS andMargHT.

B.2 Frequency Oracle Methods

As discussed in Section 2, there have been several recent papers

addressing the problem of estimating population frequencies under

LDP [2, 5, 41]. These works provide a “frequency oracle”: an LDP

protocol which allows the frequency of any element from a large

domain to be estimated accurately. A generic approach to marginal

materialization is to build a frequency oracle, and estimate marginal

probabilities by aggregating the estimated frequencies over the 2
d

items from the original domain. In this section, we describe and

compare some representative instances of this generic approach.

A key consideration of frequency oracle design is to ensure that

the message sent by each user is small, compared to a possibly

massive domain size. The following two approaches achieve this

by hashing the input items onto a smaller domain, and applying

LDP primitives to reveal information about the hashed values.

Optimized Local Hashing (InpOLH) [41]: The OLH primitive

satisfying ϵ−LDP proposed by Wang et al. handles large domain

size via universal hash functions. In summary, each user i ∈ [N ]
with a sparse input ti ∈ I2m×2m uniformly samples a hash function

hi from a familyH : [2m ] → [1 + eϵ ] of universal hash functions

and hashes the signal index ji usinghi . User i releaseshi and a noisy
index j ′i perturbed using PS. For each user report, the aggregator has
to determine the probability that the response could have come from

Figure 10: Effect of varying d with frequency oracles

each input value in turn, and update their beliefs accordingly. Thus,

the communication cost is reduced toO(ϵ) bits, but the aggregator’s

time cost is O(2d ) per user.
Private Hadamard Count-Min Sketch (InpHTCMS) [10]: The

method deployed by Apple adapts ideas from sketching, and is also

similar to a related method [5]. In InpHTCMS, a sketch data struc-

ture is defined with д hash functions each drawn from a family of

3−wise independent hash functions mapping an input ji ∈ [m] to
a much smaller domainw . User i with a sparse input ti ∈ I2m×2m

uniformly picks one of the д hash function to apply to their in-

put, and releases a randomly sampled Hadamard coefficient of the

hashed input, using randomized response. The aggregator unbi-

ases the user reports, and uses them to reconstruct a sketch, which

can be used as a frequency oracle with standard sketch estimation

methods. Note that here the Hadamard transform is used to reduce

the size of the communication, at the expense of a slight increase

in error, in contrast to our results which use Hadmard to reduce

both error and communication cost.

Experimental Setting: We set eϵ = 3, so InpOLH hashes onto 4

possibilities. In InpHTCMS, we use д = 5 hash functions each of

widthw = 256 as this minimized the error observed in practice.

Experimental Observations: We applied our methods to syn-

thetic (lightly skewed) data, and again measured total variation

distance of the reconstructed marginals as we varied the dimension

d (Figure 10). For small d , the InpOLH scheme is promising, and ob-

tains accuracy equivalent to InpHT. However, the decoding scheme

is very slow in practice, requiring the aggregator to perform a sep-

arate enumeration of the base domain for each user’s response. We

timed out our methods after 12 hours of computation, and so results

are absent for InpOLH for the relatively small d = 12 and d = 16.

While InpHTCMS is designed to accurately recover heavy hitter

items (with large frequencies), it is not tuned for low-frequency

items, and so is not competitive in terms of accuracy, although it

is fast. Results were better when the input distribution was more

skewed (results not shown). We conclude that InpHT remains the

method of choice for marginal materialization under LDP.
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