
Sample-and-threshold differential privacy:
Histograms and applications

Akash Bharadwaj Graham Cormode
Meta AI

Abstract

Federated analytics seeks to compute accu-
rate statistics from data distributed across
users’ devices while providing a suitable pri-
vacy guarantee and being practically feasible
to implement and scale. In this paper, we
show how a strong (ε, δ)-Differential Privacy
(DP) guarantee can be achieved for the fun-
damental problem of histogram generation
in a federated setting, via a highly practi-
cal sampling-based procedure that does not
add noise to disclosed data. Given the ubiq-
uity of sampling in practice, we thus obtain
a DP guarantee almost for free, avoid over-
estimating histogram counts, and allow easy
reasoning about how privacy guarantees may
obscure minorities and outliers. Using such
histograms, related problems such as heavy
hitters and quantiles can be answered with
provable error and privacy guarantees. Ex-
perimental results show that our sample-and-
threshold approach is accurate and scalable.

1 INTRODUCTION

Building private histograms is a task that under-
pins a variety of machine learning and data analyt-
ics tasks. Histograms enable building usable discrete
representations, distributions and marginals. Mate-
rializing histograms is also a core subroutine in in-
stantiating graphical models for synthetic data gener-
ation (McKenna et al., 2021), and hence they support
numerous statistical analyses and inference tasks. The
problem has been heavily studied with an eye for dif-
ferential privacy, with a number of results shown un-
der various models, such as the central model (Dwork,

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s) (akashb@fb.com or gcormode@fb.com)

2006; Xu et al., 2012; Dwork and Roth, 2014), local
model (Bassily and Smith, 2015; Wang et al., 2017;
Acharya et al., 2019) and shuffle model (Erlingsson
et al., 2020; Balcer and Cheu, 2020; Li et al., 2020).

In this paper, we revisit this foundational question,
and show how differential privacy can be obtained via
a simple sample-and-threshold mechanism, which can
be readily implemented in a distributed setting. Im-
portantly, all the randomization needed for privacy is
derived from the sampling operator: there is no fur-
ther explicit addition of noise to data disclosures. This
is particularly beneficial in scenarios when sampling is
inherent, i.e., federated settings when only a uniformly
chosen fraction of users are contacted. In this case,
privacy essentially comes “for free”. Equipped with
an efficient mechanism for histogram computation, we
can apply it to a range of core analytics tasks (quan-
tiles and heavy hitters), which in turn enable a broad
spectrum of other computations.

Our contributions. In this paper, we present a his-
togram mechanism that extends prior work as follows:

• We show that a simple sample-and-threshold ap-
proach provides an (ε, δ)-differential privacy guar-
antee for histograms.

• We show that the resulting mechanism can also
answer heavy hitter, quantile and range queries.

• We show that the associated counts provide accu-
rate frequency estimates for items from the input.

• Our proofs are compact and self-contained.

In more detail, we show that a Poisson sampling-based
approach is sufficient to provide differential privacy.
The key is to choose a small enough sampling rate to
introduce uncertainty, and to prune items with low fre-
quency in the sample, so that the presence of an item
in the pruned sample does not indicate exactly how
many instances were in the original population. While
prior work has considered the ability of sampling to
amplify the privacy bounds of a differentially private
mechanism, in this work we show that sampling it-

Sample-and-threshold di�erential privacy

self provides a DP histogram mechanism, generaliz-
ing the pioneering work of Zhu et al. (2020) on heavy
hitters. Consequently, the sample-and-threshold his-
togram mechanism can be implemented effectively
while requiring very little effort from participating
users. The chief points of comparison are results in
the shuffle model of differential privacy. We claim that
the sampling step is arguably simpler than many shuf-
fle approaches (which require users to perturb their in-
puts, or add additional “chaff” messages to mask their
values), while being of equivalent complexity to im-
plement the server-side aggregation of messages. De-
ployed federated systems (Bonawitz et al., 2019; Huba
et al., 2021) already implicitly sample from a large
collection of eligible users, so the mechanism does not
introduce any significant additional overhead or error.

2 PRELIMINARIES

We consider the case where there are n individuals who
each hold a value xi, so that the collection of all user
inputs defines a dataset D. Our goal is to construct
a histogram of the frequency distribution according to
a fixed set of buckets B. For convenience, we assume
that each input xi is already mapped into its corre-
sponding bucket, and that the buckets are indexed by
integers, so that each xi 2 [B]. We will describe a
randomized mechanism,M, that can process datasets
D to give a distribution over output histograms, H.

The objective is to ensure that a sampled output his-
togram, H, is close to the true histogram H�, while en-
suring that the output meets (ε, δ)-differential privacy
(DP) (Dwork and Roth, 2014). Formally, we require

Pr[M(D) 2 H] � exp(ε) Pr[M(D0) 2 H] + δ (1)

for any subset of possible output histograms H and for
neighboring inputs D, D0 that differ in the input value
of one individual. As usual for (ε, δ)-DP, we expect δ
to be small, typically much less than 1/n.

Computational model. Our mechanism is designed
to operate in a federated (distributed) setting, where
each client sends a message based on their input to
a server, which then combines this information before
reporting it to an analyst. Specifically, the server ag-
gregates the messages to produce the multiset of val-
ues reported (i.e., builds the frequency histogram of
messages), and deletes some values which fall below a
threshold τ . This model sits between the shuffle and
centralized DP model: the procedure is conceptually
similar to the ‘shuffling’ procedure, but with the minor
additional step of removing small counts; meanwhile,
it is easy to implement in the central DP model with
a trusted aggregator (Erlingsson et al., 2020). Many
shuffling protocols are based on clients following a lo-

cally differentially private (LDP) protocol, based on
a high setting of the privacy parameter ε; the shuf-
fling then ‘amplifies’ the privacy to give a tighter DP
guarantee on the output. Compared to many shuffle
and LDP protocols, our approach is very compact: it
only sends information on the items held by the client,
rather than the size of the domain from which those
items are drawn.

To fully achieve the benefits of the sample-and-
threshold model, we assume for convenience that there
is an entity which aggregates the data, similar to a
shuffler in the shuffle model. For a shuffler, applying
the threshold would be a trivial final step before the
shuffler releases the histogram. Indeed, we anticipate
that this would be natural to do in any system that im-
plements aggregation via secure hardware (e.g., Intel
SGX extensions (Intel Specialized Development Tools,
2021)). Then the data analyst only sees output under
differential privacy, and is shielded from seeing any in-
termediate results without a formal privacy property.
Alternatively, the aggregation and thresholding step
could be performed using techniques from multiparty
computation on shares of the input gathered by two
or more servers, wherein secure comparison to a public
constant is a relatively lightweight operation (Nishide
and Ohta, 2007; Veugen et al., 2015). The model can
also be compared to the early notion of “k-anonymity”,
where the output is constrained so that every output
item corresponds to at least k individuals in the in-
put (Samarati and Sweeney, 1998). Here, we obtain
k-anonymity for k = τ , the threshold value. Although
k-anonymity has been criticized as a weak privacy no-
tion, it carries an intuitive appeal for many lay users,
and here we show that in this case we also achieve
differential privacy.

3 SAMPLING-BASED
HISTOGRAMS

In the (B-bucket) histogram problem, each client i
holds a single item xi corresponding to a bucket bi 2
[B], and our aim is to produce a private histogram of
item frequencies, such that a frequency associated with
x in the private histogram approximates the frequency
of x over the input distribution.

3.1 Main Sampling Results

The algorithm is based on Bernoulli sampling. Each
client out of n is sampled with probability ps = m/n,
so the expected size of the sample is m (we later dis-
cuss different ways to implement this sampling). Our
subsequent analysis will relate the sampling rate to the
privacy parameter ε in order to give a required privacy
guarantee. The algorithm makes use of a threshold τ ,

Akash Bharadwaj, Graham Cormode

so that items whose sampled counts are at least τ are
reported in the histogram, while items whose count
falls below τ are omitted from the histogram. Note
then that the mechanism introduces no spurious items
into the output: any item which is not present in the
input cannot appear in the output histogram. Hence,
the size of the message from each client need be no big-
ger than its input size. In addition, the error bounds
of the algorithm are independent of the dimensionality
of the underlying histogram, B.

We next give a bound on the ratio of probabilities of
seeing the same output on neighboring inputs, which
allows us to state our main result.

Lemma 1. Given two neighboring inputs D, D0, such
that D di�ers in one item from D0, the ratio of proba-
bilities of seeing a cell with a given count v is bounded

by (1�ps)k
k�v , where k is the number of copies of the given

item in input D and k > v.

The proof of this claim, and of some other technical
lemmas, is deferred to Appendix A.

Theorem 2. Sample-and-threshold achieves (ε, δ)-
di�erential privacy provided ε and δ satisfy e�� � 1�ps
and δ � exp(� �qD(qkp)) for q = 1�e��(1�ps), where

D(qkp) denotes the KL divergence.

Proof. We must show that the ratio (1�ps)k
k�v is between

e�� and e� except with some small probability. For the
lower bound, we have

e�� � (1� ps)k
k � v

(2)

for any v � 0, which is satisfied if we ensure ps �
1�e�� < 1 (since v = 0 is the worst case). Rearranging
the upper bound, we obtain

v � ke��(e� � 1 + ps) = k(1� e�� + e��ps) (3)

First, note that since ps < 1, we have ps(1 � e��) <
1 � e��, and so ps < 1 � e�� + e��ps. Hence, the
bound in (3) is greater than kps, the mean value. In
fact, (1� e�� + e��ps) < 1 since ps < 1, and so we can
define the probability

q = (1� e�� + e��ps). (4)

We will thus obtain (ε, δ)-differential privacy provided
that we can bound the probability of choosing a v that
is more than kq. Recall that applying the thresh-
old means that if the sampled number of items is
below τ then it is rounded down to 0. So the “bad
event” is when more than max(kq, τ) out of k copies
are sampled. The number of sampled copies is a Bi-
nomial distribution with k trials and success proba-
bility ps, B(k, ps). Hence, we analyze Pr[B(k, ps) >
max(kq, τ)].

We perform a case split, based on the value of k.

Case 1. k � �
q . In this regime, we have that

v = max(kq, τ) = τ , and so we seek Pr[B(k, ps) > τ].
Clearly, this is monotonic in k: increasing k only makes
it easier to achieve more than τ successes. Hence, it
suffices to consider the case k = �

q and v = τ .

Case 2. k � �
q We apply the Chernoff-Hoeffding

bound, which states that

Pr[B(k, p) > kq] = Pr[B(k, 1� p) < k � kq]
� exp(�kD(qkp)) (5)

where D(qkp) denotes the KL divergence (relative en-
tropy) between the (Bernoulli) distributions with pa-
rameters q and p. We can observe that (5) is decreas-
ing as a function of k (since D(qkp) is non-negative for
all p, q), and so the tightest bound is for the smallest
value of k = �

q .

Combining the observations of Case 1 and Case 2, we
apply (5) for k = �

q to get δ � exp(� �qD(qkp)).

The best bound on δ will be obtained by using the
expression from this Theorem (or the exact Binomial
distribution) at k = �

q . However, to give a simpler
expression, we will provide a slightly looser bound, as
follows.

Lemma 3. If we set the sampling rate ps = α(1�e��)
for some 0 < α � 1 and ε � 1, then sample-and-
threshold achieves (ε, δ) di�erential privacy for δ =
exp(�C�τ), where C� = ln(1/α)� 1/(1 + α).

Hence, for α small enough, we have δ �
exp(�τO(ln(1/α))) = αO(�), decaying exponentially
as a function of τ .

This analysis provides guidance on how to set the
sample-and-threshold parameters in order to obtain
a desired (ε, δ) guarantee: we first set the sampling
rate ps = α(1 � e��) = θ(αε), and the threshold
τ = 1

C�
ln(1/δ). Equivalently, given ps and α, we

obtain ε = ln(�
��ps). Typically, we will set α to be

a constant (say, 1/5), which will ensure (ε, δ) privacy
when sampling with probability ε/5, and choosing an
appropriate threshold to obtain a small enough δ.

Concretely, for ε = 1 and α = 1/6, the sampling rate
is ps = 0.105 � 0.1 and, choosing τ = 20, δ < 10�8

using C� = 0.935.

3.2 Fixed sized sampling

For practical efficiency, we would often like to work
with a fixed size sample. However, the above his-
togram protocol performs Poisson sampling instead.
The reason is that if the fixed size of the sample, m, is

Sample-and-threshold di�erential privacy

known, then we are e�ectively also releasing the num-
ber of samples that were suppressed by the� thresh-
old (by adding up the released counts, and subtracting
from m). This potentially leaks information. Consider
the case whereD 0 contains n copies of the same item,
while D contains n � 1 copies of the same item, and
one unique item. With probability m=n, the mecha-
nism on input D samples the unique item along with
m � 1 other items, and so produces an output of size
m � 1. But on input D 0, there is zero probability
of producing an output smaller than m. This forces
� � m=n, which is typically too large for (�; �)-DP (we
usually seek� � 1=n).

Performing Poisson sampling withps = m=n addresses
this problem: the expected sample size is the same,
but we no longer leak the true size of the sample be-
fore thresholding. Indeed, we can see that the (observ-
able) size of the sample is di�erentially private: given
two inputs D and D 0 such that D has one additional
unique item, the distribution of sample sizes are close,
applying Theorem 2 to the samples.

Implementing Poisson sampling may appear costly:
naively, the server would contact n clients instead of
m, where we expectn � m. However, we can perform
the sampling by contacting much fewer clients, since
the size of the sample is tightly concentrated around
its expectation.

Lemma 4. Sampling m + O(
p

m) clients is su�-
cient to apply the sample-and-threshold mechanism,
with high probability.

Proof. Observe that, with high probability, the size of
the (Poisson) sample will be close to expected value of
m. In particular, by a Cherno� bound, the probability
that the sample size is more thanc

p
m larger than m

is
Pr[s > (1 + c=

p
m)m] � exp(� c2=3):

Hence, for c a suitable constant (say, 10), this proba-
bility is negligibly small. To realize this sampling, we
contact a �xed size number of clients s = m + c

p
m,

and then have each client perform a Bernoulli test on
whether to participate: with probability m=s, it par-
ticipates, otherwise it abstains. An abstaining client
can, for example, vote for a unique element (e.g., an
item based on a hash of its identi�er), and so be au-
tomatically discounted from the protocol, without re-
vealing this information to the aggregator.

3.3 Accuracy Bounds

The histogram produced by the mechanism is ulti-
mately based on sampling and pruning. For any
item whose frequency is su�ciently above the prun-
ing threshold, its frequency within the histogram is

an (almost) unbiased estimate of its true frequency.
There is a small gap, since even for an item with high
frequency, there is a small chance that it is not sam-
pled often enough, and so its estimate will fall below
the threshold � (in which case we do not report the
item).

Probability of omitting a heavy item. We �rst
consider the probability that a frequent item is not
reported by the algorithm.

Lemma 5. The sample and threshold histogram pro-
tocol omits an item whose true absolute count isW
with probability at most exp(� (W m

n � �)2 n
2W m).

Numeric Example. When w := Wm=n is su�-
ciently bigger than � , this gives a very strong prob-
ability. For example, consider the casen = 106, � = 1,
and we setps = 0 :1 and � = 20 to obtain a � of 10� 8.
The expected sample sizem = 105, and for an item
that occurs 0.1% of the time in the input, we expect
to sample it w = 100 times. This gives a bound of
exp(� 32) < 10� 13 that such an item is not detected.

Frequency estimation bounds. More generally, we
can use the (relative) frequency of any item in the
histogram as an estimate for its true occurrence in the
population.

Lemma 6. We can estimate the (relative) frequency
of any item whose relative frequency is� within rel-
ative error with probability O(exp(� 2�m)) .

Proof. Applying a multiplicative Cherno�-Hoe�ding
bound, we have for < 1,

Pr[jX � � j > �] = 2 exp(� 2�= 3) = �

Rearranging, we obtain � = 3
 2 ln(1=2�). Suppose we

aim to �nd all items whose frequency is at least� , and
estimate their frequency with relative error at most .
Then we have� = �m = 3

 2 ln(1=2�).

Numeric Example. We can substitute values into
this expression to explore the space. For example, if
we set ps = 0 :1, ln(1=2�) = 10, � = 10 and =
1=

p
10, then we obtain� = 3 � 103=n | in other words,

provided n > 3� 105, we can accurately �nd estimates
of frequencies that occur 1% of the time (except with
vanishingly small probability).

Remark. It is instructive to compare these bounds
to those that hold for the shu�e model. Accord-
ing to Balcer and Cheu (2020), addition of appro-
priately parameterized Bernoulli random noise to re-
ports from n clients yields (�; �)-DP, with error that
scales asO(1

� 2 n log(1=�)) for � � 1, provided n is large
enough. Expressing our bound on the estimate of

any frequency, we obtain errorO(1=
p

m) = O(
q

1
�n)

Akash Bharadwaj, Graham Cormode

from sampling, plus error from rounding small val-
ues down to zero, which is bounded byO(�=m) =
O(ln(1=�)=m) = O(ln(1=�)=(�n)). Naively, it might
seem that the shu�e bounds are preferable, due to
the stronger dependence onn (O(1=n) vs. O(1=

p
n)).

However, this misses the point that in practical feder-
ated computing settings, the server can contact only
a �xed size cohort of m clients out of a much larger
(and sometimes unknown) population n. For ex-
ample, Google's GBoard is trained with batches of
200 clients at a time (Chen et al., 2019); Meta's
FedBu� trains with tens to thousands of clients per
round (Nguyen et al., 2021); whilem is set to O(

p
n)

for heavy hitter discovery by Zhu et al. (2020). In
such cases, results in both the shu�e and sample-and-
threshold paradigms incur the samesampling error of
O(1=

p
m). Then shu�ing introduces additional noise

of O(1
� 2 m log(1=�)), whereas sample-and-threshold in-

curs zero additional noise on items that exceed the�
threshold, and at most O(ln(1=�)=m) on small items.
Hence, we argue that when shu�ing implicitly samples
from the input, the sample-and-threshold approach
has superior error guarantees. We con�rm this ob-
servation empirically in Section 5, where we compare
accuracy of both approaches while sampling the same
expected number of clients.

4 HEAVY HITTERS AND
QUANTILES VIA HISTOGRAMS

4.1 Heavy Hitters

We next show how to use the basic histogram proto-
col to �nd the (hierarchical) heavy hitters from the
input. This result follows the outline and notation of
the TrieHH algorithm (Zhu et al., 2020), to allow easy
comparison.

The heavy hitters algorithm proceeds overL levels, to
build up a trie of depth L . At each level, we materi-
alize a histogram of those pre�xes of items from the
input that extend the current trie. This allows us to
add items to the current trie based on the threshold� ,
and include the observed count of each pre�x for each
node in the trie, provided it is more than � . We can
view the TrieHH protocol as materializing a histogram
at each level, with progressively �ner cells. In the pro-
tocol as originally described, cells whose ancestor in a
previous level did not exceed the� threshold are not
eligible for consideration. However, the privacy proof
still applies if we do not enforce such restrictions. We
denote our version of the protocol using the new his-
togram protocol as TrieHH++, to indicate that the
trie is augmented with count information.

Lemma 7. The TrieHH++ protocol using L sample-

and-threshold histograms with (�; �)-DP achieves an
overall guarantee of(L�; L�)-DP.

The essence of the proof is that the output of the al-
gorithm is the L-fold composition of a di�erentially
private mechanism, with some post-processing. By
the di�erential privacy of the basic histogram protocol
(Theorem 2), the result follows.

Remark. If the objective is only to �nd the heavy hit-
ters, then the factor of L can be dropped from these
bounds. That is, instead of proceeding in rounds, we
simply apply the basic histogram protocol to the full
inputs, and report the items which survive the thresh-
olding process (along with their associated counts if
desired). Following the above analysis, the resulting
output is (�; �)-di�erentially private. The motivation
for having L rounds given by Zhu et al. (2020) is to
reduce the exposure of the server to private informa-
tion: it only observes pre�xes from clients that extend
shorter pre�xes that are already known to be popular.
However, this does not impact on the formal di�eren-
tial privacy properties of the output.

4.2 Quantiles

Finding the quantiles is a common analytics task to
describe the distribution of values held by the clients.
We describe two approaches to �nding quantiles, both
making use of our histogram mechanism.

Single quantiles via interactive search. Given
client inputs which fall in the range [0; 1], we seek a
value f such that the fraction of clients whose value is
below f is (approximately) � .

Lemma 8. Given a � > �=m , we can useh applica-
tions of the (�; �)-DP histogram mechanism to �nd a
value f such that f � 2� h is a � � O(m� 1=2) quantile,
with (h�; h�)-DP.

This approach is very e�ective for single queries, but
is less desirable when we have a large number of quan-
tile queries to answer in parallel, in which case the
hierarchical histogram approach is preferred.

Quantiles and range queries via hierarchical
histograms. A common technique to answer quantile
and range queries in one-dimension is to make use of
hierachical histograms: histograms with geometrically
decreasing bucket sizes, so that any range can be ex-
pressed as the union of a small number of buckets. We
can observe that the trie built as part of the TrieHH++
protocol is exactly such a hierarchical histogram, and
hence can be used to answer quantile queries, with the
same privacy (and similar accuracy) guarantees as for
heavy hitters.

Assume again that each client has an input value in the

Sample-and-threshold di�erential privacy

range [0; 1] (say). We can interpret these as pre�xes,
corresponding to subranges. If the branching factor
of the trie, � , is set to 4, then the value 1

3 falls in
the range [0:25; 0:5] for a pre�x of length 1; and in
the range [5

16 ; 6
16] for a pre�x of length 2. Using this

mapping of values to pre�xes the algorithm outputs
the (DP) trie with weights on nodes as before.

To answer a range query [0; r], we decompose the
range greedily into chunks that can be answered by
the trie. For example, if � = 4, and we want the
range [0; 0:7], we �nd the chunks [0; 1

4]; [1
4 ; 2

4] at level
1; [8

16 ; 9
16]; [9

16 ; 10
16]; [10

16 ; 11
16] at level 2; and so on. If the

trie has L levels, then any pre�x query can be answered
with L(� � 1) probes to the histograms (� � 1 for each
level). Moreover, quantile queries are answered by
�nding range queries whose weight is (approximately)
the desired quantile � .

Due to the pruning, we will not have information on
any ranges whose sampled weight is less than� , cor-
responding to a �=m fraction of mass. This will give
a worst-case error bound of (� � 1)�=m per level, and
so L(� � 1)�=m over all levels. Based on our setting
of m proportional to �n=(L�), we obtain a total error
of (� � 1)(L�)2=�n . In summary, as a consequence of
the privacy guarantee from Lemma 7, we can state:

Lemma 9. We can build a set of L (�; �)-DP his-
tograms to answer any quantile query� to �nd a
value f satisfying (L�; L�)-DP such that f � 2� L is
a � � O((L�)2=�n) quantile.

Numeric Example. Picking similar test values as
above shows that this can give reasonable accuracy for
n large enough. For� = 10, L = 10, � = 2, � = 1, the
error bound yields 104=n. So for n > 106, we obtain
rank queries (and quantiles) in this space with error
around 0:01.

5 EXPERIMENTS

To validate our theoretical understanding, we per-
formed experiments using the sample-and-threshold
histogram mechanism. It performs sampling on a pop-
ulation of size n for a target sample sizem, and ap-
plies an appropriate threshold to the resulting sam-
ple, to achieve an (�; �)-DP guarantee. We compared
against alternative mechanisms that also provide the
same level of privacy when applied to the sampled set
of clients: central di�erential privacy, via Laplace noise
addition, local di�erential privacy based on Hadamard
encoding of elements from the domain (Acharya et al.,
2019), and a shu�ing-approach which adds Bernoulli
noise (Balcer and Cheu, 2020).

We worked with the text from the complete works

of Shakespeare1, where we extract each word, con-
sistently map the words to one of the B buckets,
and count the total number of words in each bucket.
We also use synthetic data generated by distributions
providing di�erent frequency distributions: Geometric
and Binomial distributions over the B cells of the his-
togram. For the Binomial data, each client draws from
the Binomial distribution with n = B and p = 0 :5 to
choose a histogram bucket. For the Geometric data,
each client draws from a Geometric distribution with
p = 1=

p
B to pick a histogram bucket. These param-

eters are chosen to model the non-uniform frequency
distributions seen in practice, where the most popular
items occur approximately 1-5% of the time.

We experimented with a range of privacy parameters� ,
� , histogram sizesB , and population sizesn. We pick a
default � = 1=6 and� = 10 � 8, which yields a threshold
� = 20. We simulate a population of n = 106 clients,
and measure the accuracy of recovering the frequen-
cies for each mechanism. We compare the absolute
di�erence of the estimated frequencies to those from
the full population, and also measure the recall for the
top-k heaviest buckets fork = B=10, i.e., the largest
10% of frequencies. In the plots, we focus on show-
ing results for the range of � = 0 :1 (high privacy) to
� = 1 :0 (medium privacy) regimes, consistent with the
range where all the mechanisms have privacy guaran-
tees. We vary the size of the histograms (B) from tens
up to tens of thousands. Error bars show the standard
error over 10 repetitions of each mechanism. Plots for
other parameter settings are withheld for brevity, but
support the same conclusions.

Accuracy results. Our results on accuracy are
shown in Figure 1. Each row shows results for a dif-
ferent histogram size, from small (B = 2 6), to large
(B = 2 14); each column shows results on a di�erent
dataset (Binomial, Geometric or Shakespeare data).
The y-axis shows absolute error, expressed as a frac-
tion of the total input size. We want this to be as low
as possible, and ideally much smaller than 0.1%, say.

Some results immediately stand out: the results from
local di�erential privacy are much weaker, and fre-
quently the error is su�ciently large that the line does
not appear on the plots (similar results were seen for
other choices of frequency oracle, such as direct encod-
ing and unary encoding (Wang et al., 2017)|we use
the Hadamard encoding as it obtained the best accu-
racy for these experiments). This is consistent with
our understanding of LDP, and further motivates the
desire to achieve accuracy closer to the centralized case
in federated settings. The approach from the shu�e
model, where each client adds Bernoulli noise to each

1http://shakespeare.mit.edu/

Akash Bharadwaj, Graham Cormode

(a) Binomial, B = 2 6 (b) Geometric, B = 2 6 (c) Shakespeare,B = 2 6

(d) Binomial, B = 2 10 (e) Geometric, B = 2 10 (f) Shakespeare,B = 2 10

(g) Binomial, B = 2 14 (h) Geometric, B = 2 14 (i) Shakespeare,B = 2 14

Figure 1: Accuracy results on Binomial, Geometric and Shakespeare datasets

cell of the histogram (i.e., for each cell they report a
1 value with some probability q) incurs higher error
for small � (where more noise is added by the sampled
clients). The gap is larger as the size of the histogram
increases, since there are more chances for cells to incur
more noise. Most intriguingly, the approach of adding
Laplace noise, which is the gold standard in the cen-
tralized case, does not obtain the least error in this
setting. Rather, the sample and threshold approach,
which does not add explicit noise, but just removes
small sampled counts, often achieves less error, partic-
ularly for small � , where the magnitude of the Laplace
noise is larger. This is more pronounced for larger his-
tograms. The exception is for the Shakespeare data
for larger histograms (Figures 1f and 1i). Here, the
combination of skewed data, and smaller sample sizes

for smaller � , means that only a fraction of histogram
buckets pass the threshold (often, fewer than 10% of
buckets). These buckets contribute little to the distri-
bution, but while the sample-and-threshold improves
over shu�ing, it does not reach the accuracy of central
noise addition when there are many infrequent items.

Last, we note that the magnitude of the error decreases
as the histogram size increases. This is in part since
the magnitude of the bucket frequencies decreases, and
we are showing the (mean) error per bucket. As a
sanity test, we also computed accuracy of the trivial
approach of reporting zero for each bucket. The error
for this approach falls above the range of each graph
plotted, giving reassurance that we are achieving non-
trivial accuracy for the histogram problem.

	Introduction
	Preliminaries
	Sampling-Based Histograms
	Main Sampling Results
	Fixed sized sampling
	Accuracy Bounds

	Heavy hitters and Quantiles via Histograms
	Heavy Hitters
	Quantiles

	Experiments
	Related work
	Concluding Remarks
	Omitted technical material

