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1.1 Introduction

In many streaming scenarios, we need to measure and quantify the data that
is seen. For example, we may want to measure the number of distinct IP ad-
dresses seen over the course of a day, compute the difference between incoming
and outgoing transactions in a database system or measure the overall activity
in a sensor network. More generally, we may want to cluster readings taken
over periods of time or in different places to find patterns, or find the most
similar signal from those previously observed to a new observation. For these
measurements and comparisons to be meaningful, they must be well-defined.
Here, we will use the well-known and widely used L, norms. These encom-
pass the familiar Euclidean (root of sum of squares) and Manhattan (sum of
absolute values) norms.

In the examples mentioned above—IP traffic, database relations and so
on—the data can be modeled as a vector. For example, a vector representing
IP traffic grouped by destination address can be thought of as a vector of
length 232, where the ith entry in the vector corresponds to the amount of
traffic to address i. For traffic between (source, destination) pairs, then a vec-
tor of length 264 is defined. The number of distinct addresses seen in a stream
corresponds to the number of non-zero entries in a vector of counts; the differ-
ence in traffic between two time-periods, grouped by address, corresponds to
an appropriate computation on the vector formed by subtracting two vectors,
and so on. As is usual in streaming, we assume that the domain of the data
and the size of the data are too massive to permit the direct computation of
the functions of interest—which are otherwise mostly straightforward—and
instead, we must use an amount of storage that is much smaller than the
size of the data. For the remainder of this chapter, we put our description
in terms of vectors, with the understanding that this is an abstraction of
problems coming from a wide variety of sources.
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Throughout, we shall use @ and b to denote vectors. The dimension of a
vector (number of entries) is denoted as |al.

Definition 1. The L, norm (for 0 < p <2) of a vector a of dimension n is
n
lally = (3 lalil )
i=1
The Ly norm is defined as
n
lallo = (3 lali]l®) = {ilali] # O]}
i=1

where 0° is taken to be 0.

These are vector norms in the standard sense: the result is non-negative, and
zero only when the vector is zero; and the norm of the sum of vectors is
less than the sum of their norms. For p > 0, the L, norm guarantees that
l|kall, = k|||, for any scalar k. This does not hold for p = 0, so Ly is not a
norm in the strict sense. These norms immediately allows the measurement of
the difference between vectors, by finding the norm of the (component-wise)
difference between them. To be precise,

Definition 2. The L, distance between vectors a and b of dimension n is the
L, norm of their difference,

n

lla —bll, = (3 lali] — bla)|")"/”

i=1

The L, distance encompasses three very commonly used distance mea-
sures:

e Fuclidean distance, given by Lo distance, is the root of the sum of the
squares of the differences of corresponding entries.

e The Manhattan distance, given by the L; distance, is the sum of the
absolute differences.

e The Hamming distance, given by the Lg distance, is the number of non-
zero differences.

In this chapter, we will show how all three of the distances can be estimated
for massive vectors presented in the streaming model. This is achieved by
making succinct sketches of the data, which can be used as synopses of the
vectors they summarize. This is described in Section 1.2. In Section 1.3 we
discuss some applications of these results, to the distinct elements problem,
and to computing with objects that can’t be modeled as simple vectors. Lastly,
we discuss related work and new directions in Sections 1.4 and 1.5.
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1.2 Building Sketches using Stable Distributions

1.2.1 Data Stream Model

We assume a very general, abstracted model of data streams where our input
arrives as a stream of updates to process. We consider vectors a, b, . . ., which
are presented in an implicit, incremental fashion. Each vector has dimension
n, and its current state at time t is a(t) = [a(t)[1],a(?)[2],... a(t)[n]]. For
convenience, we shall usually drop ¢ and refer only to the current state of the
vector. Initially, a is the zero vector, 0, so a(0)[¢] is 0 for all i. Updates to
individual entries of the vector are presented as a stream of pairs. The tth
update is (i, ¢t), meaning that

a(t)[is] = a(t — 1)[is] + ¢
a(t)[j] =a(t—1)[] JF i

For the most part, we expect the data to arrive in no particular order, since it
is unrealistic to expect it to be sorted on any attribute. We also assume that
each index can appear many times over in the stream of updates. In some
cases, ¢;s will be strictly positive, meaning that entries only increase; in other
cases, ¢;s are allowed to be negative also. The former is known as the cash
register case and the latter the turn-stile case [35]. Here, we assume the more
general case, that the data arrives unordered and each index can be updated
multiple times within the stream.

a
a

1.2.2 Stable Distributions

Stable Distributions are a class of statistical distributions with properties
that allow them to be used in finding L, norms. This allows us to solve many
problems of interest on data streams. A stable distribution is characterized
by four parameters (following [38]), as follows:

The stability parameter « € (0, 2].
The skewness parameter § € [—1,1].
The scale parameter v > 0.

The shift parameter §.

Although there are different parameterizations of stable distributions, we
shall fix values of 3,7 and § for this discussion. This has the effect that the
different parameterization systems all coincide. We set § = 0, which makes
the distribution symmetric about its mode. Setting v = 1 and § = 0 puts
the mode of the distribution at 0 and gives a canonical distribution. Formally
then, the distributions we consider are symmetric and strictly stable, but we
shall simply refer to them as stable.
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Definition 3. A (strictly) stable distribution is a statistical distribution with
parameter « in the range (0,2]. For any three independent random variables
X, Y, Z drawn from such a distribution, for scalars a,b, aX +bY is distributed
as (|a]® + |b|*)Y/*Z.

These are called stable distributions because the underlying distribution
remains stable as instances are summed: the sum of stable distributions (with
the same «)) remains stable. This can be thought of a generalization of the
central limit theorem, which states that the sum of distributions (with finite
variance) will tend to a Gaussian distribution. Note that, apart from a = 2,
stable distributions have unbounded variance.

Several well-known distributions are knowr; to be stable. The Gaussian

oo

(normal) distribution, with density f(z) = T;’ is strictly stable with a = 2.

The Cauchy distribution, with density f(z) = m,
a = 1. For all values of a < 2, stable distributions can be simulated by using
appropriate transformations from uniform distributions, as we will show later.

is strictly stable with

1.2.3 Sketch Construction
By applying the above definition iteratively, we find that

Corollary 1. Given random variables X1, Xs, ... X, independently and iden-
tically distributed as X, a strictly stable distribution with stability parameter
a =p, and a vector a, then S = a[l] X1 +a[2]Xs +. ..+ a[n] X, is distributed
as |lal], X.

From this corollary, we get the intuition for why stable distributions are
helpful in computing L, norms and L, distances: by maintaining the inner
product of variables from a-stable distributions with a vector being presented
in the stream, we get a variable S which is distributed as a stable distribution
scaled by the L, norm of the stream, where p = a. Maintaining this inner
product as the vector undergoes updates is straightforward: given an update
(i,¢), we simply add X; - ¢ to S. However, what we have so far is an equality
in distribution; what we are aiming for is an equality in value. To solve this
problem, we proceed as follows.

Let med(X) denote the median of X, i.e., a value M such that Pr[X >
M] = 1/2. Then, for any s > 0, we have med(s - |X|) = s - med(|X]). In
our case, med(|S]) = med(||al|, - |X]|) = ||a|,med(]X]). Moreover, med(|X]|)
depends only on p and can be precomputed in advance. For « =1 and o = 2
then med(|X|) = 1. For other values of o, med(|X|) can be found numerically:
Figure 1.1 shows a plot of the median values found by simulation, where each
point represents one experiment of taking the median of 10,000 drawings,
raised to the power %. Thus, in order to estimate ||al|,, it suffices to compute

an estimation z of med(]S]), and then estimate |al|, by m.
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Medians of Stable Distributions
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Fig. 1.1. Plot of empirically found median of stable distributions varying stability
parameter p in the range 0 to 2

To estimate M = med(]S|), we take a vector sk[1] ... sk[m] of independent
samples of the random variable S. In other words, for each i, we “generate” m
independent samples x} ...z of the X;, and then compute sk[j] = a[l]z] +
...+ a[n]zd. We call this vector sk an a-stable sketch of the vector a. This
can be viewed computationally as maintaining each entry of the sketch as the
inner product between the vector and appropriately chosen random vectors,
i.e., sk[j] = a - 27. The procedure is presented in more detail in Figure 1.2.
Note that the vector sk can be computed in a streaming fashion; in particular,
the numbers x} are not actually stored. It is important that we get the same
value for x{ every time it is accessed: this is done by using a pseudo-random
number generator that is initialized with 4 to give a stream of values xf . Then
we use the following lemma (for the random variable Z = |S|, the absolute
value of S).

Lemma 1. For any one-dimensional random variable Z with continuous den-
sity, let F(t) = Pr[Z < t]. There is a constant C > 0 such that for
m = E%log%, if we take m independent samples z1 ...z, of Z and set z
to be the median element of the sequence z1 ... zm,, then

PrlF(z) €[5 —€62+¢€]>1-6

Proof. Let t be such that F(t) = 3 —e. If F(z) < F(t) = 3 —¢, then z; <t for
most z;s, and therefore w < % However, for each z; we have Pr[z; >
t] = 1 + €. Therefore, from Chernoff bound [34] we know that there exists a
constant C' > 0 such that
P =Pr[F(z)<i—¢< exp(fegcm)
Using the same argument we obtain
Py =Pr[F(z) > 1 +¢ < exp(—ezm)
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By setting m = 6% log(2/9) we obtain P; + Py < 4.

Note that our goal is to obtain an approximation to the median M, i.e., the
number such that F(M) = £, while the above provides us (with probability
1—6) with z such that F(z) € [ —¢, 1 +¢]. For general functions F, z could
be a bad estimate of M; e.g., if F' is “flat” around the point % However, if
the derivative F’ of F is bounded by % from below around %7 then the above
implies that z € [M — Be, M + Bel, i.e., that z = (14 Be)M, which is precisely
what we want.

It suffices to verify if the derivative of the function F' for the random
variable |S| is bounded away from 0 around 1. For a = {1,2}, this can be
verified analytically. For other values of «, this can be verified computationally,
e.g., by plotting F'. It should be noted that the lower bound for F’ (%) depends
on «, and tends to oo as « tends to 0.

1.2.4 Simulating Stable Distributions

When implementing this technique, we need to be able to generate values from
a stable distribution. These can be generated by using appropriate transfor-
mations from uniform random distributions.

e For a = 1, we can use the Cauchy distribution, which is easy to draw from.
If U is a uniform random distribution returning values in the range [0, 1],
then tan(m(U — 3)) is distributed with the Cauchy distribution.

e For a = 2, we can use the Normal distribution, which can be drawn
from using the Box-Muller transformation: If U and V are independently
distributed uniformly over [0, 1], then v/—21InU cos(27V) is distributed as
a normal distribution.

e For all other values of a € (0,2), stable distributions can be simulated
using the method of Chambers, Mallows and Stuck [6]. These take uniform
distributions U,V onto the range [0, 1] and output a value drawn from a
stable distribution with parameter a # 1. Set §(U) = 7 - (U — 3). Then

stable(U,V,a) =

sinad(U) <cos(9(U) (1- a))) =
cost/@g(U) —InV

is distributed as a stable distribution with parameter a.

1.2.5 The Sketch Algorithm

The full algorithm to compute a sketch of a stream is given in Figure 1.2.
It works as follows: lines 1-2 intialize the sketch vector to a vector of all zeros.
Then for each new tuple (i, ¢), we initialize a pseudo-random number generator
with the index i (line 4), so that when we draw random values (lines 6-7),
these are pseudo-random functions of ¢, the same every time the same value of
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Algorithm to compute sketches of a stream
1: for 1 <j53<m do
2 sk[j] < 0.0

3: for all tuples (i,c¢) do

4 initialize-random-seed (%)

5: for 1<j53<m do

6: u < uniformly-random-from(0, 1)
7 v < uniformly-random-from(0, 1)
8
9

z] «— stable(u,v,q)

shlj] < sklj] + ¢ o]
10: return median(|sk[1]],...,|sk[m]|)/med(|X])

Fig. 1.2. Sketching algorithm

i is seen in the stream. Each successive call to the random number generator
yields a new value, but the sequence of values following each re-initialization
is the same. Line 8 takes two values in the range 0 to 1, and transforms them
to yield a value drawn from a stable distribution with parameter . The jth
entry of the sketch is updated, by adding on the contribution of the update ¢
times the stable value in line 9. This is repeated for all m entries in the sketch.
Lastly, to return an estimate of the norm of the vector, we take the median of
the (absolute) values of the sketch, and scale this by the median of the stable
distribution with parameter a.
We state a theorem that summarizes the properties of this algorithm.

Theorem 1 (From [26]). In space O(% log $) we can compute an o-stable
sketch of a vector a presented in the turn-stile streaming model. Using this
sketch we can compute an estimate of ||all, for p = « that is accurate within
a factor of 1 & € with probability at least 1 — 6. Processing each update to the
vector a takes time linear in the size of the sketch, O(% log $).

This follows from the above Lemma and the preceding discussion.

Note that to complete the proof we must also argue that we can replace
truly random samples x] with values drawn using pseudo-random generators.
The proof of this relies on the pseudo-random generators of Nisan [37], and
we refer the interested reader to the details in [26]. In practice, it suffices to
use standard random number generators to generate uniform pseudo-random
numbers, and use the transforms given in the previous section.

1.2.6 Other estimators

In the previous sections we used the median of sk[1]...sk[m] to estimate the
norm of the stream vector. There are alternative estimators that one can use
instead. In particular, for the L; norm, Li et al [32] proposed the following
bias-corrected geometric mean estimator:



8 Graham Cormode and Piotr Indyk

- m
E = m_ T 111/m
cos" ) L 51

This estimator is more accurate than the median estimator when the sam-
ple size is small [32].
A similar estimator can be used to estimate the more general L, norms,
€ (0,2]. Unlike the median estimator (which requires some computation to
determine the right parameters of the distribution function F'), the geometric
mean estimator is computable using a simple analytical formula. See [31] for
more details.

1.2.7 Combining Sketches

We now state a number of the properties of this sketching technique, which
follow immediately from the method of their construction. These show how
the a-stable sketches have application to a variety of circumstances.

Corollary 2.
sk(a + b) = sk(a) + sk(b)

sk(a — b) = sk(a) — sk(b)

These two facts follow immediately from the fact that the sketches are
generated as the inner product between the vector a and vectors of values
drawn from random distributions, 2. So, the sketch of the sum of two vectors
can be computed from the sum of their sketches. This allows the distributed
computation of sketches by multiple parties: after agreeing in advance on a
random number generator to use, sketches of different data can be computed
in parallel, and then the sketches combined to get the sketch of the sum of
the data. Similarly, the sketch of the difference of two vectors, and hence the
L, distance between them, can be computed from sketches of the original
vectors. This allows large data sets to be compared by only storing the short
summarizing sketches of them.

Corollary 3.
sk(c-a)=c- sk(a)

Also by the linearity of construction, the sketch of a vector a scaled by a
scalar ¢ can be computed directly from the sketch of the original vector. This
allows, for example, a new day’s set of data to be compared against the average
of the previous weeks data: the sketch of the average is computed by summing
the sketches of seven days data, and scaling by % Similarly, the popular
exponential decay model where we compute a weighted average of previous
vectors a(0),a(1),a(2)...as (1-A)(a(0)+Aa(1)+ A %a(2)+...+ Aa(i)+...)
(0 < A < 1) is easy to construct iteratively. Suppose we have a sketch of the
current vector sk, and wish to include a as the new day’s data. Then we can
set sk[j] — (1 — N)sk(a)[j] + Ask[j] for all j.
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1.3 Application to Streaming Problems

In this section, we outline some of the applications within streaming and
beyond that stable distributions have been used to address. These include:
estimating the number of distinct items in a stream; as a way to track em-
beddings in small space; and for geometric problems such as clustering and
approximate nearest neighbor searching.

1.3.1 Lo and counting distinct items

Suppose we are shown a sequence of items, and want to know how many
distinct items there are in the sequence. This is a fundamental question in
data stream analysis, and it has a large number of applications both in this
form and for generalizations of this problem. Assume that the each item is
an integer in the range 1...n. Then we could maintain a vector a where ali]
counts the number of occurrences of item . Arrivals of new items can be
modeled as adding one to the appropriate entry in the vector. In the turn-
stile streaming model, departures can be modeled as subtracting one from the
corresponding entry. The number of distinct items corresponds to the Ly norm
a, that is, the number of non-zero counts. The Ly norm is somewhat more
general than this, since it can also incorporate negative counts. Such negative
counts arise, for example, when we want to compare two vectors of counts,
and find in how many places the counts differ (the Hamming difference). Note
that stable distributions do not exist for a = 0, so we cannot directly apply
the sketching technique. Instead, we observe that for sufficiently small values
of p, the L, norm approximates the Ly norm:

Theorem 2 (From [11]). The Ly norm ||a||o can be approzimated by finding
the L, norm of the integer valued vector a for sufficiently small p (0 < p <
@) provided we have an upper bound (U) on the size of each entry in the
vector, so ¥i : |afi]| < U.

Proof. We show that the Ly norm of a vector can be well-approximated by
>_ilali]|P = |la|[} for a small value of p (p > 0). If, for all i we have that
|afi]| < U for some upper bound U, then

lallo = > lalil* < 3 lalil < 37 U7/alil
<Py falil* < (143 lali® = (1+ 9lall

We use the fact that ali] is an integer and Vi : |a[i]| < U. The last

inequality uses U? < (14 ¢) which follows if we set p <In(1+¢)/InU ~ %.
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From this, it follows that if we set the a of our sketches to be sufficiently
small—as small as the value of p indicated by the above analysis—and com-
pute sketches using stable distributions, then this can approximate the number
of distinct items, and more generally the Ly norm and L difference between
vectors. Since by definition the stable distributions capture the L, norm, we
have to take no special action when the vectors may contain negative values.
Because the sketch is formed by a linear projection of random vectors with the
input data, they naturally and smoothly accept updates of negative values.

When implementing this technique there are various technical details to
deal with. Values drawn from stable distributions with small stability param-
eters « tend to grow very large, so even standard floating point formats are
insufficient to handle them. However, in practice it usually suffices to set a to
be a sufficiently small constant value. The experiments in [10] show that with
a = 0.02, good approximations to the Ly norm and the number of distinct
items can be found.

1.3.2 Dominance Norms

Fig. 1.3. The “dominance norm” of multiple signals (left) computes the “area under
the curve” of the upper envelope of multiple signals (right).

The approach of using stable distributions to capture the Ly norm has been
applied to other problems: in [13], the so-called “dominance norm” of data is
approximated using stable distributions. The dominance norm is defined as
>, max; a; ; for a sequence of data items of the form (i, a; ;), intuitively giving
the “worst-case influence” of a sequence of signal values. This definition is
illustrated in Figure 1.3: for the three signals shown on the left, the dominance
norm is computed by finding the upper envelope of the signals (shown on the
right), and taking the area under this upper envelope.

One can approximate this computation by transforming the input into
an instance of computing Ly norms. Suppose that the signal values a; ; are
integers. We can (conceptually) replace each a; ; with a sequence of distinct
items, a;,1,ai2...0a;;. Now observe that the number of distinct items in the
transformed stream is exactly the dominance norm. This shows that Ly is
at the heart of the dominance norm. However, this approach is not scalable:
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naively replacing a; ; from the input with a; ; items means that the algorithm
is exponentially slow in the size of the input. Instead, we can make use of
the properties of stable distributions to build an estimator whose distribution
is correct. The key idea is to round each a; ; to the closest power of (1 + €),
(1+e€)?, say, and to add i appropriately scaled values from a stable distribution
to build a sketch with the right distribution [13].

1.3.3 Application to Computing Embeddings

Not all objects can be naturally modeled as vectors. In dealing with massive
items that consist of text, geometric data, structured data or other objects,
new methods are needed to compare and measure them. However, the a-
stable sketches for L; and Lo distance are sufficiently flexible that they allow
the following “embedding approach”. Consider any set of objects X, with a
distance functions D(q,r) defined for any ¢,r € X.

Definition 4. A mapping f : X — Ly, is called an embedding with distortion
¢, if for any q,v € X, we have

D(q,r) < || f(q) = f(r)llp < ¢- D(g,7).

Here, we use L,, as shorthand for “a vector space with the vector L, norm”.
This definition can be further extended to allow the inequalities to hold with
certain probability.

Fig. 1.4. Example parse tree for block edit distance text embedding

If the mapping f works for some p € {0,1,2}, and if f can be computed
in a streaming fashion, then we can obtain a streaming algorithm for com-
puting short sketches of objects from the space X. That is, for any ¢, € X
defined by a stream, we can compute their sketches such that D(g,r) can be
approximated given the sketches. See [27, 33] for more on embeddings and
their algorithmic applications.

The simplest example of this approach is given in [14], where it is shown
that biologically motivated distances on permutations can be approximated up
to small constant factors by encoding information about adjacent characters
in the permutation as appropriate vectors in L.
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More involved is the method in [12] which shows that a distance between
strings can also be embedded into L;. Only local information about the se-
quence is used in order to build the vector representation. The construction
is more complex, since the sequence is parsed into small blocks, which in turn
are re-parsed at successive levels in a hierarchy until a single item is left that
represents the whole string. An example parsing of a string is shown in Fig-
ure 1.4: a tree is built whose leaves are the characters of the string, and whose
internal nodes represent selected substrings. The parsing can be computed as
successive characters are observed, and the increasingly long substrings given
by the internal nodes can be represented compactly with hash values. These
substrings can be thought of as defining dimensions of a high-dimensional
vector space. In the paper, it is shown that the L, distance between two vec-
tors created by this process approximates an editing distance between the
corresponding strings. Since the parsing can be computed online, sketches for
this distance can be computed in small space using the a-stable approach. In
total, O(lognlog™ n) space is required to process a string of length n, and the
embedding has distortion O(lognlog” n).

This approach is extended from string based data to tree structures (such
as XML documents) in [22]. Using a similar parsing approach, it is shown how
an appropriate editing distance on trees can be approximated up to a factor
of O(log2 nlog® n) for trees with at most n nodes. Further, with a different
kind of sketch based on stable distributions, the join size of a set of trees can
be approximated. Here, the join size is the number of pairs that are within a
threshold distance of each other.

Another example of this approach is given in [28]. Consider a discrete
d-dimensional space {1...A}¢, and let P and @ be two subsets from that
space. Define M(P,Q) to be the cost of the matching between P and Q
with minimum cost: the cost of the matching is given by the sum of the
distances between the paired-up points. The value of M (P, Q) is a natural
measure of a difference between two sets of points. Building on the work of
Charikar [8], Indyk [28] showed that M(-,-) can be embedded into L; with
distortion O(log A), and that that embedding can be computed in small space.
In fact, the embedding is quite simple. Let G;, i = 1...t = log A, be square
grids over R¢ with side length 2¢~1, shifted by a vector chosen uniformly at
random from [0, A]. For each cell ¢ in G, let n’(c) be the number of points
in P that fall into ¢; note that n% can be viewed as a (high-dimensional)
vector. The embedding f maps P into (essentially) a concatenation of vec-
tors 2009, 21nk ... 2'nt,. Observe that the embedding can be computed in
a streaming fashion: adding a point p to P can be implemented by increment-
ing ¢ positions in f(P) that correspond to cells containing p; deleting a point
from P can be implemented in an analogous way. Thus, the embedding can be
naturally combined with the sketching algorithm from the previous section.

It is worth mentioning that the above approximation factor O(log A) can-
not be much improved if one insists on proceeding through the L; norm.
Specifically, Naor and Schechtman [36] showed that any such embedding must
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incur 2(log A) distortion. This lower bound may be tight for any approxima-
tion, and it will be interesting to resolve this issue.

Finally, we mention that an analogous embedding into Lq gives a streaming
algorithm for estimating the cost of the minimum spanning tree of set of points
P, up to a factor of O(log A). See [28] for details.

1.3.4 Clustering and Nearest Neighbors

The sketch structure can be used as a “distance oracle”, giving dependable
approximations of the distance between high dimensional vectors while keep-
ing only a constant amount of space for each object. They can therefore be
applied to a number of data indexing and data mining questions which rely
on such distance computations, replacing exact distance computations with
approximations. For example, in order to perform clustering on a set of high
dimensional vectors that are defined by data streams, we can keep sketches of
the vectors, and then run the clustering algorithm using those sketches. This
approach was investigated in [11], where experimental evidence was given
that the clusterings found are of similar quality to those using exact distance
measurements. The idea of replacing exact distance computations with ap-
proximate ones can be analyzed formally. For example, it is easy to show that
for the k-center objective function that using approximate distances changes
the approximation quality of the result from 2 to 2 + € [9].

A more involved approach was taken in [16]. This showed that sketches
using stable distributions could be fitted into the framework of ‘Locality Sen-
sitive Hash Functions’, and consequently can be used in the construction of
Approximate Nearest Neighbor search structures. Although this more gener-
ally applies to non-streaming scenarios, the whole algorithm can be run on
data presented in a streaming format. The space that is needed is a function
of the number of data points, rather than a function of the total size of the
input data.

1.4 Related Work

The sketch for Ly, which is formed as the inner product between the vec-
tor a and vectors 7, each of whose entries is drawn independently from a
Gaussian distribution, can be seen as a weaker version of the well-known
Johnson-Lindenstrauss Lemma [30]. This states that such there exist em-
beddings of high dimensional vectors in Euclidean space into a space with
dimension O(%2 log ) which has distortion 1+ € with probability 1 — 4. Here,
we have shown the result for a space where we use the median operator to
compute the distance. It has been shown that by taking the appropriately
scaled Lo difference between such sketch vectors formed in the same way also
has this property (see, for example, [29]). What we also have here is a version
of this “weak Johnson-Lindenstrauss” lemma for L; and Lq. This is about as
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strong as we may hope for, since it has been shown that it is not possible to
create an approximate distance preserving of L; into a lower dimensional L,
space [4]. Here, we use an L;-like operator: instead of computing the L; norm
of the sketch as . [sk[j]|, we compute med;(|sk[j]|). 3

The fundamental work of Alon, Matias and Szegedy [2] (described in an
earlier chapter) initiated recent focus on computing norms of data streams.
An algorithm given therein computes the second frequency moment of a data
stream, F5. As was observed in [18], this directly gives a solution to finding
the Lo norm and Lo difference between streams in the turn-stile model. For
most applications, the fact that updates can be performed very quickly, and
that the necessary four-wise independent hash functions can be computed
easily [39] means that this approach will be preferable in many situations.

For computing the L; difference, [18] shows how to modify the Alon-
Matias-Szegedy method using carefully constructed range-summable random
variables. However, this is under very strong restrictions on the data: each
index can be seen at most once for each vector. The approach here allows a
much more general model of the data, and is easier to compute. Similarly,
[20] extended the above approach to arbitrary L, norms for p € (0,2), but
with the same disadvantages. The main results described in this chapter on
constructing sketches using stable distributions (Section 1.2) appeared first
in [26].

The distinct elements problem has attracted a great deal of study. In the
arrivals only (cash register) model, algorithms are known which are signifi-
cantly faster than the approach described here. See [19, 24, 23, 3, 17], and the
discussions in elsewhere in this book. In the more general problem of comput-
ing the Ly norm and L difference, where entries in the implicit vector defined
by the stream can be negative, the method using stable distributions is the
only published solution. A detailed empirical study of this approach, and a
collection of ways to increase processing speed, are given in [10].

In terms of the application of a-stable sketches to speeding up clustering,
see elsewhere in this book for details of much of the other work on clustering
data streams. Typically the goal is typically to compute a representation of the
optimal clustering of a very large number of points in some arbitrary metric
space, when each point has a small representation. Here, we considered a
somewhat different scenario, where the number of points to cluster is not too
large, but each point is represented by a very high dimensional vector in some
L, normed space. Hence, the two approaches are in some sense complementary
and are not directly comparable.

3 Observe that since we need the median operator, this is not a normed space. This
is an important restriction, since it means that one cannot immediately apply
well-known techniques which work on specific normed spaces, such as clustering
or similarity search. In constrast, since the Johnson-Lindenstrauss lemma does
yield points in a lower dimensional metric space, all algorithms for Euclidean
space can be applied to the resulting transformed data.
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There is a very large body of work on Stable Distributions in Statistics and

related areas. For pointers, see the books by Zolotarev [42, 40], and Nolan [38].
It is reasonable to say that the applications of stable distributions to streaming
computations are far from exhausted.

1.5 Extensions and New Directions

Finally, we outline some potential areas for future research to extend the
applications of stable distributions to streaming computations.

One obstacle to implementing sketch-based summarization of very high
speed data streams is that the time cost of maintaining sketches can be
too expensive in some situations. This derives in part from the cost of sim-
ulating stable distributions using transforms from uniform distributions.
The main cost comes from having to update every entry in the sketch
with every update. For Lo norms alternative methods are known which are
asymptotically faster than Q(e% log %) per update; for example, see [7, 39]
or the recent work on the “fast Johnson-Lindenstrauss transform” [1].
Likewise, for the problem of approximating the number of distinct items
in the arrivals only (cash register) model, then faster updates are possible.
It remains an open problem to design algorithms to compute L; norms
and Ly norms in the turn-stile model, which have lower per-item update
cost. Note that one cannot expect lower space costs, since lower bounds of
2(Z%) have been shown [41].

It is of interest to address the engineering question of how to incorpo-
rate stable sketch computations into high speed data stream systems [15].
Various precomputations may be possible to speed up the computations,
using appropriate look-up tables and so on. Techniques such as fixed point
arithmetic may also be appropriate for certain fixed L, values (p = 1 or
p = 2, say), where the generated values do not grow too large. Other ap-
proaches may take advantages of skew in the data to, for example, collect
together multiple instances of the same vector entry being updated, to
further speed up the update time. There is a need to study in detail many
implementation issues such as these to make the use of stable sketches
within real situations a practical reality.

The flexibility of this approach means that it is inviting to consider whether
there are similar methods to compute other quantities of interest on the
stream. For example, the “empirical entropy” of a sequence, given by
> ;a;loga; has a number of applications, as does the “sum of logs”,
>;loga;. Recently, progress has been made on computing the empiri-
cal entropy of counts of items in the stream [21, 5], it remains open to
determine whether stable distributions or similar techniques can also be
applied to these problems.
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It is an intriguing fact that stable distributions exist only in the range
a € (0,2], which corresponds to the range of L, norms that can be ap-
proximated efficiently (essentially in constant space) on the stream. Mean-
while, there are provable lower bounds on the space required to estimate L,,
norms for p > 2 that are polynomial in 7, the dimension of the vector. The
connection between these facts may be more than mere coincidence, and
making this connection explicit could lead to the development of stronger
lower bounds, or lower bounds for other, related problems.

Many techniques using stable distributions make use of a natural range
summability-like property of these distributions. That is, their defining
feature is that the sum of stable distributions is itself distributed sta-
ble. This results in careful constructions of random variables such that
the range sum of particular sub-ranges of variables can be computed ef-
ficiently (exponentially more efficient than directly computing the sum).
Such constructions have been shown for @« = 1 and o = 2 [25]. It remains
to generalize these techniques to general values of «, and to show new
applications.

Finally, there is a large literature on stable distributions, resulting from
their study in statistics, economics and beyond. Applications of stable
distributions to streaming computations have only just begun to make use
of the wealth of existing knowledge about these distributions, and it is very
conceivable that there are many other applications of these distributions
to problems of practical interest in streaming computations.
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