
Deterministic Algorithms
for Biased Quantiles

Graham Cormode
cormode@bell-labs.com

S. Muthukrishnan
muthu@cs.rutgers.edu

Flip Korn
flip@research.att.com

Divesh Srivastava
divesh@research.att.com

Quantiles
Quantiles summarize data distribution concisely.

Given N items, the φ–quantile is the item with rank
φN in the sorted order.

Eg. The median is the 0.5-quantile, the minimum
is the 0-quantile.

Equidepth histograms put bucket boundaries on
regular quantile values, eg 0.1, 0.2…0.9

Quantiles are a robust and rich summary:
median is less affected by outliers than mean

Quantiles over Data Streams
Data stream consists items arriving in arbitrary

order, number (so far) is N.

Models many data sources eg network traffic, each
packet is one item.

Requires linear space to compute quantiles exactly
in one pass, Ω(N1/p) in p passes [MP80].

ε-approximate computation in sub-linear space

–Φ-quantile: item with rank between (Φ-ε)N and (Φ+ε)N

– [GK01]: insertions only, space O(1/ε log(εN))

– [CM04]: insertions & deletions, space O(1/ε log2 U log 1/δ)

Why Biased Quantiles?
IP network traffic is very skewed

– Long tails of great interest

– Eg: 0.9, 0.95, 0.99-quantiles of TCP round trip times

Issue: uniform error guarantees
– ε = 0.05: okay for median, but not 0.99-quantile

– ε = 0.001: okay for both, but needs too much space

Goal: support relative error guarantees in small
space
– Low-biased quantiles: φφφφ-quantiles in ranks φ(1φ(1φ(1φ(1±εεεε)N

– High-biased quantiles: (1-φφφφ)-quantiles in ranks
(1-(1±ε)φφφφ)N

Prior Work
� Sampling approach due to Gupta & Zane [GZ03]

–Keep O(1/ε log N) samplers at different sample
rates, each keeping a sample of O(1/ε2) items

–Total space: O(1/ε3), probabilistic algorithm

� Deterministic alg [CKMS05]

–Worst case input causes linear space usage

–Showed lower bound of Ω(1/ε log εN) for any alg

� Improved probabilistic alg of Zhang+ [ZLXKW06]

–Needs O(1/ε2 polylog N) space and time

Our Approach
Domain-oriented approach: items drawn from

[1…U], want space to depend on O(log U)

� Impose binary tree
structure over domain

� Maintain counts cw on
(subset of) nodes

� Count represents input
items from that subtree

So counts to left of a leaf are from items strictly
less; uncertainty in rank of item is from ancestors

Similar to [SBAS04] approach for uniform quantiles

Functions over the tree
We define some functions to

measure counts over the tree.

� lf(x) = leftmost leaf
in subtree x

� anc(x) = set of
ancestors of node x

� L(v) = ∑lf(w) < lf(v) cw
(Left count)

� A(x) = ∑w ∈∈∈∈ anc(x) cw
(Ancestor count)

v

L(v)

x

A(x)

lf(x)

Accuracy Invariants
To ensure accurate answers, we maintain two

invariants over the set of counts:

∀∀∀∀ x. L(x) – A(x) yyyy rank(x) yyyy L(x) �

ensures we can deterministically bound ranks

∀∀∀∀ v. v ≠ lf(v) ⇒⇒⇒⇒ (cv yyyy α L(v)) �

ensures range of possible ranks is bounded

To guarantee ε-accurate ranks, will set α = ε/log U
(since we use � summed over log U ancestors)

Claim: any summary satisfying � and � allows
us to find r’(x) so |r’(x) – rank(x)| yyyy ε rank(x)

Store subset of nodes and counts as “bq-summary”

Nodes with count 0 do not need to be stored

Split bq into two: bq-leaves (bql) and bq-tree (bqt).

This division is needed to get tightest space bounds.

Data Structure

� bq-leaves is a subset
of leaf nodes only

� bq-tree is subset of
nodes strictly to right
of bq-leaves

bqt

bql

Equivalence Classes
Main effort for the space bound is in proving that

the size of bqt is bounded

We force all nodes V in bqt with at least one child
present) to be “full”: for v∈∈∈∈ V, cv = αL(v)

� Partition V into equivalence classes based on L(v):
classes form paths

L1=4 L2 = 6 L3= 10 L4= 15

1 3

2 1

3

5

1

Example with α = ½

� Ei is set of nodes in i’th
equivalence class, with L
value = Li

� L1 is sum of bq-leaves:
L

1
= ∑v ∈∈∈∈ bql cv

Space Bound
� Ensure the number of leaves |bql| = L1 ≥≥≥≥ 1/α

� The Li’s increase exponentially, can show
Li+1 ≥≥≥≥ L1 Πj=1

i(1+α|Ej|)

–Consider item U+1, so rank(U+1)=N.

–Also N = L(U+1) ≥≥≥≥ 1/α Πj=1
q (1 + α|Ej|)

� Using these expressions, we bound size of |bqt|

� Total space = |bql| + |bqt|

= O(1/ε log (εN) log U)

Maintenance
Need to show how to maintain the accuracy

invariants, while guaranteeing space is bounded
and updates are fast.

� Will Insert each update x. Insert will be defined
to maintain accuracy, but space may grow

� Periodically will run a linear scan of data structure
to Compress it.

� Will argue that these two together maintain space
and time bounds.

Insert Procedure
Given update item x:

� Compare to z = maxu ∈∈∈∈ bql u

� If x yyyy z, place x in bql in time O(1)

� If x > z place x in bqt in time O(log log U):

–Find closest materialized ancestor y of x in bqt

–Add 1 to cy unless this would make cy > αL(y),
if so then create child of y with count = 1

Easy to show this procedure maintains accuracy
invariants. Space increases by yyyy 1 node.

Compress
� If we keep Inserting, space can grow without

limit, but in worst case, we add one new node
per insert, so Compress when space doubles

� Need to periodically recompute L() values for
nodes, and merge together nodes when possible

–First, resize bq-leaves so |bql| = min(N,1/α)

–Recompute z = maxv ∈∈∈∈ bql v in time linear in |bql|,
Insert leaves removed from |bql| into bqt.

–Tricky part is compressing bq-tree…

Compress Tree
� CompressTree operation takes a (sub)tree in bqt,

ensures that each node is “full” (has cv = αL(v))
by “pulling up” weight from below

–For node v compute L(v) and wt(v) = ∑v ∈∈∈∈ anc(w) cw

–Set cv as big as possible by borrowing from wt(v)

–Allows us to remove descendents with zero count

� With care, CompressTree takes time O(|bqt|)
and computes L(v) incrementally as a side effect

� Can show Compress maintains conditions �, �,
and the space bound follows.

Final Result
� Can answer rank queries with error ε rank(x),

using space O(1/ε log εN log U), and amortized
update time O(log log U).

–Lower bound on space = O(1/ε log (εN))

� To answer queries, need latest values of L(v), so
need time O(1/ε log εN log U) to preprocess

–Can then answer queries in time O(log U) each

–Alternatively, spend O(log U) time on updates and
allow L(v) values to be computed in time O(log U)

–Quantile queries can be answered by binary
searching for item with desired rank

Extensions
� Partially biased algorithm

–Sometimes only need accuracy down to some ε’N

–Can reduce space slightly for this weaker guarantee

–Space required is O(1/ε log (ε/ε’) log U)

� Uniform algorithm

–The CompressTree idea can be applied to εN error

–bq-leaves not needed, space used is O(1/ε log U)

–Time is O(log log U) amortized as before

Experimental Results

� CKMS, MRC = prior work, SBQ = this work

� SBC has better space on some data sets

� SBC at least 25x faster than MRC on all data sets

Nearly Sorted (worst case) data

Experimental results

� New alg can use more space than existing algs,

� Total space still small (in absolute terms)

Uniform Random Data Network Flow Data

Commentary
� Took effort to get conditions “just right”:

–Small changes break either space or time bounds

–bq-leaves needed for tight space bounds

� Easy to merge together summaries to get
summary of union (for distributed computations)

–Linearity of L and A means everything goes through

� Close to optimal space bounds

–What about faster updates, less work for queries?

� Made crucial use of tree-structure over universe

–Can we drop U and work over arbitrary domains?

