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Abstract

Federated analytics seeks to compute accu-
rate statistics from data distributed across
users’ devices while providing a suitable pri-
vacy guarantee and being practically feasible
to implement and scale. In this paper, we
show how a strong (ε, δ)-Differential Privacy
(DP) guarantee can be achieved for the fun-
damental problem of histogram generation
in a federated setting, via a highly practi-
cal sampling-based procedure that does not
add noise to disclosed data. Given the ubiq-
uity of sampling in practice, we thus obtain
a DP guarantee almost for free, avoid over-
estimating histogram counts, and allow easy
reasoning about how privacy guarantees may
obscure minorities and outliers. Using such
histograms, related problems such as heavy
hitters and quantiles can be answered with
provable error and privacy guarantees. Ex-
perimental results show that our sample-and-
threshold approach is accurate and scalable.

1 INTRODUCTION

Building private histograms is a task that under-
pins a variety of machine learning and data analyt-
ics tasks. Histograms enable building usable discrete
representations, distributions and marginals. Mate-
rializing histograms is also a core subroutine in in-
stantiating graphical models for synthetic data gener-
ation (McKenna et al., 2021), and hence they support
numerous statistical analyses and inference tasks. The
problem has been heavily studied with an eye for dif-
ferential privacy, with a number of results shown un-
der various models, such as the central model (Dwork,
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2006; Xu et al., 2012; Dwork and Roth, 2014), local
model (Bassily and Smith, 2015; Wang et al., 2017;
Acharya et al., 2019) and shuffle model (Erlingsson
et al., 2020; Balcer and Cheu, 2020; Li et al., 2020).

In this paper, we revisit this foundational question,
and show how differential privacy can be obtained via
a simple sample-and-threshold mechanism, which can
be readily implemented in a distributed setting. Im-
portantly, all the randomization needed for privacy is
derived from the sampling operator: there is no fur-
ther explicit addition of noise to data disclosures. This
is particularly beneficial in scenarios when sampling is
inherent, i.e., federated settings when only a uniformly
chosen fraction of users are contacted. In this case,
privacy essentially comes “for free”. Equipped with
an efficient mechanism for histogram computation, we
can apply it to a range of core analytics tasks (quan-
tiles and heavy hitters), which in turn enable a broad
spectrum of other computations.

Our contributions. In this paper, we present a his-
togram mechanism that extends prior work as follows:

• We show that a simple sample-and-threshold ap-
proach provides an (ε, δ)-differential privacy guar-
antee for histograms.

• We show that the resulting mechanism can also
answer heavy hitter, quantile and range queries.

• We show that the associated counts provide accu-
rate frequency estimates for items from the input.

• Our proofs are compact and self-contained.

In more detail, we show that a Poisson sampling-based
approach is sufficient to provide differential privacy.
The key is to choose a small enough sampling rate to
introduce uncertainty, and to prune items with low fre-
quency in the sample, so that the presence of an item
in the pruned sample does not indicate exactly how
many instances were in the original population. While
prior work has considered the ability of sampling to
amplify the privacy bounds of a differentially private
mechanism, in this work we show that sampling it-
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self provides a DP histogram mechanism, generaliz-
ing the pioneering work of Zhu et al. (2020) on heavy
hitters. Consequently, the sample-and-threshold his-
togram mechanism can be implemented effectively
while requiring very little effort from participating
users. The chief points of comparison are results in
the shuffle model of differential privacy. We claim that
the sampling step is arguably simpler than many shuf-
fle approaches (which require users to perturb their in-
puts, or add additional “chaff” messages to mask their
values), while being of equivalent complexity to im-
plement the server-side aggregation of messages. De-
ployed federated systems (Bonawitz et al., 2019; Huba
et al., 2021) already implicitly sample from a large
collection of eligible users, so the mechanism does not
introduce any significant additional overhead or error.

2 PRELIMINARIES

We consider the case where there are n individuals who
each hold a value xi, so that the collection of all user
inputs defines a dataset D. Our goal is to construct
a histogram of the frequency distribution according to
a fixed set of buckets B. For convenience, we assume
that each input xi is already mapped into its corre-
sponding bucket, and that the buckets are indexed by
integers, so that each xi ∈ [B]. We will describe a
randomized mechanism,M, that can process datasets
D to give a distribution over output histograms, H.

The objective is to ensure that a sampled output his-
togram, H, is close to the true histogram H∗, while en-
suring that the output meets (ε, δ)-differential privacy
(DP) (Dwork and Roth, 2014). Formally, we require

Pr[M(D) ∈ H] ≤ exp(ε) Pr[M(D′) ∈ H] + δ (1)

for any subset of possible output histograms H and for
neighboring inputs D, D′ that differ in the input value
of one individual. As usual for (ε, δ)-DP, we expect δ
to be small, typically much less than 1/n.

Computational model. Our mechanism is designed
to operate in a federated (distributed) setting, where
each client sends a message based on their input to
a server, which then combines this information before
reporting it to an analyst. Specifically, the server ag-
gregates the messages to produce the multiset of val-
ues reported (i.e., builds the frequency histogram of
messages), and deletes some values which fall below a
threshold τ . This model sits between the shuffle and
centralized DP model: the procedure is conceptually
similar to the ‘shuffling’ procedure, but with the minor
additional step of removing small counts; meanwhile,
it is easy to implement in the central DP model with
a trusted aggregator (Erlingsson et al., 2020). Many
shuffling protocols are based on clients following a lo-

cally differentially private (LDP) protocol, based on
a high setting of the privacy parameter ε; the shuf-
fling then ‘amplifies’ the privacy to give a tighter DP
guarantee on the output. Compared to many shuffle
and LDP protocols, our approach is very compact: it
only sends information on the items held by the client,
rather than the size of the domain from which those
items are drawn.

To fully achieve the benefits of the sample-and-
threshold model, we assume for convenience that there
is an entity which aggregates the data, similar to a
shuffler in the shuffle model. For a shuffler, applying
the threshold would be a trivial final step before the
shuffler releases the histogram. Indeed, we anticipate
that this would be natural to do in any system that im-
plements aggregation via secure hardware (e.g., Intel
SGX extensions (Intel Specialized Development Tools,
2021)). Then the data analyst only sees output under
differential privacy, and is shielded from seeing any in-
termediate results without a formal privacy property.
Alternatively, the aggregation and thresholding step
could be performed using techniques from multiparty
computation on shares of the input gathered by two
or more servers, wherein secure comparison to a public
constant is a relatively lightweight operation (Nishide
and Ohta, 2007; Veugen et al., 2015). The model can
also be compared to the early notion of “k-anonymity”,
where the output is constrained so that every output
item corresponds to at least k individuals in the in-
put (Samarati and Sweeney, 1998). Here, we obtain
k-anonymity for k = τ , the threshold value. Although
k-anonymity has been criticized as a weak privacy no-
tion, it carries an intuitive appeal for many lay users,
and here we show that in this case we also achieve
differential privacy.

3 SAMPLING-BASED
HISTOGRAMS

In the (B-bucket) histogram problem, each client i
holds a single item xi corresponding to a bucket bi ∈
[B], and our aim is to produce a private histogram of
item frequencies, such that a frequency associated with
x in the private histogram approximates the frequency
of x over the input distribution.

3.1 Main Sampling Results

The algorithm is based on Bernoulli sampling. Each
client out of n is sampled with probability ps = m/n,
so the expected size of the sample is m (we later dis-
cuss different ways to implement this sampling). Our
subsequent analysis will relate the sampling rate to the
privacy parameter ε in order to give a required privacy
guarantee. The algorithm makes use of a threshold τ ,
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so that items whose sampled counts are at least τ are
reported in the histogram, while items whose count
falls below τ are omitted from the histogram. Note
then that the mechanism introduces no spurious items
into the output: any item which is not present in the
input cannot appear in the output histogram. Hence,
the size of the message from each client need be no big-
ger than its input size. In addition, the error bounds
of the algorithm are independent of the dimensionality
of the underlying histogram, B.

We next give a bound on the ratio of probabilities of
seeing the same output on neighboring inputs, which
allows us to state our main result.

Lemma 1. Given two neighboring inputs D, D′, such
that D differs in one item from D′, the ratio of proba-
bilities of seeing a cell with a given count v is bounded

by (1−ps)k
k−v , where k is the number of copies of the given

item in input D and k > v.

The proof of this claim, and of some other technical
lemmas, is deferred to Appendix A.

Theorem 2. Sample-and-threshold achieves (ε, δ)-
differential privacy provided ε and δ satisfy e−ε ≤ 1−ps
and δ ≤ exp(− τqD(q‖p)) for q = 1−e−ε(1−ps), where

D(q‖p) denotes the KL divergence.

Proof. We must show that the ratio (1−ps)k
k−v is between

e−ε and eε except with some small probability. For the
lower bound, we have

e−ε ≤ (1− ps)k
k − v

(2)

for any v ≥ 0, which is satisfied if we ensure ps ≤
1−e−ε < 1 (since v = 0 is the worst case). Rearranging
the upper bound, we obtain

v ≤ ke−ε(eε − 1 + ps) = k(1− e−ε + e−εps) (3)

First, note that since ps < 1, we have ps(1 − e−ε) <
1 − e−ε, and so ps < 1 − e−ε + e−εps. Hence, the
bound in (3) is greater than kps, the mean value. In
fact, (1− e−ε + e−εps) < 1 since ps < 1, and so we can
define the probability

q = (1− e−ε + e−εps). (4)

We will thus obtain (ε, δ)-differential privacy provided
that we can bound the probability of choosing a v that
is more than kq. Recall that applying the thresh-
old means that if the sampled number of items is
below τ then it is rounded down to 0. So the “bad
event” is when more than max(kq, τ) out of k copies
are sampled. The number of sampled copies is a Bi-
nomial distribution with k trials and success proba-
bility ps, B(k, ps). Hence, we analyze Pr[B(k, ps) >
max(kq, τ)].

We perform a case split, based on the value of k.

Case 1. k ≤ τ
q . In this regime, we have that

v = max(kq, τ) = τ , and so we seek Pr[B(k, ps) > τ ].
Clearly, this is monotonic in k: increasing k only makes
it easier to achieve more than τ successes. Hence, it
suffices to consider the case k = τ

q and v = τ .

Case 2. k ≥ τ
q We apply the Chernoff-Hoeffding

bound, which states that

Pr[B(k, p) > kq] = Pr[B(k, 1− p) < k − kq]
≤ exp(−kD(q‖p)) (5)

where D(q‖p) denotes the KL divergence (relative en-
tropy) between the (Bernoulli) distributions with pa-
rameters q and p. We can observe that (5) is decreas-
ing as a function of k (since D(q‖p) is non-negative for
all p, q), and so the tightest bound is for the smallest
value of k = τ

q .

Combining the observations of Case 1 and Case 2, we
apply (5) for k = τ

q to get δ ≤ exp(− τqD(q‖p)).

The best bound on δ will be obtained by using the
expression from this Theorem (or the exact Binomial
distribution) at k = τ

q . However, to give a simpler
expression, we will provide a slightly looser bound, as
follows.

Lemma 3. If we set the sampling rate ps = α(1−e−ε)
for some 0 < α ≤ 1 and ε ≤ 1, then sample-and-
threshold achieves (ε, δ) differential privacy for δ =
exp(−Cατ), where Cα = ln(1/α)− 1/(1 + α).

Hence, for α small enough, we have δ ≤
exp(−τO(ln(1/α))) = αO(τ), decaying exponentially
as a function of τ .

This analysis provides guidance on how to set the
sample-and-threshold parameters in order to obtain
a desired (ε, δ) guarantee: we first set the sampling
rate ps = α(1 − e−ε) = θ(αε), and the threshold
τ = 1

Cα
ln(1/δ). Equivalently, given ps and α, we

obtain ε = ln( α
α−ps ). Typically, we will set α to be

a constant (say, 1/5), which will ensure (ε, δ) privacy
when sampling with probability ε/5, and choosing an
appropriate threshold to obtain a small enough δ.

Concretely, for ε = 1 and α = 1/6, the sampling rate
is ps = 0.105 ≈ 0.1 and, choosing τ = 20, δ < 10−8

using Cα = 0.935.

3.2 Fixed sized sampling

For practical efficiency, we would often like to work
with a fixed size sample. However, the above his-
togram protocol performs Poisson sampling instead.
The reason is that if the fixed size of the sample, m, is
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known, then we are effectively also releasing the num-
ber of samples that were suppressed by the τ thresh-
old (by adding up the released counts, and subtracting
from m). This potentially leaks information. Consider
the case where D′ contains n copies of the same item,
while D contains n − 1 copies of the same item, and
one unique item. With probability m/n, the mecha-
nism on input D samples the unique item along with
m − 1 other items, and so produces an output of size
m − 1. But on input D′, there is zero probability
of producing an output smaller than m. This forces
δ ≥ m/n, which is typically too large for (ε, δ)-DP (we
usually seek δ � 1/n).

Performing Poisson sampling with ps = m/n addresses
this problem: the expected sample size is the same,
but we no longer leak the true size of the sample be-
fore thresholding. Indeed, we can see that the (observ-
able) size of the sample is differentially private: given
two inputs D and D′ such that D has one additional
unique item, the distribution of sample sizes are close,
applying Theorem 2 to the samples.

Implementing Poisson sampling may appear costly:
naively, the server would contact n clients instead of
m, where we expect n� m. However, we can perform
the sampling by contacting much fewer clients, since
the size of the sample is tightly concentrated around
its expectation.

Lemma 4. Sampling m + O(
√
m) clients is suffi-

cient to apply the sample-and-threshold mechanism,
with high probability.

Proof. Observe that, with high probability, the size of
the (Poisson) sample will be close to expected value of
m. In particular, by a Chernoff bound, the probability
that the sample size is more than c

√
m larger than m

is
Pr[s > (1 + c/

√
m)m] ≤ exp(−c2/3).

Hence, for c a suitable constant (say, 10), this proba-
bility is negligibly small. To realize this sampling, we
contact a fixed size number of clients s = m + c

√
m,

and then have each client perform a Bernoulli test on
whether to participate: with probability m/s, it par-
ticipates, otherwise it abstains. An abstaining client
can, for example, vote for a unique element (e.g., an
item based on a hash of its identifier), and so be au-
tomatically discounted from the protocol, without re-
vealing this information to the aggregator.

3.3 Accuracy Bounds

The histogram produced by the mechanism is ulti-
mately based on sampling and pruning. For any
item whose frequency is sufficiently above the prun-
ing threshold, its frequency within the histogram is

an (almost) unbiased estimate of its true frequency.
There is a small gap, since even for an item with high
frequency, there is a small chance that it is not sam-
pled often enough, and so its estimate will fall below
the threshold τ (in which case we do not report the
item).

Probability of omitting a heavy item. We first
consider the probability that a frequent item is not
reported by the algorithm.

Lemma 5. The sample and threshold histogram pro-
tocol omits an item whose true absolute count is W
with probability at most exp(−(Wm

n − τ)2 n
2Wm ).

Numeric Example. When w := Wm/n is suffi-
ciently bigger than τ , this gives a very strong prob-
ability. For example, consider the case n = 106, ε = 1,
and we set ps = 0.1 and τ = 20 to obtain a δ of 10−8.
The expected sample size m = 105, and for an item
that occurs 0.1% of the time in the input, we expect
to sample it w = 100 times. This gives a bound of
exp(−32) < 10−13 that such an item is not detected.

Frequency estimation bounds. More generally, we
can use the (relative) frequency of any item in the
histogram as an estimate for its true occurrence in the
population.

Lemma 6. We can estimate the (relative) frequency
of any item whose relative frequency is φ within γ rel-
ative error with probability O(exp(−γ2φm)).

Proof. Applying a multiplicative Chernoff-Hoeffding
bound, we have for γ < 1,

Pr[|X − µ| > γµ] = 2 exp(−γ2µ/3) = β

Rearranging, we obtain µ = 3
γ2 ln(1/2β). Suppose we

aim to find all items whose frequency is at least φ, and
estimate their frequency with relative error at most γ.
Then we have µ = φm = 3

γ2 ln(1/2β).

Numeric Example. We can substitute values into
this expression to explore the space. For example, if
we set ps = 0.1, ln(1/2β) = 10, τ = 10 and γ =
1/
√

10, then we obtain φ = 3×103/n— in other words,
provided n > 3×105, we can accurately find estimates
of frequencies that occur 1% of the time (except with
vanishingly small probability).

Remark. It is instructive to compare these bounds
to those that hold for the shuffle model. Accord-
ing to Balcer and Cheu (2020), addition of appro-
priately parameterized Bernoulli random noise to re-
ports from n clients yields (ε, δ)-DP, with error that
scales as O( 1

ε2n log(1/δ)) for ε ≤ 1, provided n is large
enough. Expressing our bound on the estimate of

any frequency, we obtain error O(1/
√
m) = O(

√
1
εn )



Akash Bharadwaj, Graham Cormode

from sampling, plus error from rounding small val-
ues down to zero, which is bounded by O(τ/m) =
O(ln(1/δ)/m) = O(ln(1/δ)/(εn)). Naively, it might
seem that the shuffle bounds are preferable, due to
the stronger dependence on n (O(1/n) vs. O(1/

√
n)).

However, this misses the point that in practical feder-
ated computing settings, the server can contact only
a fixed size cohort of m clients out of a much larger
(and sometimes unknown) population n. For ex-
ample, Google’s GBoard is trained with batches of
200 clients at a time (Chen et al., 2019); Meta’s
FedBuff trains with tens to thousands of clients per
round (Nguyen et al., 2021); while m is set to O(

√
n)

for heavy hitter discovery by Zhu et al. (2020). In
such cases, results in both the shuffle and sample-and-
threshold paradigms incur the same sampling error of
O(1/

√
m). Then shuffling introduces additional noise

of O( 1
ε2m log(1/δ)), whereas sample-and-threshold in-

curs zero additional noise on items that exceed the τ
threshold, and at most O(ln(1/δ)/m) on small items.
Hence, we argue that when shuffling implicitly samples
from the input, the sample-and-threshold approach
has superior error guarantees. We confirm this ob-
servation empirically in Section 5, where we compare
accuracy of both approaches while sampling the same
expected number of clients.

4 HEAVY HITTERS AND
QUANTILES VIA HISTOGRAMS

4.1 Heavy Hitters

We next show how to use the basic histogram proto-
col to find the (hierarchical) heavy hitters from the
input. This result follows the outline and notation of
the TrieHH algorithm (Zhu et al., 2020), to allow easy
comparison.

The heavy hitters algorithm proceeds over L levels, to
build up a trie of depth L. At each level, we materi-
alize a histogram of those prefixes of items from the
input that extend the current trie. This allows us to
add items to the current trie based on the threshold τ ,
and include the observed count of each prefix for each
node in the trie, provided it is more than τ . We can
view the TrieHH protocol as materializing a histogram
at each level, with progressively finer cells. In the pro-
tocol as originally described, cells whose ancestor in a
previous level did not exceed the τ threshold are not
eligible for consideration. However, the privacy proof
still applies if we do not enforce such restrictions. We
denote our version of the protocol using the new his-
togram protocol as TrieHH++, to indicate that the
trie is augmented with count information.

Lemma 7. The TrieHH++ protocol using L sample-

and-threshold histograms with (ε, δ)-DP achieves an
overall guarantee of (Lε, Lδ)-DP.

The essence of the proof is that the output of the al-
gorithm is the L-fold composition of a differentially
private mechanism, with some post-processing. By
the differential privacy of the basic histogram protocol
(Theorem 2), the result follows.

Remark. If the objective is only to find the heavy hit-
ters, then the factor of L can be dropped from these
bounds. That is, instead of proceeding in rounds, we
simply apply the basic histogram protocol to the full
inputs, and report the items which survive the thresh-
olding process (along with their associated counts if
desired). Following the above analysis, the resulting
output is (ε, δ)-differentially private. The motivation
for having L rounds given by Zhu et al. (2020) is to
reduce the exposure of the server to private informa-
tion: it only observes prefixes from clients that extend
shorter prefixes that are already known to be popular.
However, this does not impact on the formal differen-
tial privacy properties of the output.

4.2 Quantiles

Finding the quantiles is a common analytics task to
describe the distribution of values held by the clients.
We describe two approaches to finding quantiles, both
making use of our histogram mechanism.

Single quantiles via interactive search. Given
client inputs which fall in the range [0, 1], we seek a
value f such that the fraction of clients whose value is
below f is (approximately) φ.

Lemma 8. Given a φ > τ/m, we can use h applica-
tions of the (ε, δ)-DP histogram mechanism to find a
value f such that f ± 2−h is a φ±O(m−1/2) quantile,
with (hε, hδ)-DP.

This approach is very effective for single queries, but
is less desirable when we have a large number of quan-
tile queries to answer in parallel, in which case the
hierarchical histogram approach is preferred.

Quantiles and range queries via hierarchical
histograms. A common technique to answer quantile
and range queries in one-dimension is to make use of
hierachical histograms: histograms with geometrically
decreasing bucket sizes, so that any range can be ex-
pressed as the union of a small number of buckets. We
can observe that the trie built as part of the TrieHH++
protocol is exactly such a hierarchical histogram, and
hence can be used to answer quantile queries, with the
same privacy (and similar accuracy) guarantees as for
heavy hitters.

Assume again that each client has an input value in the
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range [0, 1] (say). We can interpret these as prefixes,
corresponding to subranges. If the branching factor
of the trie, β, is set to 4, then the value 1

3 falls in
the range [0.25, 0.5] for a prefix of length 1; and in
the range [ 5

16 ,
6
16 ] for a prefix of length 2. Using this

mapping of values to prefixes the algorithm outputs
the (DP) trie with weights on nodes as before.

To answer a range query [0, r], we decompose the
range greedily into chunks that can be answered by
the trie. For example, if β = 4, and we want the
range [0, 0.7], we find the chunks [0, 14 ], [ 14 ,

2
4 ] at level

1; [ 8
16 ,

9
16 ], [ 9

16 ,
10
16 ], [ 1016 ,

11
16 ] at level 2; and so on. If the

trie has L levels, then any prefix query can be answered
with L(β−1) probes to the histograms (β−1 for each
level). Moreover, quantile queries are answered by
finding range queries whose weight is (approximately)
the desired quantile φ.

Due to the pruning, we will not have information on
any ranges whose sampled weight is less than τ , cor-
responding to a τ/m fraction of mass. This will give
a worst-case error bound of (β − 1)τ/m per level, and
so L(β − 1)τ/m over all levels. Based on our setting
of m proportional to εn/(Lτ), we obtain a total error
of (β − 1)(Lτ)2/εn. In summary, as a consequence of
the privacy guarantee from Lemma 7, we can state:

Lemma 9. We can build a set of L (ε, δ)-DP his-
tograms to answer any quantile query φ to find a
value f satisfying (Lε, Lδ)-DP such that f ± 2−L is
a φ±O((Lτ)2/εn) quantile.

Numeric Example. Picking similar test values as
above shows that this can give reasonable accuracy for
n large enough. For τ = 10, L = 10, β = 2, ε = 1, the
error bound yields 104/n. So for n > 106, we obtain
rank queries (and quantiles) in this space with error
around 0.01.

5 EXPERIMENTS

To validate our theoretical understanding, we per-
formed experiments using the sample-and-threshold
histogram mechanism. It performs sampling on a pop-
ulation of size n for a target sample size m, and ap-
plies an appropriate threshold to the resulting sam-
ple, to achieve an (ε, δ)-DP guarantee. We compared
against alternative mechanisms that also provide the
same level of privacy when applied to the sampled set
of clients: central differential privacy, via Laplace noise
addition, local differential privacy based on Hadamard
encoding of elements from the domain (Acharya et al.,
2019), and a shuffling-approach which adds Bernoulli
noise (Balcer and Cheu, 2020).

We worked with the text from the complete works

of Shakespeare1, where we extract each word, con-
sistently map the words to one of the B buckets,
and count the total number of words in each bucket.
We also use synthetic data generated by distributions
providing different frequency distributions: Geometric
and Binomial distributions over the B cells of the his-
togram. For the Binomial data, each client draws from
the Binomial distribution with n = B and p = 0.5 to
choose a histogram bucket. For the Geometric data,
each client draws from a Geometric distribution with
p = 1/

√
B to pick a histogram bucket. These param-

eters are chosen to model the non-uniform frequency
distributions seen in practice, where the most popular
items occur approximately 1-5% of the time.

We experimented with a range of privacy parameters ε,
δ, histogram sizes B, and population sizes n. We pick a
default α = 1/6 and δ = 10−8, which yields a threshold
τ = 20. We simulate a population of n = 106 clients,
and measure the accuracy of recovering the frequen-
cies for each mechanism. We compare the absolute
difference of the estimated frequencies to those from
the full population, and also measure the recall for the
top-k heaviest buckets for k = B/10, i.e., the largest
10% of frequencies. In the plots, we focus on show-
ing results for the range of ε = 0.1 (high privacy) to
ε = 1.0 (medium privacy) regimes, consistent with the
range where all the mechanisms have privacy guaran-
tees. We vary the size of the histograms (B) from tens
up to tens of thousands. Error bars show the standard
error over 10 repetitions of each mechanism. Plots for
other parameter settings are withheld for brevity, but
support the same conclusions.

Accuracy results. Our results on accuracy are
shown in Figure 1. Each row shows results for a dif-
ferent histogram size, from small (B = 26), to large
(B = 214); each column shows results on a different
dataset (Binomial, Geometric or Shakespeare data).
The y-axis shows absolute error, expressed as a frac-
tion of the total input size. We want this to be as low
as possible, and ideally much smaller than 0.1%, say.

Some results immediately stand out: the results from
local differential privacy are much weaker, and fre-
quently the error is sufficiently large that the line does
not appear on the plots (similar results were seen for
other choices of frequency oracle, such as direct encod-
ing and unary encoding (Wang et al., 2017)—we use
the Hadamard encoding as it obtained the best accu-
racy for these experiments). This is consistent with
our understanding of LDP, and further motivates the
desire to achieve accuracy closer to the centralized case
in federated settings. The approach from the shuffle
model, where each client adds Bernoulli noise to each

1http://shakespeare.mit.edu/

http://shakespeare.mit.edu/
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(a) Binomial, B = 26
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(b) Geometric, B = 26
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Figure 1: Accuracy results on Binomial, Geometric and Shakespeare datasets

cell of the histogram (i.e., for each cell they report a
1 value with some probability q) incurs higher error
for small ε (where more noise is added by the sampled
clients). The gap is larger as the size of the histogram
increases, since there are more chances for cells to incur
more noise. Most intriguingly, the approach of adding
Laplace noise, which is the gold standard in the cen-
tralized case, does not obtain the least error in this
setting. Rather, the sample and threshold approach,
which does not add explicit noise, but just removes
small sampled counts, often achieves less error, partic-
ularly for small ε, where the magnitude of the Laplace
noise is larger. This is more pronounced for larger his-
tograms. The exception is for the Shakespeare data
for larger histograms (Figures 1f and 1i). Here, the
combination of skewed data, and smaller sample sizes

for smaller ε, means that only a fraction of histogram
buckets pass the threshold (often, fewer than 10% of
buckets). These buckets contribute little to the distri-
bution, but while the sample-and-threshold improves
over shuffling, it does not reach the accuracy of central
noise addition when there are many infrequent items.

Last, we note that the magnitude of the error decreases
as the histogram size increases. This is in part since
the magnitude of the bucket frequencies decreases, and
we are showing the (mean) error per bucket. As a
sanity test, we also computed accuracy of the trivial
approach of reporting zero for each bucket. The error
for this approach falls above the range of each graph
plotted, giving reassurance that we are achieving non-
trivial accuracy for the histogram problem.
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Figure 2: Top-k recall results on Binomial, Geometric and Shakespeare datasets

Recall results. To better understand the ability of
the different approaches to capture the high counts
(as needed for finding heavy hitters), we measure the
recall of the top-k items, for k = B/10. That is, we
test whether the histogram correctly reports the (true)
top-10% of items among the 10% of largest items re-
covered. Figure 2 shows the results across different
datasets. For moderate sized histograms (B = 28), the
sample and threshold approach achieves close to per-
fect recall for all datasets. Other methods are compa-
rable, but weaker for small ε. Again, it is the Shake-
speare data for a larger histogram that presents the
greatest challenge (in Figure 2f). Here, the same issue
as above affects sample and threshold: a large fraction
of small frequencies mean that these do not meet the
threshold for the sample size. Accepting a larger ε,
or working over a larger population to obtain a larger
sample size would be needed to improve the recall.
However, it could be argued that items missed are not
very significant: already at ε = 0.2, the threshold ap-
plied means that only items with frequency less than
0.1% are likely to be dropped.

6 RELATED WORK

Histograms. Due to their broad applications, his-
tograms are one of the most heavily studied tasks in
differential privacy (DP). One of the first DP results

is that a private histogram can be created by adding
independent Laplace noise to each entry of the ex-
act histogram (Dwork, 2006; Dwork and Roth, 2014).
For large domains, an (ε, δ)-DP guarantee can be ob-
tained by applying a threshold to the noisy counts, and
omitting any histogram entries whose (true) count is
zero, which preserves the sparsity of the input (Ko-
rolova et al., 2009; Bun et al., 2019; Balcer and Vad-
han, 2019). For multi-dimensional data, histograms
of low-degree marginal distributions can be created
via noise addition to the Hadamard transform of the
data (Barak et al., 2007). These results assume a given
set of histogram bucket boundaries; Xu et al. (2012)
considered choosing bucket boundaries privately to
minimize squared error. The histogram problem has
also been heavily studied in the local model of DP,
where each individual adds noise to their input inde-
pendently. Here, histograms are often implemented
via ‘frequency oracles’, and used to identify frequent
items from the input (Bassily and Smith, 2015). Opti-
mized constructions make use of hashing (Wang et al.,
2017) and Hadamard transforms (Acharya et al., 2019)
to minimize the variance of the estimate. More re-
cently, results are shown in the shuffle model, where
messages from individuals are anonymized by a “shuf-
fler”, so the analyst sees only the multiset of messages
received without attribution (Erlingsson et al., 2020).
For shuffling with a fixed privacy level ε, accuracy
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bounds closer to the central case are achievable by in-
troducing small amounts of random noise from each
participant (Balcer and Cheu, 2020; Li et al., 2020;
Ghazi et al., 2021).

Heavy hitters. The problem of finding the most fre-
quent items from a collection is a core analytics task
that supports a range of objectives, from simple popu-
larity charts, to instantiating complex language mod-
els. Due to the sensitivity of data used within these ap-
plications, it is necessary to apply strong privacy pro-
tections to the data. There have been multiple efforts
to address this problem in the Local DP setting (Bass-
ily and Smith, 2015; Wang et al., 2017, 2020; Erlings-
son et al., 2014; Apple, 2017; Bassily et al., 2020) and
shuffle model (Ghazi et al., 2021). The closest work to
ours is recent work on Federated Heavy Hitters discov-
ery (Zhu et al., 2020), which describes an (ε, δ)-DP al-
gorithm to collect information from a set of distributed
clients, who each hold a (private) item. We can treat
these items as strings of characters over a fixed alpha-
bet. The algorithm proceeds in a series of L rounds to
build up a trie describing the frequent items among the
client population. In each round, the server contacts
a random sample of m clients, and shares the current
trie with them. Each client replies if its item extends
the trie, and if so the client “votes” for the prefix that
its item extends, along with the next character. The
server receives these votes, and tallies them. Popular
prefixes are added to the trie, and are candidates for
further extension in the next round. The procedure
stops after the trie has been built out to L levels, or if
the trie cannot be extended beyond a certain level.

Quantiles and range queries. The quantiles of a
distribution give a compact description of its (one-
dimensional) CDF, generalizing the median. The
problem has also been studied in the central, local
and shuffled models. Many solutions first solve range
queries, then reduce quantile queries to range queries.
Xiao et al. (2010) propose using the Haar wavelet
transform with noise, while Qardaji et al. (2013) use
hierarchical histograms. Cormode et al. (2019) com-
pare both methods in the local setting and observe
similar levels of accuracy. In the shuffle model, quan-
tiles are addressed via frequency histograms in the
work of Ghazi et al. (2021).

Sampling and DP. It is well-known that sampling
can be used to amplify the guarantees of differential
privacy when combined with a DP mechanism on the
sample: Balle et al. (2020) show results for Poisson
sampling, and fixed-size sampling with and without
replacement, while Imola and Chaudhuri (2021) study
privacy amplification when sampling according to dif-
ferentially private parameters. By contrast, we con-
sider mechanisms where sampling in isolation (with a

threshold) provides the DP guarantee directly. This
idea is inspired by Zhu et al. (2020), which material-
izes a set of items based on sampling and thresholding.
The key advance in our work is to show that we can
output the sampled frequencies as well as the sampled
items, and hence produce private histograms. Also
similar to our work is that of Li et al. (2012), who
combine sampling with k-anonymization to achieve a
DP guarantee. Here, we are able to give tight bounds
to guide how to set the threshold and sampling rate
based on target ε and δ values. Our work complements
other efforts in the federated setting to achieve privacy
guarantees with a restricted set of operations—for in-
stance, Kairouz et al. (2021) seek to perform federated
learning via noise addition without sampling.

7 CONCLUDING REMARKS

We have shown how the sample-and-threshold ap-
proach can be applied to the fundamental problem of
private histogram computation, and related tasks like
heavy hitter and quantile estimation. The key techni-
cal insight is that sampling a large enough number of
indistinguishable examples introduces sufficient uncer-
tainty to meet the differential privacy guarantee. The
uncertainty introduced due to sampling can be viewed
as a forced randomized response (where 0 values are
forced to be reported as zeroes) or “negative noise”, in
contrast to other mechanisms that add explicit noise.
It will be interesting to try to understand the relations
between these different forms of noise.

As with other works on private histograms, we assume
that the bucket boundaries of the histogram are given.
Adaptive division of the histogram buckets is possible,
as seen in the TrieHH++ protocol. Nevertheless, this
approach can give poor results in extreme cases, such
as when the bulk of the data resides in a very small
fraction of the input domain.

It is natural to consider what other computations
might benefit from this sample-and-threshold ap-
proach. Direct application of the technique makes
sense when many users hold copies of the same value.
Hence, it is not well-suited to questions like finding
sums and means of general distributions, unless we
additionally apply some rounding and noise addition
to input values first. The approach may be of value
for more complex computations, such as clustering or
outlier removal, where dropping rare items is a bene-
fit, or tasks where we seek to discover descriptions of
patterns in the data that have large support, such as
frequent itemsets.
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A OMITTED TECHNICAL
MATERIAL

Lemma 1. Given two neighboring inputs D, D′, such
that D differs in one item from D′, the ratio of proba-
bilities of seeing a cell with a given count v is bounded

by (1−ps)k
k−v , where k is the number of copies of the given

item in input D and k > v.

Proof of Lemma 1. The case to focus on is when input
D has one extra copy of a particular item compared
to D′, at some intermediate stage of the algorithm.
We can directly compute the probability of picking v
out of the k occurrences of the item by the Binomial
formula as

(
k
v

)
pvs(1− ps)k−v. Our goal is to bound the

ratio of probabilities of seeing a count of v copies of
the item in the output of D, who has k copies of the
item, and of D′ who holds k−1 copies. Then this ratio
of probabilities is given by(

k
v

)
pvs(1− ps)k−v(

k−1
v

)
pvs(1− ps)k−v−1

=
k!v!(k − 1− v)!(1− ps)

(k − 1)!v!(k − v)!

=
(1− ps)k
k − v

Lemma 3. If we set the sampling rate ps = α(1−e−ε)
for some 0 < α ≤ 1 and ε ≤ 1, then sample-and-
threshold achieves (ε, δ) differential privacy for δ =
exp(−Cατ), where Cα = ln(1/α)− 1/(1 + α).

Proof of Lemma 3. From the definition of q in (4), we
have 1− q = e−ε − e−εps = (1− ps)e−ε. Then

D(q‖ps) = q ln
q

ps
+ (1− q) ln

1− q
1− ps

= q ln

(
1− e−ε(1− ps)

ps

)
+ (1− q) ln e−ε

= q ln
(

1
ps

(1− e−ε + e−εps)
)
− ε(1− q)

To simplify this, we use ps = α(1− exp(−ε)). Then

D(q‖ps) = q ln

(
(1 + αe−ε)(1− e−ε)

α(1− e−ε)

)
− ε(1− q)

= q ln 1+αe−ε

α − ε(1− q)

Using the Hoeffding-Chernoff bound, we get

δ ≤ exp(− τqD(q‖p)) = exp(−τ(ln 1+αe−ε

α − 1−q
q ε))

≤ exp(−τ(ln(1/α)− 1−q
q ε)) (6)

We can observe that (6) is decreasing as a function of
ε, by expanding out the definition of

1− q
q

ε =
e−ε(1− α+ αe−ε)

(1− e−ε)(1 + αe−ε)
ε =

ε

eε − 1

1− α+ αe−ε

1 + αe−ε



Sample-and-threshold differential privacy

=
ε

eε − 1

(
1− α

1 + αe−ε

)
(7)

Observe that −1
1+αe−ε is decreasing as a function of ε,

and so the term (1− α
1+αe−ε ) is also decreasing. To see

the behavior of ε
eε−1 , we differentiate wrt ε:

d

dε

ε

eε − 1
= −e

ε(ε− 1) + 1

(eε − 1)2

This derivative is clearly negative for ε ≥ 1, indicating
a decreasing behavior. For 0 < ε < 1, we study the
numerator f(ε) = −(eε(ε−1)+1). Then f(0) = 0 and
f(1) = −1. In between, we have

d

dε
f(ε) = − d

dε
eε(ε− 1) + 1 = −εeε

which is negative for ε > 0, allowing us to conclude
that ε

eε−1 is decreasing for all ε > 0.

Putting this all together, we conclude that
exp(−τ(ln(1/α) − 1−q

q ε) is decreasing as a func-
tion of ε, and so achieves its greatest value in the limit
as ε approaches 0. Considering (7), we have

lim
ε→0

1− q
q

ε = lim
ε→0

ε

eε − 1

(
1− α

1 + αe−ε

)
= lim
ε→0

ε

eε − 1

(
lim
ε→0

1− α

1 + αe−ε

)
= 1 ·

(
1− α

1 + α

)
=

1

1 + α

Substituting this into (6), we find

δ ≤ exp
(
−τ
(

ln(1/α)− 1
1+α

))
= exp(−τCα)

where we define Cα = ln( 1
α )− 1

1+α = O(ln( 1
α )).

Lemma 5. The sample and threshold histogram pro-
tocol omits an item whose true absolute count is W
with probability at most exp(−(Wm

n − τ)2 n
2Wm ).

Proof of Lemma 5. For an item with (absolute) fre-
quency W out of the n input items, it is reported if the
number of sampled occurrences exceeds τ . We can ap-
ply a multiplicative Chernoff-Hoeffding bound to the
random variable X that counts the number of occur-
rences of the item. Now, the probability of each sample
picking the item is W/n, and the expected number in
the sample is Wm/n > τ . For convenience, we will
write w = Wm/n for this expectation. We have that2

Pr[X ≤ τ ] = Pr
[
X ≤ τ

w
w
]

2Here we are sampling without replacement. However,
bounds for sampling with replacement are still valid here.

= Pr

[
X ≤

(
1− w − τ

w

)
E[X]

]
= exp

(
− (w − τ)2

2w

)

Lemma 7. The TrieHH++ protocol using L sample-
and-threshold histograms with (ε, δ)-DP achieves an
overall guarantee of (Lε, Lδ)-DP.

Proof of Lemma 7. In more detail, we can view the
protocol as publishing a histogram at each level, where
the granularity of the cells is refined in each round.
The protocol enforces that if a prefix is not included
at a particular level, then none of its extensions are
published in any subsequent level. However, we can
view this as “post-processing”, and analyze the sim-
pler algorithm that does not enforce this constraint.
Applying Theorem 2, we have that each round satis-
fies (εi, δi)-DP for some εi and δi.

Then we argue that the output of the full protocol is
the L-fold composition of the mechanisms Mi. Assum-
ing εi = ε′ and δi = δ′ for all i, then using basic compo-
sition, we obtain a bound of (Lε′, Lδ′)-differential pri-
vacy, leading to the result stated in the theorem claim.
For εi = ε′ < 1, we can also obtain a tighter bound, of
(Lε′2 +ε′

√
L log 1/(δ′L), 2Lδ′) using advanced compo-

sition (Dwork and Roth, 2014).

Lemma 8. Given a φ > τ/m, we can use h applica-
tions of the (ε, δ)-DP histogram mechanism to find a
value f such that f ± 2−h is a φ±O(m−1/2) quantile,
with (hε, hδ)-DP.

Proof of Lemma 8. The quantile query can be carried
out by a binary search: we begin by creating a his-
togram with buckets [0, 12 ], [ 12 , 1], and recursively try
different split points [0, t], [t, 1] until we obtain a re-
sult with approximately a φ fraction of points in the
first bucket, at which point we can report t as the φ-
quantile. Provided φ is sufficiently larger than τ/m
(and smaller than 1 − τ/m), then we are unlikely to
hit any cases where a bucket count is removed. As a
result, the error will primarily the error from sampling,
which is O(1/

√
m) (Lane, 2003), plus the error from

rounding, which is 2−h if we perform h steps of binary
search. That is, we find a result t such that there is a
point in the range [t−2−h, t+2−h] := t±2−h that dom-
inates φ±O(1/

√
m). The privacy guarantee is (hε, hδ),

from the composition of h (ε, δ)-DP histograms.
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