Efficient Interactive Proofs
for Linear Algebra

Christopher Hickey Graham Cormode
University of Warwick

0

o1 1o 1085 1712 1790 1766 1703 1500
1657 1684 178 1846
1761 18
170 1273
1816 1200
182 132
1568 2
1260
1205
1321
1347
1373
1399
1425

218

244

1060
1086

1216
1242

1674
1700
1701

1036 1963 1990 2017 2044
1062 195 2016 2043 2070
10855 2015 202 2069 2006
014 2041
1005 1932 1050 198 2013 2040 2067 2001 2121 2148
1031 105 1965 2012 X030 2066 2093 2120 2147 2174

1065
0001087 1064 101
1036 1063 1090 1117
062 1089 1106 1143
950 1007 1034 1061 1088 1115 1142 1169 1196

1483 170
1469 1496
1306 1333 1360 1387 1414 1441 1468 1495 1

Our Model — Streaming Interactive Proofs

Data, S, in
the Cloud

<5

@
o

Verifier @E?

[ZEEEE2EN

o ° ° oo
y An honest helper will ALWAYS
Completeness . .
convince the verifier

Conclusion
A dishonest helper will ALMOST
NEVER trick the verifier

L)

Conversation

Soundness

Costs in SIPs

Interactivity Number of rounds
Data, S, in

the Cloud
Verifier Memory Working memory of the verifier

Communication Total communication sent in both directions

Conversation

Verifier’s
Streaming Cost

Computational complexity of streaming in S

Verifier’s Computational complexity of streaming the
Checking Cost conversation

Helper Additional work required by the helper
Overhead beyond solving the problem

What Costs to Trade Off

Verifier Memory Communication
Verifier's Streaming Cost Interactivity
Helper Overhead Verifier's Checking Cost

Rule of thumb: Decreasing a non-interactive cost usually increases
some interactive cost, and vice-versa.

Our work attempts to see which cost is best to relax in order to
minimize the total time of the protocol.

We focus on linear algebra, as this is a primitive for many problem:s,
and yields interesting examples.

Warm-up: Inner Product

For two vectors of length n, ignoring constant factors.

Method This Work fetriekl feiee]

Binary Sum-Check FFT and LDEs

“Non.- Total Communication dn'/a logn Jn
INCIET O \erifier Checking Cost dn'/d logn Jn
€OSES Rounds d—1 logn 1
Helper Overhead nlogn nlogn nlogn
“inti:)astt:zive" Verifier Streaming Cost dn1+1/ d nlogn nyn
Verifier Memory d+n'd logn Jn

d is a variable parameter from 1 to log n determining the number of rounds.

Note that if we set d = 2, we get [CMT12], and if we setd = logn we get [CTY11].

Matrix Multiplication

For two matrices of size n X n, ignoring constant factors.

[Thaler13] [CH18]

Method This Work

Binary Sum Check Fingerprints

“Non.- Total Communication dn’/d logn n?
INCIEL O \erifier Checking Cost n? + dn’/a n® +logn n
€OSES Rounds d 1+ logn 1
Helper Overhead n?logn n?logn 1

”int(ce;z;:;ive” Verifier Streaming Cost dn?*+°/a n®logn n*logn
Verifier Memory dn’/a logn 1

d is a variable parameter from 1 to log n determining the number of rounds.

Motivation: Minimizing Total Time Taken

10 20

n=2 n=2 n=2 30
50 50 50
45 45 45
40 40 40 4

35 35 35
%
2 30 ~ 30 2 30 3 =
E g g 2
o0 25 o 25 o0 25 =
£ = = -
R 20 A 20 P 20 E
2 =
15 15 15)

10 10 10

20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
Bandwidth (Mbps) Bandwidth (Mbps) Bandwidth (Mbps)

Number of rounds considering only communication for Matrix Multiplication
that decreases the total time to send all the data over all the rounds.

Less interactivity, even with more communication reduces overall time!

The question is now how much does this affect the other overheads?

Problem: Given streaming access to two data sets, how
can we check they’re the same (with high probability)?

Solution: Low Degree Extensions!
G0
@ - E Consider a polynomial which passes through each data point (i, v;).

/ﬁ\ We index the data via a hypercube [[]? and create the unique polynomial of
degree [in d variables that passes through each data point.

We can evaluate this LDE at a random point in [F¢
as we stream the data! LDEs can be used with the powerful sum-

check protocol [LFKN92] to sum a function

LDEs share many useful properties, ,
Y PTop of the elements in a data set.

* The probability of two different vectors having
the same LDE evaluation at a random point is

LDEs are very useful for making efficient
very small

protocols for inner product and matrix
* LDEs have linearity multiplication that use d = logn and [= 2.

* They can be constructed in O(nld) time

Problem: Given u, v € [F*, how can we check the inner
oroduct u! v? [CTY11]

[CTY11] uses LDEs with n = [%, we represent the d-variate LDE of u by & and v by ©#. We
want to find

S
~
<
|
M=

Il
=

L

-1 -1
- Z Z ks, o k) Bk, s k)
=0 kg=0

They use a well-known protocol called ‘sum-check’ [LFKN92], a d-round protocol in which
the prover allows the verifier to check the following sum against a ‘secret’ constructed in

the streaming phase i (ry, ..., 7)) U (1, ..., 74).

The messages the prover sends are degree 2[polynomials, which the prover can create in
time O(nld).

Problem: How were LDEs used to solve inner product?
[CTY11]

The protocol uses sum-check, this is a d-round protocol involving d messages of 21 field elements.

Classification Cost (ignoring constant factors) Explanation

Interactivity d d rounds

Verifier Memory [+d Needs to store 7, and [evaluations of g;
Communication ld d messages of 21 field elements
Verifier’s 141/ - ~

Streaming Cost dnt*/a Evaluating @i(ry, ..., rg) U(1q, ..., 7g)
verifier's ld [evaluations of g;, d times

Checking Cost i

Helper : -

Overhead nld Forming g; for jin [1,d]

[CTY11] note that using [= 2 and d = logn minimizes many costs, but with the cost of maximum interactivity.

Problem: How can we make [CTY11] variable-round
without sacrificing Helper Overhead?

[CMT12] introduced a non-interactive protocol that massively reduced the helper overhead to
nlogn where the prover uses convolutions and fast fourier transforms.

We generalize this result to variable round protocols, as well as implementing a ‘stop-short’
reduction in sum-check to allow the protocol to runin d — 1 rounds.

Note that even with this adaptation, the memory efficient method is to use d = logn. We aim to

show experimentally that in practice, it’s often most time efficient to use as much memory as you
have available.

However, the main motivation behind this protocol is how we can use it as a primitive for other
protocols.

Problem: Vector-Matrix-Vector Multiplication

A first example of how to use this primitive is a nifty algebraic trick for multiplying two
vectors u, v € F™ and A € F™™ we can verify u’ Av by considering

n n
ulAv = z z uiAijvj = (uvT)vec Ayec

i=1 j=1
Where the subscript . refers to a canonical transformation from a matrix to a vector.

Using the inner product protocol on the LDEs of A and uv” gives us a protocol with
communication and space costs O(1?d) and d rounds.

Note we can use the inner product protocol as we can construct uvT(rl,rz) using
ﬁ(ﬁ)ﬁ(?"z)-

Problem: Matrix Multiplication

For matrices A, B € F™*™ we will have to
verify that a sent matrix is correct, not
just a scalar.

[Thaler13] uses LDEs for verification, and
uses log n rounds and the inner product
definition of matrix multiplication.

We use fingerprints in conjunction with
our inner product protocol, however
implement the outer-product definition
of matrix multiplication.

For a vector v € F", the fingerprint

of v with respect to x1ER [Fis:
n_

fo@) =) v

i=0
Fingerprints have the property
fe(w'v) = fyn(w)f(v) [CH18].

We define fingerprints for matrices
analogously.

Problem: Matrix Multiplication

For matrices A, B € F™*™ we will have to verify that a sent matrix is correct, not just
a scalar.

Fingerprints are useful with the following identity

- fxn(AD
£AB) = Y fen(ADEB = (8 | RGBD) fBD)
i=1 fin(A)

To use our inner product protocol, the verifier simply needs to be able to find the
LDE of these two vectors at a random point, which it can using the linearity of
fingerprints and LDEs.

Practical Analysis — Matrix Multiplication

Interactivity d The latency between each machine X number of rounds X 2

Verifier Memory dnz/d n/a

Communication dnz/d The bandwidth to send all the messages X communication

Verifier’s dn2+2/d We will not time this, as it happens concurrently to seeing the data, which

Streaming Cost can happen at any point prior to the protocol starting.

Verifier’s 2 The time taken to run the
. 2 / The time to fingerprint the matrix . .

Checking Cost n®+dn’d Berp interactive protocol

Helper

2 : i .
Overhead n“logn The cost of producing the sum-check polynomials.

Practical Analysis — Matrix Multiplication

Using bandwidth of 100Mbps .. . Verifier’s Checking | Verifier’s Checking Helper
Interactivity Communication
And Latency of 20ms cost cost overhead

0.014 0.009 0.23

212 8 4 120 0.015 150 0.035 0.10
64 2 40 0.041 150 0.043 0.11

2 16 600 0.019 40000 0.006 3.50

216 16 4 120 0.031 40000 0.046 1.60
256 2 40 0.163 40000 1.700 1.80

2 18 680 0.022 600000 0.006 14.10

218 8 6 200 0.026 600000 0.030 6.30

512 2 40 0.328 600000 6.400 7.80

Practical Analysis — Matrix Multiplication

Using bandwidth of 100Mbps .. . Verifier’s Checking | Verifier’s Checking Helper
Interactivity Communication
And Latency of 20ms cost cost overhead

0.014 0.009 0.23

212 8 4 120 0.015 150 0.035 0.10
64 2 40 0.041 150 0.043 0.11

2 16 600 0.019 40000 0.006 3.50

216 16 4 120 0.031 40000 0.046 1.60
256 2 40 0.163 40000 1.700 1.80

2 18 680 0.022 600000 0.006 14.10

218 8 6 200 0.026 600000 0.030 6.30
512 2 40 0.328 600000 6.400 7.80

This is independent of interactivity!

Practical Analysis — Matrix Multiplication

Using bandwidth of 100Mbps .. . Verifier’s Checking | Verifier’s Checking Helper
Interactivity Communication
And Latency of 20ms cost cost overhead

0.014 0.009 0.23

212 8 4 120 0.015 150 0.035 0.10
64 2 40 0.041 150 0.043 0.11

2 16 600 0.019 40000 0.006 3.50

216 16 4 120 0.031 40000 0.046 1.60
256 2 40 0.163 40000 1.700 1.80

2 18 680 0.022 600000 0.006 14.10

218 8 6 200 0.026 600000 0.030 6.30
512 2 40 0.328 600000 6.400 7.80

The latency dominates the other costs significantly, and this would still be the case even with a latency of 5ms.

This clearly demonstrates the location of the time bottle-neck in this protocol.

Interactivity and verifier memory

* The time bottleneck is the latency between the
verifier and the prover, dominating the other

costs that decrease with increased interactivity.

* This leads us to want to reduce the interactivity l d 12d
as much as the verifier’'s memory (0 (1%d)) will 2 18 72
let us. 4 9 144

18 : : - 8 6 384

* For example, forn = 2°°, optimality will likely

. 64 3 12288
be with a 6 round protocol.
512 2 524288

Closing Thoughts

* For our applications, where the problem is highly structured, the
interactive protocols are very efficient.

* By adapting [CMT12]’s FFT protocol for binary sum-check to arbitrary sum-
check, we achieve faster protocols than previously possible.

* We demonstrate how using certain applications are better with LDEs and
some with fingerprints, and show some useful algebraic tricks to apply.

e Latency is the dominant time bottleneck.

* The most efficient protocol for the verifier will be to use as much memory
as possible, even though the asymptotics say more interactivity is better.

* A large cost for the verifier is the initial streaming phase. Additional work
could be done to uncover efficiency tricks to find the secret.

Any Questions? Email C.Hickey@warwick.ac.uk

