
Bit-efficient Numerical Aggregation and Stronger Privacy
for Trust in Federated Analytics
Graham Cormode, Igor Markov (Facebook)

Motivation
Federated Analytics emphasises distributed computa-
tion of statistics in a privacy-preserving way.

We study the basic question of mean and variance
estimation while minimizing data sharing.

Our solution emphasises bit-efficiency: sending as
little as 1 bit per client.

This allows privacy metering at the bit level.

Background
Prior work typically assumes inputs in [0, 1].

Subtractive dithering: samples a random threshold
and reports whether the client value is > or ≤ [1].

Piece-wise mechanism: an optimized LDP method for
reporting fractions [2].

Our work more adaptively locates the mean in the
range. In practice, this improves efficiency when
only loose bounds are known.

Our simulations with several thousand clients
confirm the trend and give high accuracy.

Bit-pushing algorithms
Each client i out of N hold a b-bit integer value xi.

Seek mean x̄ =
∑N

i=1
xi

N , variance σ2 =
∑N

i=1
(xi−x̄)2

N

We write x(j) for the j’th bit of x.

Basic bit-pushing algorithm.
With probability pj , client i sends x(j) to the server.
Server computes X(j) as the mean of all reports of
bit j, and estimate of x̄ as X =

∑b
j=1 2

jX(j).
Picking pj ∝ 2αj minimizes the variance as
O(2bx̄/N) when α = 1.

Adaptive Bit-pushing.
We use a first round of bit-pushing to estimate bit
means, and choose pj for round two based on them.

Adaptive bit-pushing improves the variance to
O(bσ2/N) plus lower-order terms.

Local Differential Privacy.
We can apply randomized response to each client
report to ensure Local Differential Privacy.

The variance is now O( 4b

ϵ2N ) for ϵ-LDP, independent
of the data distribution.

Variance Estimation.
We use a first phase of bit-pushing to estimate x̄,
then a second round is applied to (xi − x̄)2.

The variance (of the estimated variance) is propor-
tional to (σ2 + x̄2/N)2/N

Extensions.
Bit-pushing can also be applied to signed values,
higher moments, products, and geometric means.

Results
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On synthetic (Normal) data, root-mean-square error
(RMSE), normalized by true mean value, is low.
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Normalized RMSE for mean (left) and variance
(right) of US Census age data decreases with N .
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Normalized RMSE for ϵ-LDP mean estimation
decreases with ϵ, as predicted.
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