Optimal Sampling from Distributed Streams

Graham Cormode
AT&T Labs-Research

Joint work with S. Muthukrishnan (Rutgers)
Ke Yi (HKUST)
Qin Zhang (HKUST)
Reservoir sampling [Waterman ’??; Vitter ’85]

- Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
- Every subset of size s has equal probability to be the sample
- When the i-th item arrives
 - With probability s/i, use it to replace an item in the current sample chosen uniformly at random
 - With probability $1 - s/i$, throw it away
Reservoir sampling [Waterman '??; Vitter '85]

- Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
 - Every subset of size s has equal probability to be the sample
- When the i-th item arrives
 - With probability s/i, use it to replace an item in the current sample chosen uniformly at random
 - With probability $1 - s/i$, throw it away
- Correctness: intuitive
Reservoir sampling [Waterman '??; Vitter '85]

- Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
- Every subset of size s has equal probability to be the sample
- When the i-th item arrives
 - With probability s/i, use it to replace an item in the current sample chosen uniformly at random
 - With probability $1 - s/i$, throw it away
- Correctness: intuitive
- Space: $O(s)$, time $O(1)$
Sampling from a sliding window

[Babcock, Datar, Motwani, SODA’02; Gemulla, Lehner, SIGMOD’08; Braverman, Ostrovsky, Zaniolo, PODS’09]
Sampling from a sliding window

[Babcock, Datar, Motwani, SODA’02; Gemulla, Lehner, SIGMOD’08; Braverman, Ostrovsky, Zaniolo, PODS’09]
Sampling from a sliding window

[Babcock, Datar, Motwani, SODA’02; Gemulla, Lehner, SIGMOD’08; Braverman, Ostrovsky, Zaniolo, PODS’09]

Window length: W

Time based window and sequence based window

- Space: $\Theta(s \log w)$
- w: number of items in the sliding window
- Time: $\Theta(\log w)$
Sampling from distributed streams

- Maintain a (uniform) sample (w/o replacement) of size s from k streams of a total of n items

Primary goal: communication
Secondary goal: space/time at coordinator/site
Sampling from distributed streams

- Maintain a (uniform) sample (w/o replacement) of size s from k streams of a total of n items

Primary goal: communication

Secondary goal: space/time at coordinator/site

Applications:
- Internet routers
- Sensor networks
- Distributed computing
Why existing solutions don’t work

- When $k = 1$, reservoir sampling has communication $\Theta(s \log n)$
Why existing solutions don’t work

- When $k = 1$, reservoir sampling has communication $\Theta(s \log n)$
- When $k \geq 2$, reservoir sampling has cost $O(n)$ because it’s costly to track i
Why existing solutions don’t work

- When \(k = 1 \), reservoir sampling has communication \(\Theta(s \log n) \)
- When \(k \geq 2 \), reservoir sampling has cost \(O(n) \) because it’s costly to track \(i \)

Tracking \(i \) approximately?
Sampling won’t be uniform
Why existing solutions don’t work

- When $k = 1$, reservoir sampling has communication $\Theta(s \log n)$.
- When $k \geq 2$, reservoir sampling has cost $O(n)$ because it’s costly to track i.

Tracking i approximately? Sampling won’t be uniform.

Key observation: We don’t have to know the size of the population in order to sample!
Previous results on distributed streaming

- A lot of heuristics in the database/networking literature
- But random sampling has not been studied, even heuristically
Previous results on distributed streaming

- A lot of heuristics in the database/networking literature
 - But random sampling has not been studied, even heuristically
- Threshold monitoring, frequency moments [Cormode, Muthukrisnan, Yi, SODA’08]
- Entropy [Arackaparambil, Brody, Chakrabarti, ICALP’08]
- Heavy hitters and quantiles [Yi, Zhang, PODS’09]
- Basic counting, heavy hitters, quantiles in sliding windows [Chan, Lam, Lee, Ting, STACS’10]
Previous results on distributed streaming

- A lot of heuristics in the database/networking literature
 - But random sampling has not been studied, even heuristically
- Threshold monitoring, frequency moments [Cormode, Muthukrishnan, Yi, SODA’08]
- Entropy [Arackaparambil, Brody, Chakrabarti, ICALP’08]
- Heavy hitters and quantiles [Yi, Zhang, PODS’09]
- Basic counting, heavy hitters, quantiles in sliding windows [Chan, Lam, Lee, Ting, STACS’10]

- All of them are deterministic algorithms, or use randomized sketches as black boxes
Our results on random sampling

<table>
<thead>
<tr>
<th>window</th>
<th>upper bounds</th>
<th>lower bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>infinite</td>
<td>$O((k + s) \log n)$</td>
<td>$\Omega(k + s \log n)$</td>
</tr>
<tr>
<td>sequence-based</td>
<td>$O(ks \log(w/s))$</td>
<td>$\Omega(ks \log(w/ks))$</td>
</tr>
<tr>
<td>time-based</td>
<td>$O((k + s) \log w)$</td>
<td>$\Omega(k + s \log w)$</td>
</tr>
</tbody>
</table>

(per window)
Our results on random sampling

<table>
<thead>
<tr>
<th>window</th>
<th>upper bounds</th>
<th>lower bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>infinite</td>
<td>(O((k + s) \log n))</td>
<td>(\Omega(k + s \log n))</td>
</tr>
<tr>
<td>sequence-based</td>
<td>(O(ks \log(w/s)))</td>
<td>(\Omega(ks \log(w/ks)))</td>
</tr>
<tr>
<td>time-based</td>
<td>(O((k + s) \log w)) (per window)</td>
<td>(\Omega(k + s \log w))</td>
</tr>
</tbody>
</table>

- **Applications**
 - Heavy hitters and quantiles can be tracked in \(\tilde{O}(k + 1/\epsilon^2)\)
 - Beats deterministic bound \(\tilde{\Theta}(k/\epsilon)\) for \(k \gg 1/\epsilon\)
 - Also for sliding windows
Our results on random sampling

<table>
<thead>
<tr>
<th>window</th>
<th>upper bounds</th>
<th>lower bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>infinite</td>
<td>$O((k + s) \log n)$</td>
<td>$\Omega(k + s \log n)$</td>
</tr>
<tr>
<td>sequence-based</td>
<td>$O(ks \log(w/s))$</td>
<td>$\Omega(ks \log(w/ks))$</td>
</tr>
<tr>
<td>time-based</td>
<td>$O((k + s) \log w)$</td>
<td>$\Omega(k + s \log w)$</td>
</tr>
</tbody>
</table>

((per window)

Applications

- Heavy hitters and quantiles can be tracked in $\tilde{O}(k + 1/\epsilon^2)$
 Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k \gg 1/\epsilon$
- Also for sliding windows
- ϵ-approximations in bounded VC dimensions: $\tilde{O}(k + 1/\epsilon^2)$
- ϵ-nets: $\tilde{O}(k + 1/\epsilon)$
- …
The basic idea: Binary Bernoulli sampling
The basic idea: Binary Bernoulli sampling
The basic idea: Binary Bernoulli sampling

Conditioned upon a row having $\geq s$ active items, we can draw a sample from the active items.
Conditioned upon a row having $\geq s$ active items, we can draw a sample from the active items.

The coordinator could maintain a Bernoulli sample of size between s and $O(s)$.
Sampling from an infinite window

- Initialize $i = 0$
- In round i:
 - Sites send in every item w.p. 2^{-i}
 (This is a Bernoulli sample with prob. 2^{-i})
Sampling from an infinite window

- Initialize $i = 0$
- In round i:
 - Sites send in every item w.p. 2^{-i}
 (This is a Bernoulli sample with prob. 2^{-i})
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 (The lower sample is a Bernoulli sample with prob. 2^{-i-1})
Sampling from an infinite window

- Initialize $i = 0$
- In round i:
 - Sites send in every item w.p. 2^{-i}
 (This is a Bernoulli sample with prob. 2^{-i})
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 (The lower sample is a Bernoulli sample with prob. 2^{-i-1})
 - When the lower sample reaches size s, the coordinator broadcasts to advance to round $i \leftarrow i + 1$
 Discard the upper sample
 Split the lower sample into a new lower sample and a higher sample
Sampling from an infinite window: Analysis

- Communication cost of round i: $O(k + s)$
- Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 Expect to receive $O(s)$ sampled items before round ends
Sampling from an infinite window: Analysis

- Communication cost of round i: $O(k + s)$
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 - Expect to receive $O(s)$ sampled items before round ends
- Broadcast to end round: $O(k)$
Sampling from an infinite window: Analysis

- Communication cost of round i: $O(k + s)$
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 - Expect to receive $O(s)$ sampled items before round ends
- Broadcast to end round: $O(k)$
- Number of rounds: $O(\log(n/s))$
 - In round i, need $\Theta(s)$ items being sampled to end round
 - Each item has prob. 2^{-i} to contribute: need $\Theta(2^i s)$ items
Sampling from an infinite window: Analysis

- Communication cost of round i: $O(k + s)$
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob. Expect to receive $O(s)$ sampled items before round ends
 - Broadcast to end round: $O(k)$

- Number of rounds: $O(\log(n/s))$
 - In round i, need $\Theta(s)$ items being sampled to end round
 - Each item has prob. 2^{-i} to contribute: need $\Theta(2^i s)$ items

- Communication: $O((k + s) \log n)$
 - Lower bound: $\Omega(k + s \log n)$
Sampling from an infinite window: Analysis

- Communication cost of round i: $O(k + s)$
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 - Expect to receive $O(s)$ sampled items before round ends
 - Broadcast to end round: $O(k)$
- Number of rounds: $O(\log(n/s))$
 - In round i, need $\Theta(s)$ items being sampled to end round
 - Each item has prob. 2^{-i} to contribute: need $\Theta(2^i s)$ items
- Communication: $O((k + s) \log n)$
 - Lower bound: $\Omega(k + s \log n)$
- Site space: $O(1)$, time: $O(1)$
 - Coordinator space: $O(s)$, total time: $O((k + s) \log n)$
Sampling from a sliding window: Idea

Sample for sliding window =
a subsample of the (unexpired) sample of frozen window +
a subsample of the sample of current window
Sampling from a sliding window: Idea

Sample for sliding window =
a subsample of the (unexpired) sample of frozen window +
a subsample of the sample of current window

Key: As long as either Bernoulli sample has size $\geq s$, we can subsample the sample with the larger probability to match up their probabilities
Sampling from a sliding window: Idea

Sample for sliding window =
a subsample of the (unexpired) sample of frozen window +
a subsample of the sample of current window

Key: As long as either Bernoulli sample has size $\geq s$, we can subsample the sample with the larger probability to match up their probabilities

- Current window: Run our infinite-window algorithm
- A Bernoulli sample with prob. 2^{-i} such that size $\geq s$
Sampling from a sliding window: Idea

Sample for sliding window = a subsample of the (unexpired) sample of frozen window + a subsample of the sample of current window

Key: As long as either Bernoulli sample has size $\geq s$, we can subsample the sample with the larger probability to match up their probabilities

- Current window: Run our infinite-window algorithm
- A Bernoulli sample with prob. 2^{-i} such that size $\geq s$
- Frozen window: Need to have the same
Dealing with the frozen window

Keep all the levels? Need $O(w)$ communication
Dealing with the frozen window

Keep all the levels? Need $O(w)$ communication

Keep most recent sampled items in a level until s of them are also sampled at the next level. Total size: $O(s \log w)$
Dealing with the frozen window

Keep all the levels? Need $O(w)$ communication

Keep most recent sampled items in a level until s of them are also sampled at the next level. Total size: $O(s \log w)$

Guaranteed: There is a blue window with $\geq s$ sampled items that covers the unexpired portion of the frozen window
Dealing with the frozen window: The algorithm

Each site builds its own level-sampling structure for the current window until it freezes

- Needs $O(s \log w)$ space and $O(1)$ time per item
- Necessary unless communication is $\Omega(w)$
Dealing with the frozen window: The algorithm

Each site builds its own level-sampling structure for the current window until it freezes

- Needs $O(s \log w)$ space and $O(1)$ time per item
- Necessary unless communication is $\Omega(w)$

When the current window freezes

- For each level, do a k-way merge to build the level of the global structure at the coordinator
- Total communication $O((k + s) \log w)$
Future directions

- Applications
 - Heavy hitters and quantiles can be tracked in $\tilde{O}(k + 1/\epsilon^2)$
 Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k \gg 1/\epsilon$
 - Also for sliding windows
 - ϵ-approximations in bounded VC dimensions: $\tilde{O}(k + 1/\epsilon^2)$
 - ϵ-nets: $\tilde{O}(k + 1/\epsilon)$
 - …
Future directions

- Applications
 - Heavy hitters and quantiles can be tracked in $\tilde{O}(k + 1/\epsilon^2)$
 Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k \gg 1/\epsilon$
 - Also for sliding windows
 - ϵ-approximations in bounded VC dimensions: $\tilde{O}(k + 1/\epsilon^2)$
 - ϵ-nets: $\tilde{O}(k + 1/\epsilon)$
 - ...
- Is random sampling the best way to solve these problems?
Future directions

- Applications
 - Heavy hitters and quantiles can be tracked in $\tilde{O}(k + 1/\epsilon^2)$
 Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k \gg 1/\epsilon$
 - Also for sliding windows
 - ϵ-approximations in bounded VC dimensions: $\tilde{O}(k + 1/\epsilon^2)$
 - ϵ-nets: $\tilde{O}(k + 1/\epsilon)$
 - ...$
 - Is random sampling the best way to solve these problems?
 - New result: Heavy hitters and quantiles can be tracked in $\tilde{O}(k + \sqrt{k}/\epsilon)$, using a different sampling method
The End

THANK YOU

Q and A