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Correlation Clustering in Data Streams

Abstract
Clustering is an fundamental tool for analyzing
large data sets and a rich body of work has been
devoted to designing data stream algorithm for the
relevant optimization problems such as k-center,
k-median, and k-means. To be useful, such algo-
rithms need to be both time-efficient and space-
efficient. In this paper, we address the problem of
correlation clustering in the dynamic data stream
model: the stream consists of updates to the edge
weights of a graph on n nodes and the goal is
to find a node-partition such that the end-points
of negative-weight edges are typically in differ-
ent clusters whereas the end-points of positive-
weight edges are typically in the same cluster. We
present polynomial-time, O(n · polylog n)-space
algorithms for the natural approximation prob-
lems that arise.

We first develop data structures based on linear
sketches that allow the “quality” of a given node-
partition to be measured. We then use these data
structures in combination with convex program-
ming and sampling techniques to solve the rele-
vant approximation problem. The challenges are
that the standard LP and SDP formulations are not
solvable in O(n · polylog n)-space and that the
required sampling procedures are often adaptive.
Our work presents space-efficient algorithms for
the required convex programming and approaches
to reduce the adaptivity of the sampling.

1. Introduction
Correlation Clustering. Similar to the contemporaneous
Cluster Editing problem (Shamir et al., 2004), the Correla-
tion Clustering problem was first formulated as an optimiza-
tion problem by Bansal et al. (Bansal et al., 2004). The input
is a complete weighted graphG on n nodes, where each pair
of nodes uv has weight wuv ∈ R. A positive-weight edge
indicates that u and v should be in the same cluster whereas
a if the weight is negative, then u and v should be in differ-

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

ent clusters. Given a node-partition C = {C1, C2, . . .}, we
say edge uv agrees with C ifwuv ≥ 0 and nodes u, v belong
to the same cluster or wuv ≤ 0 and nodes u, v belong to
different clusters. The goal is to find the partition C that
maximizes

agree(G, C) :=
∑

uv agrees with C
|wuv| ,

or, equivalently, that minimizes disagree(G, C) :=∑
uv |wuv| − agree(G, C). Solving this problem exactly

is known to be NP-hard and a large body of work(Ailon
et al., 2008; Bansal et al., 2004; Charikar et al., 2005; Cole-
man et al., 2008; Giotis & Guruswami, 2006; Swamy, 2004)
has been devoted to approximating maxC agree(G, C) and
minC disagree(G, C). If all weights are ±1, there is a poly-
nomial time approximation scheme PTAS for max-agree
(Bansal et al., 2004; Giotis & Guruswami, 2006) and a 2.5-
approximation for min-disagree (Ailon et al., 2008). If the
weights are arbitrary, there is a 0.7666-approximation for
max-agree (Swamy, 2004) and an O(log n) approximation
for min-disagree (Demaine et al., 2006). If there is an up-
per bound k on the number of clusters in C and all weights
are ±1, then a PTAS is known for both problems (Giotis &
Guruswami, 2006). However existing linear and semidefi-
nite approaches for min-disagree and max-agree on general
graphs require ω(npolylog n) memory even when the input
graph is sparse. In particular, the LP for min-disagree has
O(n2) variables and O(n3) constraints, while the current
SDP algorithms for max-agree require Ω(n2) space. These
typically do not fit in RAM for moderate values of n. There-
fore the problem has also been explored from the perspective
of avoiding convex programs (Bagon & Galun, 2011; El-
sner & Schudy, 2009), little formal analysis is known in
space constrained models (see also the tutorial (Bonchi et al.,
2014)).

Clustering and Graph Analysis in Data Streams.
Given the importance of clustering as a basic tool for analyz-
ing massive data sets, it is unsurprising that a considerable
effort has gone into designing clustering algorithms in the
relevant computational models. In particular, in the data
stream model we are permitted a limited number of passes
(ideally just one) over the data while using only limited
memory. This model abstracts the challenges in traditional
applications of stream processing such as network monitor-
ing and also leads to I/O-efficient external memory algo-
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Correlation Clustering in Data Streams

rithms. Naturally, for an algorithm to be of use in either
context it should also be fast, both in terms of the time to
process each stream and returning the final answer.

Classical clustering problems including k-median (Charikar
et al., 2003; Guha et al., 2000), k-means (Ailon et al., 2009),
and k-center (Charikar et al., 2004; Guha, 2009) have all
been studied in the stream model. For a recent survey of the
area, see Silva et al. (Silva et al., 2013). However, the first re-
sult for correlation clustering was only recently established;
Chierichetti et al. (Chierichetti et al., 2014) presented a
polynomial-time (3+ε)-approximation for min-disagree on
±1-weighted graphs using O(ε−1 log2 n) passes. Their ba-
sic approach yields both a MapReduce and semi-streaming
algorithm (Feigenbaum et al., 2005), i.e., a streaming al-
gorithm that uses Θ(npolylog n) memory. Using space
roughly proportional to the number of nodes can be shown
to be necessary for solving many natural graph problems
including, it will turn out, correlation clustering. For a re-
cent survey of the semi-streaming algorithms and graph
sketching see McGregor (McGregor, 2014).

1.1. Our Techniques and Results

We initiate a formal study of correlation clustering in the
data stream model. We start by presenting three basic data
structures for the agree and disagree query problems where
a partition C is specified at the end of the stream, and
the goal is to return an approximation of agree(G, C) or
disagree(G, C). These data structures can be constructed
in the semi-streaming model and can be queried in Õ(n)
time. They are based on linear sketches and incorporate
ideas from recent work on constructing graph sparsifiers via
linear sketches (Ahn et al., 2012b; Kapralov et al., 2014). A
direct application of these data structures is that it is possible
to (with high probability) (1+ ε)-approximate min-disagree
on±1-weighted graphs and max-agree on arbitrary weights
in the semi-streaming model if we are permitted exponen-
tial post-processing time. However, our primary use of
these data structures will be as primitives in the following
polynomial-time approximation algorithms:

1. Maximizing Agreements: We present a single-pass
semi-streaming algorithm that returns a (1 + ε)-
approximation on bounded-weight graphs (see Sec-
tion 2.2) and a 0.7666-approximation on graphs with
arbitrary weights (see Section 3.1).

2. Minimizing Disagreements: We present a single-pass
O(log |E−|)-approximation algorithm on graphs with
arbitrary weights (see Appendix A). The algorithm
uses Õ(|E−|+ n) space, where E− is the set of nega-
tive weight edges. We prove a matching lower bound
on the required space up to factors of poly(1/ε, log n)
(Lemma 9). At the same time, the multiplicative ap-

proximation factor is the best possible factor achievable
in polynomial time unless there are better algorithms
for the well known multi-cut problem1. Finally, in
Section 4 we present O(log log n)-pass algorithms for
±1-weighted graphs: the approximation factor is 1 + ε
when the number of clusters must be less than some
constant, while the factor is 3 in the general case. This
last result improves on the result by Chierichetti et
al. (Chierichetti et al., 2014)

In particular, our results fully resolve (in terms of match-
ing the best-known non-streaming approximation factors in
one-pass using small space) the problem of max-agree(G)
in the case of ±1 weights and arbitrary weights and
min-disagree(G) in the case of arbitrary weights.

Convex Programming in Small Space. While it may ap-
pear that we can use linear time SDPs to solve correlation
clustering, such an approach would mean that the “alphabet”
(the number of clusters in such a reduction) can be large
in the general case and a term polynomial in the alphabet
size appears in the linear time algorithms for constraint sat-
isfaction problems. Those approaches, as is, would require
Ω(n2) space. Using quadratic space for post-processing
would render the space saved when streaming meaningless!

We introduce several new ideas in solving the LP and SDP
for min-disagree and max-agree. For min-disagree we con-
sider a novel formulation as well as switch the role of
dual and primal formulations, where the new dual formu-
lation has a natural interpretation for min-disagree. We
apply primal-dual algorithms (multiplicative weight update
method, see (Arora et al., 2012) for a survey) to the new
primal. However the feasible solution of this primal will
not shed any light on a feasible (fractional) solution of
min-disagree which is the dual. We avoid all this by produc-
ing an integral solution for min-disagree and a proof that the
primal (fractional) is lower bounded by the integral solution
divided by the approximation factor.

We leave open the question of the space complexity of pro-
ducing a feasible fractional solution for min-disagree and
max-agree. For both we provide a direct integral solution
and avoid producing a fractional feasible solution. This is
in contrast to all previous work on small space algorithms
which produce an explicit fractional feasible solution for
the target problem (see (Ahn & Guha, 2013) and references
therein). We bypass producing such an explicit fractional
feasible solution using a general procedure that converts any

1In the multi-cut problem where we are given k terminal pairs
(si, ti) and the goal is to find the minimum cut that separates each
terminal pair. The best known approximation for this problem
is O(log k). Demaine et al. (Demaine et al., 2006) and Charikar
et al. (Charikar et al., 2005) provide approximation preserving
reductions from multicut to min-disagree.
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Correlation Clustering in Data Streams

rounding algorithm to an oracle for the multiplicative weight
update method (but applied to the dual for min-disagree).
We show that this approach works for the multicut prob-
lem as well. For the max-agree problem we do not switch
the primal and duals, but use the principles of that general
procedure to produce a simple, natural and efficient oracle.
Again in this case, we bypass producing a completely feasi-
ble fractional solution of max-agree. We expect this general
oracle construction idea to be of use for solving other lin-
ear and semidefinite programming problems in small space.
Due to the space constraints and the necessity to review sub-
stantial notation of the multiplicative weight update method
(which is mostly orthogonal from the correlation cluster-
ing problem) we relegate the discussion of min-disagree to
Appendix A. We discuss max-agree (which is shorter) and
show the simple oracle in Section 3.

1.2. Preliminary Definitions and Notation

Notation. We consider three types of weighted graphs: (a)
unit weights, where allwuv ∈ {−1, 1}, (b) bounded weights,
where all wuv ∈ [−w∗,−1] ∪ [1, w∗] for some constant
w∗ > 1, and (c) arbitrary weights where wuv ∈ R. We
denote the sets of positive-weight and negative-weight edges
by E+ and E− respectively and define G+ = (V,E+) and
G− = (V,E−). Let Γ+(v) denote the set of v’s neighbors
in G+. Let

min-disagree(G) = min
C

disagree(G, C)

max-agree(G) = max
C

agree(G, C) ,

and let min-disagreek(G) and max-agreek(G) be the corre-
sponding values when C ranges over only partitions with
at most k clusters. The nth Bell number, Bn ≤ nn, is the
number of possible partitions of n nodes.

Computational Model. The elements of the stream have
the form (uivi,∆i, s(uivi)) ∈

(
V
2

)
× R × {−1, 1} where∑

i:uivi=uv ∆i ≥ 0 for all uv. The stream then defines an
input graph where uv has weight:

wuv =

{
+
∑

i:uivi=uv ∆i if s(uv) = 1

−
∑

i:uivi=uv ∆i if s(uv) = −1

For example, if s(uv) = 1 then uv ∈ E+ and the weight of
uv can be incremented and decremented by stream updates
but will always satisfy wuv ≥ 0. Similarly for s(uv) = −1.
The input stream and all post-processing must be performed
in O(npolylog n) space. Unless indicated otherwise, the
algorithm is permitted only a single pass over the input
stream.

2. Basic Data Structures and Applications
We introduce three basic data structures that can be con-
structed with a single-pass over the input stream that defines
the weighted graph G. Given a query partition C, these data
structures return estimates of agree(G, C) or disagree(G, C).
Unfortunately, directly using these data structures to solve
the correlation clustering optimization problem would re-
quire exponential time or ω(npolylog n) space. Instead, we
will make more careful use of them to design more efficient
solutions. In this section, we present a short application of
each data structure that illustrates how these data structures
can be used as part of solving the optimization problem. We
will then develop these applications further in Sections 3
and 4.

2.1. First Data Structure: Bilinear Sketch

Consider first the standard correlation setting with a com-
plete graph with unit weights (wij ∈ {−1, 1}). Given such a
graph G and a clustering C define the matrices MG and MC

where:
mG

ij = max(0, wij)

mCij =

{
0 if i and j are separated in C
1 if i and j are not separated in C

and observe that the (squared) matrix distance induced by
the Frobenius norm gives exactly disagree(G, C) = ‖MG−
MC‖2F =

∑
ij(m

G
ij−mCij)2. To efficiently estimate ‖MG−

MC‖2F when C is not known apriori, we can repurpose the
bilinear sketch approach of Indyk and McGregor (Indyk &
McGregor, 2008):

1. Let α ∈ {−1, 1}n and β ∈ {−1, 1}n be indepen-
dent random vectors whose entries are 4-wise inde-
pendent, and in a single pass over the input compute
Y =

∑
ij∈E+ αiβj .

2. Given query partition C = {C1, C2, . . .}, return X =(∑
`

(∑
i∈C`

αi

) (∑
i∈C`

βi
)
− Y

)2
.

Analysis. We first show that the time to query a specific
clustering is Õ(n) rather than Õ(n2). Observe that the
sketch permits the range-efficient update of coordinates
corresponding to an a×b combinatorial rectangle in Õ(a+b)
time. A cluster Ci ∈ C, on ni nodes, corresponds to an
ni × ni combinatorial rectangle in MC , and hence the total
query time is Õ(

∑
i ni) = Õ(n) as claimed. We next argue

that repeating the above scheme a small number of times in
parallel yields a good estimate of disagree(G, C). Bounds
on the expectation and variance of the estimate follow from
(Braverman et al., 2010; Indyk & McGregor, 2008):

Lemma 1. For each {fij}i,j∈[n], E
[
(
∑

i,j αiβjfij)
2
]

=∑
i,j f

2
ij and V

[
(
∑

i,j αiβjfij)
2
]
≤ 9

(∑
i,j f

2
ij

)2
.
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Correlation Clustering in Data Streams

Applying the above lemma to fij = mG
ij − mCij es-

tablishes that E [X] = disagree(G, C) and V [X] ≤
9(disagree(G, C))2. Hence, running O(ε−2 log δ−1) paral-
lel repetitions of the scheme and averaging the results appro-
priately2 yields a (1± ε)-approximation for disagree(G, C)
with probability at least 1− δ.

Theorem 2. For unit weights, there exists a
O(ε−2 log δ−1 log n)-space algorithm for the disagree
query problem. Each positive edge is processed in Õ(ε−2)
time, while the query time is Õ(ε−2n).

The next simple corollary follows by setting δ = 1/(nBn)
and using the above data structure to evaluate allBn possible
node-partitions.

Corollary 3. For unit weights, there exists an exponential-
time, single-pass stream algorithm, using Õ(ε−2n)
space, that with high probability (1 + ε) approximates
min-disagree(G).

In subsequent sections we restrict focus on polynomial-time
algorithms, however we note the above simple algorithm
is already space-optimal. Furthermore, the restriction to
unit weights was essential since any algorithm for general
weights requires Ω(n2) space. See Appendix D for the proof
of this and numerous subsequent theorems.

Theorem 4. A one-pass stream algorithm that tests whether
min-disagree(G) = 0, with probability at least 9/10, re-
quires Ω(n2) bits if weights are arbitrary, and requires Ω(n)
bits even with unit weights.

Application to Cluster Repair. Consider the Cluster Re-
pair problem (Gramm et al., 2005), in which we are
promised min-disagree(G) ≤ k for some constant k. There
is a simple polynomial-time application of the above data
structure, as we can narrow down the number of possible
clusterings to poly(n):

1. Construct a spanning forest F of G+ using the Õ(n)-
space dynamic graph algorithm due to Ahn et al. (Ahn
et al., 2012a). Let CF be the node-partition correspond-
ing to the connected components of F .

2. Let F1, F2, . . . be all the forests formed by deleting at
most k edges from F . Let CFi

be the node-partition
corresponding to the connected components of Fi.

Lemma 5. The optimal partition of G is a refinement
of CF and a coarsening of some CFi; there are at most
O
(
(n(k + 1))k+1

)
such partitions.

2Specifically, take the standard approach of partitioning the
estimates into O(log δ−1) groups, each of size O(ε−2). With
constant probability, the mean of each group is within a 1±ε factor;
we finally return the median of the resulting group estimates.

Therefore, setting δ = O((n(k + 1))−(k+1)) in Theorem 2
yields the following theorem.

Theorem 6. For unit weight graphs with
min-disagree(G) ≤ k, there exists a poly-time data-
stream algorithm using Õ(n + kε−2) space that (1 + ε)
approximates min-disagree(G) with high probability.

2.2. Second Data Structure: Sparsification

The next data structure is based on graph sparsification and
works for arbitrarily weighted graphs. A sparsification of
graph G is a weighted graph H such that the weight of
every cut in H is within a 1 + ε factor the weight of the
corresponding cut in G. A celebrated result of Benczür and
Karger (Benczúr & Karger, 1996) shows that the size of H
is at most Õ(nε−2). A recent result shows that this can be
constructed in the streaming model:

Theorem 7 ((Ahn et al., 2012b)). There is a single-pass
semi-streaming algorithm that returns a sparsification using
space Õ(nε−2) and time Õ(m).

We next show that that a sparsifier yields an estimate of
agree(G, C) or disagree(G, C) for every partition C.

Lemma 8. Let H+ and H− be sparsifications of G+

and G− such that all cuts are preserved within factor
(1 ± ε/3), and let H = H+ ∪ H−. For every cluster-
ing C, agree(G, C) = (1 ± ε)agree(H, C) ± εw(E+) and
disagree(G, C) = (1± ε)disagree(H, C)± εw(E−).

Note that max-agree(G) ≥ w(E+) by considering the triv-
ial all-in-one-cluster partition. Therefore, any near-optimal
multiplicative solution for max-agree(H) is also a near-
optimal multiplicative approximation for max-agree(G).
We will use this fact in Section 3.1. A weaker result holds
for min-disagree that we will use in Appendix A: Given the
Õ(n) positive weights in H+ and all |E−| negative weight
we can (1 + ε)-approximate disagree(G, C) for every parti-
tion C including the partition that realizes min-disagree(G).
The following lemma establishes that this approach is essen-
tially optimal.

Lemma 9. For arbitrary weights, any stream algorithm that
determines whether min-disagree(G) = 0 with probability
at least 9/10 requires Ω(n+ |E−|) bits of space.

Application to Maximizing Agreements in Unit Weight
Graphs. In Section 3.1, we develop a poly(n)-time
stream algorithm based on the sparsification construction.
That algorithm will returns a 0.766 approximation for
max-agree when G has arbitrary weights. However, in the
case of unit weights, a RAM-model PTAS for max-agree is
known (Bansal et al., 2004; Giotis & Guruswami, 2006). It
would be unfortunate if, by approximating the unit-weight
graph by a weighted sparsification, we lost the ability to
return a 1± ε approximation in polynomial time.
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We resolve this as follows. We emulate part of an algorithm
by Giotis and Guruswami (Giotis & Guruswami, 2006) for
max-agreek using a single pass over the stream3. In their al-
gorithm, the nodes are partitioned into m = O(1/ε) groups
V1, V2, . . . , Vm, each of size O(εn), and for each Vi we
draw a sample of r = poly(1/ε, k, log 1/δ) nodes Si from
V \Vi. Using the weights on edges between each Si and Vi,
we generate all possible (Br)m partitions. The required
sampling can be performed simultaneously with the con-
struction of the sparsifier. Then, at the end of the stream, the
possible partitions are generated and we use the graph spar-
sifier to find the best of these partitions. See Appendix B for
further details and a generalization to the case of bounded
weights.

Theorem 10. For bounded weight inputs, there ex-
ists a poly-time semi-streaming algorithm that (1 + ε)-
approximates max-agree(G) with high probability.

2.3. Third Data Structure: Node-Based Sketch

In this section we develop a data structure that supports
queries to disagree(G, C) for arbitrarily weighted graphs
when C is restricted to be a 2-partition (a standard clustering
paradigm). For each node i, define the vector, ai ∈ R(n

2),
indexed over

(
[n]
2

)
, where the only non-zeros are:

aiij =


wij/2 if ij ∈ E−

wij/2 if ij ∈ E+, i < j

−wij/2 if ij ∈ E+, i > j

Lemma 11. For a two-partition C = {C1, C2},
disagree(G, C) = ‖

∑
`∈C1

a` −
∑

`∈C2
a`‖1.

Hence, we use the `1-sketching result of Kane et al. (Kane
et al., 2010) to compute a random linear sketch of each ai.

Theorem 12. For arbitrary weights and query partitions
that contain two clusters, to solve the disagree query prob-
lem, there exists an O(ε−2n log δ−1 log n)-space algorithm.
The query time is O(ε−2n log δ−1 log n).

It is natural to ask whether this approach can be extended to
queries C where |C| > 2. The following lemma proves that
this is unfortunately not the case.

Lemma 13. When |C| = 3, a data structure that returns a
multiplicative estimate of disagree(G, C) with probability
at least 9/10, requires Ω(n2) space.

Application to Two-Center Min-Disagreement Cluster-
ing with Bounded Weights. We apply the above node-
based sketch in conjunction with another algorithm by

3Setting k = O(1/ε) is sufficient to yield a (1 + ε)-
approximation for the case when the number of clusters is un-
restricted (Bansal et al., 2004).

Giotis-Guruswami, this time for min-disagree2. Their al-
gorithm samples r = poly(1/ε) · log n nodes S and using
the weights of the edges incident on S generates 2m−1 pos-
sible partitions. Appendix B describes the generalization
of that algorithm to the bounded weights case, and other
implementation details. The sampling of S and the incident
edges can be performed using one-pass and O(nr log n)
space. We then find the best of these possible partitions in
post-processing using the above node-based sketches.

Theorem 14. For bounded weight inputs, there ex-
ists a poly-time semi-streaming algorithm that (1 + ε)-
approximates min-disagree2(G) with high probability.

3. Max Agree in General Weighted Graphs
In this section, we present a 0.7666(1− ε)-approximation
algorithm for max-agree. In the RAM model, there are
algorithms for max-agreebased on semi-definite program-
ming (Charikar et al., 2005; Swamy, 2004). Of relevance,
Swamy developed a 0.7666-approximation algorithm based
on this SDP:

max 1
2

[∑
(i,j)∈E+ wij(‖xi‖2 + ‖xj‖2 − ‖xi − xj‖2)

+
∑

(i,j)∈E− |wij |‖xi − xj‖2
]

s.t. ‖xi‖2 = 1 for all i ∈ V
xi · xj ≥ 0 for all i, j ∈ V

(SDPMA)
If two vertices, i and j, are in the same cluster, their corre-
sponding vectors xi and xj will coincide, so ‖xi−xj‖ = 0;
on the other hand, if they are in different clusters, their
vectors should be orthogonal.

To be space efficient, we apply Swamy’s algorithm to the
semi-streaming model along with the SDP feasibility algo-
rithm by Steurer (Steurer, 2010). The outline is as follows.

1. Sparsify the graph, preserving agreements within fac-
tor 1± δ, using m′ = Õ(nδ−2) edges (Section 2.2).

2. Solve SDPMA approximately, which requires a separa-
tion oracle (Section 3.1) that finds a set of violated con-
straints. This involves guessing the optimal value of the
SDP, α. Note that it is trivial to find a 1

2 -approximation
of the maximum agreement using a random partition
of the graph. Letting Ws be the total weight of edges
in H , the sparsified graph, we perform binary search
over α approximated to powers of (1 + δ)Ws. This
increases the running time by a O(log δ−1) factor.

With this oracle, we do not guarantee xi ·xj ≥ 0 in the
fractional solution: we only guarantee xi · xj ≥ −δ.
Ensuring xi · xj ≥ 0 appears to be difficult (or require
a substantially different oracle).

3. Even though the standard rounding algorithm (Swamy,
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2004) requires xi ·xj ≥ 0, we show in Section 3.1 how
to round the fractional solution with xi · xj ≥ −δ.

Theorem 15. There is a one-pass 0.7666(1 − ε)-
approximation algorithm for the maximizing agreements
problem in the semi-streaming model that runs in Õ(m +
nε−8) time.

3.1. The SDP Feasibility Algorithm

Steurer’s SDP feasibility algorithm (Steurer, 2010) is based
on the matrix multiplicative-weights method by Arora and
Kale (Arora & Kale, 2007). We use the notation of both
papers for the canonical formulation of a decision SDP.

Definition 1. For matrices A,B, let A ◦ B denote∑
i,j AijBij . Let A � 0 denote that A is (positive)

semidefinite, and let A � B denote that A−B is (positive)
semidefinite. A semidefinite decision (denoted by ?) problem
is in canonical form if it can be written as:

?C◦X ≥ α , Aj◦X ≤ bj for all j , X � 0 ,

where C ◦X ≥ α is a special constraint that corresponds
to the (maximization) objective value of the SDP. We denote
the set of the feasible solutions by X .

In SDPMA the vectors xi define the semidefinite matrix X:
Xij = xi ·xj . For every decision SDP in the canonical form,
the feasibilty algorithm consists of multiple iterations of two-
party game. In each iteration, an oracle of the feasibility
algorithm is given a candidate X and does exactly one of
the following:

• Either: Declares the SDP feasible and returns a feasi-
ble (either fractional or integral) solution;

• Or: Returns a hyperplane (A, b) that separates X from
a feasible region.

If the oracle returns a feasible solution, the process stops;
otherwise, it updates X (we use Steurer’s update proce-
dure (Steurer, 2010)) and continues to the next iteration.
If there exists a feasible solution, the sequence of candi-
dates (the Xs) keeps moving toward the feasible region, and
eventually the oracle cannot find a suitable separating hyper-
plane and therefore returns an intended solution to the SDP.
Formally, we have the following definitions and theorem.

Definition 2. Define di =
∑

(i,j) |wij | and
∑

i di = 2W .
Let D be the diagonal matrix with Dii = di/2W .

Definition 3. Let X be the set of feasible solutions of some
SDP. Suppose that given a candidate X the separation ora-
cle returns a hyperplane (A, b) (if it returns a hyperplane).
Given nonnegative δ and ρ, the separation oracle is defined
to be:

1. δ-separating iff A ◦X ≤ b− δ and A ◦X′ ≥ b for all
X′ ∈ X , and

2. ρ-bounded iff −ρD � A− bD � ρD ,

where A � B is the shorthand for A ◦ Y ≤ B ◦ Y for
every positive semidefinite Y.

Theorem 16. If X is non-empty, the oracle outputs a feasi-
ble (fractional or integral) solution within O((ρ2 log n)/δ2)
iterations using Steurer’s weight update procedure (Steurer,
2010).

The update procedure (Steurer, 2010) maintains (and de-
fines) the candidate vector X implicitly. In particular it
uses matrices of dimension n× d, in which every entry is a
(scaled) Gaussian random variable. The algorithm also uses
a precision parameter (degree of the polynomial approxima-
tion to represent matrix exponentials) r. Assuming that TM
is the time for a multiplication between a returned A and
some vector, the update process computes the tth X in time
O(t·r ·d·TM ), a quadratic dependence on t in total. We will
ensure that any returned A has at most m′ nonzero entries,
and therefore TM = O(m′). The space required by the algo-
rithm is the space required to represent a linear combination
of the matrices A which are returned in the different itera-
tions. In the following we show that ρ = O(1/δ) and using
Theorem 16 the total number of iterations is Õ(δ−4). For
our purposes, d = O((log n)/δ2), r = O(log(1/δ)), and
TM = O(m′), giving us a Õ(nδ−10) time and Õ(nδ−2)
space algorithm.

Space-Time Tradeoffs and Open Questions. Unlike the
general X used in Steurer’s approach, in our oracle the X is
used in a very specific way by the Oracle. In particular, we
only need to test whether (i) Xij < −δ, (ii) Xii ≥ 1 + δ,
(iii) Xii ≤ 1− δ, and (iv) whether a linear function of Xij

is at most (1− 4δ)α. Therefore we can use L2 sketches for
the linear combination of the returned matrices A, which
defines the implicit representation of the n vectors xi that de-
fine X. The running time of this type of oracle can be made
Õ(m′δ−2) for every iteration instead of the previous depen-
dence on the number of previous iterations (Steurer, 2010).
The oracle first estimates all xi ·xi, and all xi ·xj for (i, j) in
the sparsified graph, and then performs the computation as
denoted by Algorithm 1. Therefore the running time would
reduce to O(δ−4) times Õ(m′δ−2) which is Õ(nδ−8).

However for two different iterations t, t′ even though the
X(t),X(t′) are related, it is easiest to sketch them inde-
pendently which implies that the number of sketches will
be Õ(δ−4) (the iterations) times Õ(m′δ−2) (size of sketch).
The space required is therefore also Õ(nδ−8). It appears
that the dependence across the iterations is mild and it may
be possible to use O(m′δ−2) space. This leaves open the
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question of determining the exact space-versus-running-
time tradeoff. We now discuss the Oracle and the rounding
algorithms.

The Oracle The Oracle is proviced in Algorithm 1. This
is a slight alteration of the general procedure in Algorithm 3
in Appendix Al here we are using all the violated constraints
instead of the single constraint in Algorithm 3. However the
overall structure is exactly the same.

Algorithm 1 Oracle for SDPMA.
1: For the separating hyperplane, we only describe non-

zero entries in A. Recall that we have a candidate X
where Xij = xi · xj .

2: Let S1 = {i : ‖xi‖2 ≥ 1 + δ} and ∆1 =
∑

i∈S1
di.

3: Let S2 = {i : ‖xi‖2 ≤ 1− δ} and ∆2 =
∑

i∈S2
di.

4: Let S3 = {(i, j) : xi · xj < −δ} and ∆3 =∑
(i,j)∈S3

|wij |.
5: if ∆1 ≥ δα then
6: Let Aii = −di/∆1 for i ∈ S1 and b = −1. Return

(A, b).
7: else if ∆2 ≥ δα then
8: Let Aii = di/∆2 for i ∈ S2 and b = 1. Return

(A, b).
9: else if ∆3 ≥ δα then

10: Let Aij = wij/∆3 for (i, j) ∈ S3 and b = 0. Return
(A, b).

11: else
12: Ignore all nodes in S1 and S2 and all edges in S3.

Let C′ be the matrix that corresponds to the objective
function of the modified graph G′.

13: if C′ ◦X < (1− 4δ)α then
14: Let A = C′/α and b = 1− 3δ. Return (A, b).
15: else
16: Round X, as described in Section 3.1, and return

the rounded solution.

Lemma 17. Algorithm 1 is δ-separating.

Proof. For line 3.1, A ◦ X ≤
∑

i∈S1
−di(1 + δ)/∆1 =

−1 − δ, since ‖xi‖2 ≥ 1 + δ for all i ∈ S1. On the
other hand, for a feasible X′, ‖x′i‖2 = 1 for all i. Hence
A ◦ X′ =

∑
i∈S1
−di/∆1 = −1. This proves that the

oracle is δ-separating when it returns from line 3.1. For
lines 3.1 and 3.1, the proof is almost identical.

For line 3.1, we do not use the violated constraints; instead
we use C′ to construct A, and show that C′ ◦X′ ≥ (1 −
3δ)α. We start from the fact that C ◦ X′ ≥ α, since X′

is feasible for SDPMA. By removing all nodes in S1, we
remove all edges incident on the removed nodes. The total
weight of removed edges is bounded by ∆1, which is this
case is less than δα. Similarly, we lose at most δα for each
of S2 and S3. Hence, the difference between C′ ◦X′ and

C ◦X′ is bounded by 3δα, and so C′ ◦X′ ≥ (1 − 3δ)α
which implies A ◦ X′ ≥ 1 − 3δ. Therefore we have δ
separation because, A ◦X = C′ ◦X/α < 1− 4δ.

Lemma 18. Algorithm 1 is ρ-bounded for ρ = O(1/δ).

Proof. Since |b| ≤ 1 in each case, to prove −ρD �
A − bD � ρD, it suffices to show that for every positive
semidefinite Y, |A ◦Y| = ρD ◦Y. For line 3.1, the proof
is straightforward. To start, A is a diagonal matrix where
|Aii| = di/∆1 ≤ di/(δα). On the other hand, Dii =
di/2W , while α ≥ W/2, so we have |Aii| = O(1/δ)Dii

which proves that |A ◦Y| = O(1/δ)D ◦Y. The proof is
identical for line 3.1.

For lines 3.1 and 3.1, we use the fact that yi · yj ≤ ‖yi‖2 +
‖yj‖2 for every pair of vectors yi and yj . Therefore for
Yij = yi · yj , we have at line 3.1,

|A ◦Y| =
∑

(i,j)∈S3

|wij |
∆3

Yij

≤
∑

(i,j)∈S3

|wij |
∆3

(‖yi‖2 + ‖yj‖2)

=
1

∆3

∑
i

‖yi‖2
∑

j:(i,j)∈S3

|wij |

≤ 1

∆3

∑
i

di‖yi‖2

=
1

∆3

∑
i

2WDiiYii =
2W

∆3
D ◦Y ,

which implies |A ◦Y| ≤ O(1/δ)D ◦Y given α ≥ W/2
and ∆3 ≥ δα. For line 3.1,

A ◦Y =
1

α
C′ ◦Y

=
1

2α

 ∑
(i,j)∈E+|G′

2wijYij +
∑

(i,i)∈E−|G′

|wij |(Yii + Yjj − 2Yij)


≤ 1

2α

∑
(i,j)∈G′

2|wij |(Yii + Yjj) ≤
1

α

∑
i

diYii =
2W

α
D ◦Y

which implies that A ◦Y = O(1)D ◦Y. Summarizing,
Algorithm 1 is O(1/δ)-bounded.

Rounding the Fractional Solution. The following
Lemma proves the rounding algorithm which makes the
overall framework possible.

Lemma 19. If Algorithm 1 returns a clustering solution, it
has at least 0.7666(1−O(δ))α agreements.

Proof. We show that the rounding algorithm returns a clus-
tering with at least 0.7666(1 − O(δ))C′ ◦ X agreements.
Combined with the fact that C′ ◦X > (1− 4δ)α (line 3.1),
we obtain the desired result.
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Since we deal with C′ instead of C, we can ignore all
nodes and edges in S1, S2, and S3. We first rescale the
vectors in X to be unit vectors. Since all vectors that are not
ignored (not in S1 nor S2) have length between 1−O(δ) and
1 +O(δ) (since we take the square root), this only changes
the objective value by O(δwij) for each edge. Hence the
total decrease is bounded by O(δW ) = O(δα).

We then (1) first change the objective value of edges (i, j)
with −δ < xi · xj < 0 by ignoring them, and only then
(2) consider fixing the violated constraints xi · xj < 0 to
produce a feasible or integral solution.

Step (1) decreases the objective value by at most δ|wij | for
each negative edge. Again, the objective value decreases by
at most O(δα). For step (2) we use Swamy’s rounding algo-
rithm (Swamy, 2004), which obtains a 0.7666 approxima-
tion factor. The constraint xi · xj ≥ 0 required by Swamy’s
algorithm is not satisfied for some edges. However, the
rounding algorithm is based on random hyperplanes and
the probability that xi and xj are split by a hyperplane only
increases as xi · xj decreases. For positive edges, we al-
ready accounted for this in step (1) when the value of the
edge was made 0. For negative edges, the probability that i
and j land in different clusters only increases by having
negative xi · xj , but again, the contribution to the objective
is still 0. Therefore, we obtain a clustering that has at least
0.7666(1−O(δ))C′ ◦X agreements.

4. Multipass Algorithms
In this section, we present O(log log n)-pass algorithms for
min-disagree on unit weight graphs where either the number
of clusters is fixed or unrestricted. The fixed number of
clusters is dicussed in Appendix C.

4.1. Minimizing Disagreements for Unit Weights

Consider the following 3-approximation algorithm for
min-disagree on unit-weight graphs due to Ailon et
al. (Ailon et al., 2008):

1: Index the nodes V as v1, . . . , vn in a random order.
Let U ← V be the set of “uncovered” nodes.

2: for i = 1 to n do
3: if vi ∈ U then
4: Let vi be “chosen” and define Ci ← {vi} ∪ {vj ∈

U : vivj ∈ E+} and let U ← U \ Ci.
5: else
6: Ci ← ∅.
7: Return the collection of non-empty sets Ci.

It may appear that emulating the above algorithm in the
data stream model requires Ω(n) passes, since determining
if vi should be chosen depends on whether vj is chosen

for all j < i. However, we will show that O(log logn)-
passes suffice. This improves upon a result by Chierichetti
et al. (Chierichetti et al., 2014), who developed a modifi-
cation of the algorithm that used O(ε−1 log2 n) streaming
passes and returned a 3 + ε-approximation rather than a 3-
approximation. Our improvement is based on the following
lemma:
Lemma 20. Define F+

t,t′ = {vivj ∈ E+, i, j ∈ Ut, t <
i, j ≤ t′} where Ut is the set of uncovered nodes after itera-
tion t of the above algorithm. Then, with high probability,
|F+

t,t′ | ≤ 5 · lnn · t′2/t.

Proof. Fix an arbitrary node v ∈ Vt,t′ = {vt+1, . . . , vt′}.
For i ∈ [t], define di = |Ui−1 ∩ Γ+(v)}| to be the number
of uncovered neighbors of v immediately before the ith
iteration of the algorithm. By the principle of deferred
decisions, the probability that vi ∈ Γ(v) is an uncovered
neighbor of v at iteration i is at least di/t′.

So, either there is some i ∈ [t] for which di drops below
10 · lnn · t′/t or the probability that no neighbor of v is
chosen as a center is at most (1 − (10 · lnn · t′/t)/t′)t ≤
1/n10. Hence, with high probability each uncovered node
in Vt,t′ has at most 10 · lnn · t′/t uncovered neighbors in
Vt,t′ . Remembering that nodes are counted twice, the bound
follows by summing over all t′ nodes.

Semi-Streaming Algorithm. Our semi-streaming algo-
rithm proceeds as follows. For j ≥ 1 let tj = (2n)1−1/2

j

and during the (2j − 1)-th pass we collect all edges in
F+
tj−1,tj and during the (2j)-th pass we can determine Utj .

Note that at the end of the (2j)-th pass we are able to simu-
lated the first tj iterations of Ailon et al.’s algorithm. Since
tj ≥ n for j = 1 + log log n, our algorithm terminates after
O(log log n) passes.
Theorem 21. On a unit-weighted graph, there exists a
O(log log n)-pass semi-streaming algorithm that returns
with high probability a 3-approximation to min-disagree.

Proof. For the odd numbered passes, by Lemma 20, the
space is at most

5 · lnn · t2j/tj−1 = 5 · lnn · 2n = O(n log n) ,

with high probability. The additional space used in the even
numbered passes is trivially bounded by O(n log n). The
approximation factor follows from the analysis of Ailon et
al. (Ailon et al., 2008).
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