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Data, S, in 
the Cloud 

⊥ F(S) 

Conversation 

Conclusion 
 

F(S) 

F(S) = ? 

Our Model – Streaming Interactive Proofs 

Verifier Helper 

Completeness 
An honest helper will ALWAYS 
convince the verifier 

Soundness 
A dishonest helper will ALMOST 
NEVER trick the verifier 



Costs in SIPs 

Interactivity Number of rounds 

Verifier Memory Working memory of the verifier 

Communication Total communication sent in both directions  

Verifier’s 
Streaming Cost  

Computational complexity of streaming in S 

Verifier’s 
Checking Cost  

Computational complexity of streaming the 
conversation 

Helper 
Overhead  

Additional work required by the helper 
beyond solving the problem 



What Costs to Trade Off 
“Non-interactive” costs 

Verifier Memory 

Verifier's Streaming Cost 

Helper Overhead 

Rule of thumb: 

“Interactive” costs 

Communication 

Interactivity 

Verifier's Checking Cost 

Our work attempts to see which cost is best to relax in order to 
minimize the total time of the protocol. 
 
We focus on linear algebra, as this is a primitive for many problems, 
and yields interesting examples. 

Decreasing a non-interactive cost usually increases 
some interactive cost, and vice-versa. 



Warm-up: Inner Product 

Method This Work 
[CTY11] 

Binary Sum-Check 
[CMT12]  

FFT and LDEs 

“Non-
interactive” 

costs 

Total Communication 𝑑𝑛
1
𝑑  log 𝑛 𝑛 

Verifier Checking Cost 𝑑𝑛
1
𝑑  log 𝑛 𝑛 

Rounds 𝑑 − 1 log 𝑛 1 

“interactive” 
costs 

Helper Overhead 𝑛 log 𝑛 𝑛 log 𝑛 𝑛 log 𝑛 

Verifier Streaming Cost 𝑑𝑛1+
1
𝑑  𝑛 log 𝑛 𝑛 𝑛 

Verifier Memory 𝑑 + 𝑛
1
𝑑  log 𝑛 𝑛 

For two vectors of length 𝑛, ignoring constant factors. 

Note that if we set 𝑑 = 2, we get [CMT12], and if we set 𝑑 = log 𝑛 we get [CTY11]. 
 

𝑛
1
log 𝑛 = 2 

𝑑 is a variable parameter from 1 to log 𝑛 determining the number of rounds. 



Matrix Multiplication 

Method This Work 
[Thaler13] 

Binary Sum Check 
[CH18] 

Fingerprints 

“Non-
interactive” 

costs 

Total Communication 𝑑𝑛
2
𝑑  log 𝑛 𝑛2 

Verifier Checking Cost 𝑛2 + 𝑑𝑛
2
𝑑  𝑛2 + log𝑛 𝑛2 

Rounds 𝑑 1 + log 𝑛 1 

“interactive” 
costs 

Helper Overhead 𝑛2 log 𝑛 𝑛2 log 𝑛 1 

Verifier Streaming Cost 𝑑𝑛2+
2
𝑑  𝑛2 log 𝑛 𝑛2 log 𝑛 

Verifier Memory 𝑑𝑛
2
𝑑  log 𝑛 1 

For two matrices of size 𝑛 × 𝑛, ignoring constant factors. 

𝑑 is a variable parameter from 1 to log 𝑛 determining the number of rounds. 



Motivation: Minimizing Total Time Taken 

Number of rounds considering only communication for Matrix Multiplication  
that decreases the total time to send all the data over all the rounds. 

Less interactivity, even with more communication reduces overall time! 

The question is now how much does this affect the other overheads? 



Solution: Low Degree Extensions! 
Consider a polynomial which passes through each data point 𝑖, 𝑣𝑖 .  

We index the data via a hypercube 𝑙 𝑑 and create the unique polynomial of 
degree 𝑙 in 𝑑 variables that passes through each data point. 

 

Problem: Given streaming access to two data sets, how 
can we check they’re the same (with high probability)? 

We can evaluate this LDE at a random point in 𝔽𝑑 
as we stream the data! 

LDEs share many useful properties, 

• The probability of two different vectors having 
the same LDE evaluation at a random point is 
very small 

• LDEs have linearity 

• They can be constructed in 𝑂 𝑛𝑙𝑑  time 

 

LDEs can be used with the powerful sum-
check protocol [LFKN92] to sum a function 
of the elements in a data set. 

LDEs are very useful for making efficient 
protocols for inner product and matrix 
multiplication that use 𝑑 = log𝑛 and 𝑙 = 2. 



Problem: Given 𝑢, 𝑣 ∈ 𝔽𝑛, how can we check the inner 
product 𝑢𝑇𝑣? [CTY11] 

[CTY11] uses LDEs with 𝑛 = 𝑙𝑑, we represent the 𝑑-variate LDE of 𝑢 by 𝑢  and 𝑣 by 𝑣 . We 
want to find 
 

𝑢𝑇𝑣 = 𝑢𝑖𝑣𝑖

𝑛

𝑖=1

=  ∙∙∙  𝑢 𝑘1, … , 𝑘𝑑  𝑣 𝑘1, … , 𝑘𝑑

𝑙−1

𝑘𝑑=0

𝑙−1

𝑘1=0

 

 
They use a well-known protocol called ‘sum-check’ [LFKN92], a 𝑑-round protocol in which 
the prover allows the verifier to check the following sum against a ‘secret’ constructed in 
the streaming phase 𝑢 𝑟1, … , 𝑟𝑑 𝑣 𝑟1, … , 𝑟𝑑 .  
 
The messages the prover sends are degree 2𝑙 polynomials, which the prover can create in 
time 𝑂 𝑛𝑙𝑑 . 



Problem: How were LDEs used to solve inner product? 
[CTY11] 

The protocol uses sum-check, this is a 𝑑-round protocol involving 𝑑 messages of 2𝑙 field elements.  

Classification Cost (ignoring constant factors) Explanation 

Interactivity 𝑑 𝑑 rounds 

Verifier Memory 𝑙 + 𝑑 Needs to store 𝑟, and 𝑙 evaluations of 𝑔𝑗 

Communication 𝑙𝑑 𝑑 messages of 2𝑙 field elements 

Verifier’s 
Streaming Cost  𝑑𝑛1+

1
𝑑  Evaluating 𝑢 𝑟1, … , 𝑟𝑑 𝑣 𝑟1, … , 𝑟𝑑  

Verifier’s 
Checking Cost  

𝑙𝑑 𝑙 evaluations of 𝑔𝑗, 𝑑 times 

Helper 
Overhead  

𝑛𝑙𝑑 Forming 𝑔𝑗 for 𝑗 in 1, 𝑑  

[CTY11] note that using 𝑙 = 2 and 𝑑 = log𝑛 minimizes many costs, but with the cost of maximum interactivity.   



Problem: How can we make [CTY11] variable-round 
without sacrificing Helper Overhead? 

[CMT12] introduced a non-interactive protocol that massively reduced the helper overhead to 
𝑛 log 𝑛 where the prover uses convolutions and fast fourier transforms. 
 
We generalize this result to variable round protocols, as well as implementing a ‘stop-short’ 
reduction in sum-check to allow the protocol to run in 𝑑 − 1 rounds. 
 
Note that even with this adaptation, the memory efficient method is to use 𝑑 = log𝑛. We aim to 
show experimentally that in practice, it’s often most time efficient to use as much memory as you 
have available. 
 
However, the main motivation behind this protocol is how we can use it as a primitive for other 
protocols. 



Problem: Vector-Matrix-Vector Multiplication 

A first example of how to use this primitive is a nifty algebraic trick for multiplying two 
vectors 𝑢, 𝑣 ∈ 𝔽𝑛 and 𝐴 ∈ 𝔽𝑛×𝑛 we can verify 𝑢𝑇𝐴𝑣 by considering 

𝑢𝑇𝐴𝑣 =  𝑢𝑖𝐴𝑖𝑗𝑣𝑗

𝑛

𝑗=1

𝑛

𝑖=1

= 𝑢𝑣𝑇 𝑣𝑒𝑐 ∙ 𝐴𝑣𝑒𝑐 

Where the subscript 𝑣𝑒𝑐 refers to a canonical transformation from a matrix to a vector. 

Using the inner product protocol on the LDEs of 𝐴 and 𝑢𝑣𝑇  gives us a protocol with 
communication and space costs O 𝑙2𝑑  and 𝑑 rounds. 

Note we can use the inner product protocol as we can construct 𝑢𝑣𝑇 (𝑟1, 𝑟2) using 
𝑢 𝑟1 𝑣 𝑟2 . 



Problem: Matrix Multiplication 

For matrices A, B ∈ 𝔽𝑛×𝑛 we will have to 
verify that a sent matrix is correct, not 
just a scalar.  

 

[Thaler13] uses LDEs for verification, and 
uses log 𝑛 rounds and the inner product 
definition of matrix multiplication.  

 

We use fingerprints in conjunction with 
our inner product protocol, however 
implement the outer-product definition 
of matrix multiplication. 

 

 

For a vector v ∈ 𝔽𝑛, the fingerprint 
of 𝑣 with respect to 𝑥 ∈𝑅 𝔽 is: 

𝑓𝑥 𝑣 =  𝑣𝑖𝑥
𝑖

𝑛−1

𝑖=0

 

Fingerprints have the property 
𝑓𝑥 𝑢

𝑇𝑣 = 𝑓𝑥𝑛 𝑢 𝑓𝑥 𝑣   [CH18]. 

 

We define fingerprints for matrices 
analogously. 



Problem: Matrix Multiplication 

For matrices A, B ∈ 𝔽𝑛×𝑛 we will have to verify that a sent matrix is correct, not just 
a scalar.  

Fingerprints are useful with the following identity 

 

𝑓𝑥 𝐴𝐵 =  𝑓𝑥𝑛 𝐴𝑖
↓ 𝑓𝑥 𝐵𝑖

→

𝑛

𝑖=1

= 
𝑓𝑥𝑛 𝐴1

↓

⋮
𝑓𝑥𝑛 𝐴𝑛

↓
∙ 𝑓𝑥 𝐵1

→ ⋯ 𝑓𝑥 𝐵𝑛
→  

 

To use our inner product protocol, the verifier simply needs to be able to find the 
LDE of these two vectors at a random point, which it can using the linearity of 
fingerprints and LDEs. 



Practical Analysis – Matrix Multiplication 

Classification Costs How we’ll time it 

Interactivity 𝑑 The latency between each machine × number of rounds × 2 

Verifier Memory 𝑑𝑛
2
𝑑  n/a 

Communication 𝑑𝑛
2
𝑑  The bandwidth to send all the messages × communication 

Verifier’s 
Streaming Cost  𝑑𝑛2+

2
𝑑  The time for the verifier to form the secret. 

Verifier’s 
Checking Cost  𝑛2 + 𝑑 + 𝑛

2
𝑑  The time to fingerprint the matrix, and then run the interactive protocol. 

Helper 
Overhead  

𝑛2 log 𝑛 The cost of producing the sum-check polynomials. 

Classification Costs How we’ll time it 

Interactivity 𝑑 The latency between each machine × number of rounds × 2 

Verifier Memory 𝑑𝑛
2
𝑑  n/a 

Communication 𝑑𝑛
2
𝑑  The bandwidth to send all the messages × communication 

Verifier’s 
Streaming Cost  𝑑𝑛2+

2
𝑑  The time for the verifier to form the secret. 

Verifier’s 
Checking Cost  𝑛2 + 𝑑 + 𝑛

2
𝑑  The time to fingerprint the matrix 

The time taken to run the 
interactive protocol 

Helper 
Overhead  

𝑛2 log 𝑛 The cost of producing the sum-check polynomials. 

Classification Costs How we’ll time it 

Interactivity 𝑑 The latency between each machine × number of rounds × 2 

Verifier Memory 𝑑𝑛
2
𝑑  n/a 

Communication 𝑑𝑛
2
𝑑  The bandwidth to send all the messages × communication 

Verifier’s 
Streaming Cost  𝑑𝑛2+

2
𝑑  

We will not time this, as it happens concurrently to seeing the data, which 
can happen at any point prior to the protocol starting. 

Verifier’s 
Checking Cost  𝑛2 + 𝑑𝑛

2
𝑑  The time to fingerprint the matrix 

The time taken to run the 
interactive protocol 

Helper 
Overhead  

𝑛2 log 𝑛 The cost of producing the sum-check polynomials. 



Practical Analysis – Matrix Multiplication 
Using bandwidth of 100Mbps 

And Latency of 20ms 
Interactivity Communication 

Verifier’s Checking 
cost 

Verifier’s Checking 
cost 

Helper 
overhead 

Matrix Size 
(𝑛 = 𝑙𝑑) 

l d 
Latency  

(ms) 
Bandwidth  

(ms) 
Fingerprinting AB 

(ms) 
Interactive Stage 

(ms) 
Forming messages 

(ms) 

212 

2 12 

8 4 

64 2 

216 

2 16 

16 4 

256 2 

218 

2 18 

8 6 

512 2 

Using bandwidth of 100Mbps 
And Latency of 20ms 

Interactivity 

Matrix Size 
(𝑛 = 𝑙𝑑) 

l d 
Latency  

(ms) 

212 

2 12 440 

8 4 120 

64 2 40 

216 

2 16 600 

16 4 120 

256 2 40 

218 

2 18 680 

8 6 200 

512 2 40 

Using bandwidth of 100Mbps 
And Latency of 20ms 

Interactivity Communication 

Matrix Size 
(𝑛 = 𝑙𝑑) 

l d 
Latency  

(ms) 
Bandwidth  

(ms) 

212 

2 12 440 0.014 

8 4 120 0.015 

64 2 40 0.041 

216 

2 16 600 0.019 

16 4 120 0.031 

256 2 40 0.163 

218 

2 18 680 0.022 

8 6 200 0.026 

512 2 40 0.328 

Using bandwidth of 100Mbps 
And Latency of 20ms 

Interactivity Communication 
Verifier’s Checking 

cost 

Matrix Size 
(𝑛 = 𝑙𝑑) 

l d 
Latency  

(ms) 
Bandwidth  

(ms) 
Fingerprinting AB 

(ms) 

212 

2 12 440 0.014 150 

8 4 120 0.015 150 

64 2 40 0.041 150 

216 

2 16 600 0.019 40000 

16 4 120 0.031 40000 

256 2 40 0.163 40000 

218 

2 18 680 0.022 600000 

8 6 200 0.026 600000 

512 2 40 0.328 600000 

Using bandwidth of 100Mbps 
And Latency of 20ms 

Interactivity Communication 
Verifier’s Checking 

cost 
Verifier’s Checking 

cost 

Matrix Size 
(𝑛 = 𝑙𝑑) 

l d 
Latency  

(ms) 
Bandwidth  

(ms) 
Fingerprinting AB 

(ms) 
Interactive Stage 

(ms) 

212 

2 12 440 0.014 150 0.009 

8 4 120 0.015 150 0.035 

64 2 40 0.041 150 0.043 

216 

2 16 600 0.019 40000 0.006 

16 4 120 0.031 40000 0.046 

256 2 40 0.163 40000 1.700 

218 

2 18 680 0.022 600000 0.006 

8 6 200 0.026 600000 0.030 

512 2 40 0.328 600000 6.400 

Using bandwidth of 100Mbps 
And Latency of 20ms 

Interactivity Communication 
Verifier’s Checking 

cost 
Verifier’s Checking 

cost 
Helper 

overhead 

Matrix Size 
(𝑛 = 𝑙𝑑) 

l d 
Latency  

(ms) 
Bandwidth  

(ms) 
Fingerprinting AB 

(ms) 
Interactive Stage 

(ms) 
Forming messages 

(ms) 

212 

2 12 440 0.014 150 0.009 0.23 

8 4 120 0.015 150 0.035 0.10 

64 2 40 0.041 150 0.043 0.11 

216 

2 16 600 0.019 40000 0.006 3.50 

16 4 120 0.031 40000 0.046 1.60 

256 2 40 0.163 40000 1.700 1.80 

218 

2 18 680 0.022 600000 0.006 14.10 

8 6 200 0.026 600000 0.030 6.30 

512 2 40 0.328 600000 6.400 7.80 



Practical Analysis – Matrix Multiplication 
Using bandwidth of 100Mbps 

And Latency of 20ms 
Interactivity Communication 

Verifier’s Checking 
cost 

Verifier’s Checking 
cost 

Helper 
overhead 

Matrix Size 
(𝑛 = 𝑙𝑑) 

l d 
Latency  

(ms) 
Bandwidth  

(ms) 
Fingerprinting AB 

(ms) 
Interactive Stage 

(ms) 
Forming messages 

(ms) 

212 

2 12 440 0.014 150 0.009 0.23 

8 4 120 0.015 150 0.035 0.10 

64 2 40 0.041 150 0.043 0.11 

216 

2 16 600 0.019 40000 0.006 3.50 

16 4 120 0.031 40000 0.046 1.60 

256 2 40 0.163 40000 1.700 1.80 

218 

2 18 680 0.022 600000 0.006 14.10 

8 6 200 0.026 600000 0.030 6.30 

512 2 40 0.328 600000 6.400 7.80 

This is independent of interactivity! 



Practical Analysis – Matrix Multiplication 
Using bandwidth of 100Mbps 

And Latency of 20ms 
Interactivity Communication 

Verifier’s Checking 
cost 

Verifier’s Checking 
cost 

Helper 
overhead 

Matrix Size 
(𝑛 = 𝑙𝑑) 

l d 
Latency  

(ms) 
Bandwidth  

(ms) 
Fingerprinting AB 

(ms) 
Interactive Stage 

(ms) 
Forming messages 

(ms) 

212 

2 12 440 0.014 150 0.009 0.23 

8 4 120 0.015 150 0.035 0.10 

64 2 40 0.041 150 0.043 0.11 

216 

2 16 600 0.019 40000 0.006 3.50 

16 4 120 0.031 40000 0.046 1.60 

256 2 40 0.163 40000 1.700 1.80 

218 

2 18 680 0.022 600000 0.006 14.10 

8 6 200 0.026 600000 0.030 6.30 

512 2 40 0.328 600000 6.400 7.80 

The latency dominates the other costs significantly, and this would still be the case even with a latency of 5ms. 
 
This clearly demonstrates the location of the time bottle-neck in this protocol.  



Interactivity and verifier memory 

• The time bottleneck is the latency between the 
verifier and the prover, dominating the other 
costs that decrease with increased interactivity. 

• This leads us to want to reduce the interactivity 
as much as the verifier’s memory (𝑂(𝑙2𝑑)) will 
let us. 

• For example, for 𝑛 = 218, optimality will likely 
be with a 6 round protocol. 

For a matrix of size 𝒏 = 𝟐𝟏𝟖 

𝒍 𝒅 𝒍𝟐𝒅 

2 18 72 

4 9 144 

8 6 384 

64 3 12288 

512 2 524288 



Closing Thoughts 

• For our applications, where the problem is highly structured, the 
interactive protocols are very efficient. 

• By adapting [CMT12]’s FFT protocol for binary sum-check to arbitrary sum-
check, we achieve faster protocols than previously possible. 

• We demonstrate how using certain applications are better with LDEs and 
some with fingerprints, and show some useful algebraic tricks to apply. 

• Latency is the dominant time bottleneck. 

• The most efficient protocol for the verifier will be to use as much memory 
as possible, even though the asymptotics say more interactivity is better. 

• A large cost for the verifier is the initial streaming phase. Additional work 
could be done to uncover efficiency tricks to find the secret. 

Any Questions? Email C.Hickey@warwick.ac.uk 


