Optimal Sampling from Distributed Streams

Graham Cormode

AT&T Labs-Research

Joint work with S. Muthukrishnan (Rutgers)
Ke Yi (HKUST)
Qin Zhang (HKUST)

Reservoir sampling [Waterman '??; Vitter '85]

- Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
 - lacktriangle Every subset of size s has equal probability to be the sample
- \square When the *i*-th item arrives
 - $lue{}$ With probability s/i, use it to replace an item in the current sample chosen uniformly at ranfom
 - With probability 1 s/i, throw it away

Reservoir sampling [Waterman '??; Vitter '85]

- Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
 - lacktriangle Every subset of size s has equal probability to be the sample
- \square When the *i*-th item arrives
 - $lue{}$ With probability s/i, use it to replace an item in the current sample chosen uniformly at ranfom
 - With probability 1 s/i, throw it away
- Correctness: intuitive

Reservoir sampling [Waterman '??; Vitter '85]

- Maintain a (uniform) sample (w/o replacement) of size s from a stream of n items
 - $lue{}$ Every subset of size s has equal probability to be the sample
- \square When the *i*-th item arrives
 - $lue{}$ With probability s/i, use it to replace an item in the current sample chosen uniformly at ranfom
 - □ With probability 1 s/i, throw it away
- Correctness: intuitive
- lacksquare Space: O(s), time O(1)

[Babcock, Datar, Motwani, SODA'02; Gemulla, Lehner, SIGMOD'08; Braverman, Ostrovsky, Zaniolo, PODS'09]

[Babcock, Datar, Motwani, SODA'02; Gemulla, Lehner, SIGMOD'08; Braverman, Ostrovsky, Zaniolo, PODS'09]

Time based window and sequence based window

[Babcock, Datar, Motwani, SODA'02; Gemulla, Lehner, SIGMOD'08; Braverman, Ostrovsky, Zaniolo, PODS'09]

Time based window and sequence based window

- lacksquare Space: $\Theta(s \log w)$
 - lacktriangleq w: number of items in the sliding window
- \blacksquare Time: $\Theta(\log w)$

Sampling from distributed streams

Maintain a (uniform) sample (w/o replacement) of size s from k streams of a total of n items

Primary goal: communication

Secondary goal: space/time at coordinator/site

Sampling from distributed streams

Maintain a (uniform) sample (w/o replacement) of size s from k streams of a total of n items

Primary goal: communication

Secondary goal: space/time at coordinator/site

Applications:

Internet routers
Sensor networks
Distributed computing

time

■ When k = 1, reservoir sampling has communication $\Theta(s \log n)$

- When k = 1, reservoir sampling has communication $\Theta(s \log n)$
- When $k \geq 2$, reservoir sampling has cost O(n) because it's costly to track i

- When k = 1, reservoir sampling has communication $\Theta(s \log n)$
- lacksquare When $k\geq 2$, reservoir sampling has cost O(n) because it's costly to track i

- When k = 1, reservoir sampling has communication $\Theta(s \log n)$
- lacksquare When $k\geq 2$, reservoir sampling has cost O(n) because it's costly to track i

Tracking *i* approximately?

Sampling won't be uniform

Key observation:

We don't have to know the size of the population in order to sample!

time

Previous results on distributed streaming

- A lot of heuristics in the database/networking literature
 - But random sampling has not been studied, even heuristically

Previous results on distributed streaming

- A lot of heuristics in the database/networking literature
 - But random sampling has not been studied, even heuristically
- Threshold monitoring, frequency moments [Cormode, Muthukrishnan, Yi, SODA'08]
- Entropy [Arackaparambil, Brody, Chakrabarti, ICALP'08]
- Heavy hitters and quantiles [Yi, Zhang, PODS'09]
- Basic counting, heavy hitters, quantiles in sliding windows [Chan, Lam, Lee, Ting, STACS'10]

Previous results on distributed streaming

- A lot of heuristics in the database/networking literature
 - But random sampling has not been studied, even heuristically
- Threshold monitoring, frequency moments [Cormode, Muthukrish-nan, Yi, SODA'08]
- Entropy [Arackaparambil, Brody, Chakrabarti, ICALP'08]
- Heavy hitters and quantiles [Yi, Zhang, PODS'09]
- Basic counting, heavy hitters, quantiles in sliding windows [Chan, Lam, Lee, Ting, STACS'10]
- All of them are deterministic algorithms, or use randomized sketches as black boxes

Our results on random sampling

window	upper bounds	lower bounds		
infinite	$O((k+s)\log n)$	$\Omega(k + s \log n)$		
sequence-based	$O(ks\log(w/s))$	$\Omega(ks\log(w/ks))$		
time-based	$O((k+s)\log w)$	$\Omega(k + s \log w)$		
(per window)				

Our results on random sampling

window	upper bounds	lower bounds		
infinite	$O((k+s)\log n)$	$\Omega(k + s \log n)$		
sequence-based	$O(ks\log(w/s))$	$\Omega(ks\log(w/ks))$		
time-based	$O((k+s)\log w)$	$\Omega(k + s \log w)$		
(per window)				

- Applications
 - Heavy hitters and quantiles can be tracked in $\tilde{O}(k+1/\epsilon^2)$ Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k\gg 1/\epsilon$
 - Also for sliding windows

Our results on random sampling

window	upper bounds	lower bounds		
infinite	$O((k+s)\log n)$	$\Omega(k + s \log n)$		
sequence-based	$O(ks\log(w/s))$	$\Omega(ks\log(w/ks))$		
time-based	$O((k+s)\log w)$	$\Omega(k + s \log w)$		
(per window)				

- Applications
 - Heavy hitters and quantiles can be tracked in $\tilde{O}(k+1/\epsilon^2)$ Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k\gg 1/\epsilon$
 - Also for sliding windows
 - ${}^{f \square}$ ϵ -approximations in bounded VC dimensions: $\tilde{O}(k+1/\epsilon^2)$
 - \bullet -nets: $\tilde{O}(k+1/\epsilon)$

The basic idea: Binary Bernoulli sampling

The basic idea: Binary Bernoulli sampling

Conditioned upon a row having $\geq s$ active items, we can draw a sample from the active items

The basic idea: Binary Bernoulli sampling

Conditioned upon a row having $\geq s$ active items, we can draw a sample from the active items

The coordinator could maintain a Bernoulli sample of size between s and O(s)

Sampling from an infinite window

- \blacksquare Initialize i=0
- □ In round *i*:

Sites send in every item w.p. 2^{-i} (This is a Bernoulli sample with prob. 2^{-i})

Sampling from an infinite window

- \blacksquare Initialize i=0
- □ In round *i*:
 - Sites send in every item w.p. 2^{-i} (This is a Bernoulli sample with prob. 2^{-i})
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.

(The lower sample is a Bernoulli sample with prob. 2^{-i-1})

Sampling from an infinite window

- \blacksquare Initialize i=0
- □ In round *i*:
 - Sites send in every item w.p. 2^{-i} (This is a Bernoulli sample with prob. 2^{-i})
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.

(The lower sample is a Bernoulli sample with prob. 2^{-i-1})

When the lower sample reaches size s, the coordinator broadcasts to advance to round $i \leftarrow i+1$ Discard the upper sample Split the lower sample into a new lower sample and a higher sample

- lacktriangle Communication cost of round i: O(k+s)
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 - Expect to receive O(s) sampled items before round ends

- Communication cost of round i: O(k+s)
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 - Expect to receive O(s) sampled items before round ends
 - $lue{}$ Broadcast to end round: O(k)

- Communication cost of round i: O(k+s)
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 - Expect to receive O(s) sampled items before round ends
 - lacktriangle Broadcast to end round: O(k)
- Number of rounds: $O(\log(n/s))$
 - lacktriangleq In round i, need $\Theta(s)$ items being sampled to end round
 - \square Each item has prob. 2^{-i} to contribute: need $\Theta(2^is)$ items

- Communication cost of round i: O(k+s)
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 - Expect to receive O(s) sampled items before round ends
 - lacktriangle Broadcast to end round: O(k)
- Number of rounds: $O(\log(n/s))$
 - lacktriangleq In round i, need $\Theta(s)$ items being sampled to end round
 - lacktriangle Each item has prob. 2^{-i} to contribute: need $\Theta(2^is)$ items
- Communication: $O((k+s)\log n)$
 - Lower bound: $\Omega(k + s \log n)$

- lacktriangle Communication cost of round i: O(k+s)
 - Coordinator maintains a lower sample and a higher sample: each received item goes to either with equal prob.
 - Expect to receive O(s) sampled items before round ends
 - lacktriangle Broadcast to end round: O(k)
- Number of rounds: $O(\log(n/s))$
 - lacktriangleq In round i, need $\Theta(s)$ items being sampled to end round
 - lacktriangle Each item has prob. 2^{-i} to contribute: need $\Theta(2^is)$ items
- □ Communication: $O((k+s)\log n)$
 - Lower bound: $\Omega(k + s \log n)$
- Site space: O(1), time: O(1)Coordinator space: O(s), total time: $O((k+s)\log n)$

Sample for sliding window = a subsample of the (unexpired) sample of frozen window + a subsample of the sample of current window

Sample for sliding window = a subsample of the (unexpired) sample of frozen window + a subsample of the sample of current window

Key: As long as either Bernoulli sample has size $\geq s$, we can subsample the sample with the larger probability to match up their probabilities

Sample for sliding window =

a subsample of the (unexpired) sample of frozen window + a subsample of the sample of current window

Key: As long as either Bernoulli sample has size $\geq s$, we can subsample the sample with the larger probability to match up their probabilities

- Current window: Run our infinite-window algorithm
 - \square A Bernoulli sample with prob. 2^{-i} such that size $\geq s$

sliding window time expired windows frozen window current window

Sample for sliding window =

a subsample of the (unexpired) sample of frozen window \pm a subsample of the sample of current window

Key: As long as either Bernoulli sample has size $\geq s$, we can subsample the sample with the larger probability to match up their probabilities

- Current window: Run our infinite-window algorithm
 - ightharpoonup A Bernoulli sample with prob. 2^{-i} such that size $\geq s$
- Frozen window: Need to have the same

Dealing with the frozen window

Dealing with the frozen window

Dealing with the frozen window

Keep most recent sampled items in a level until s of them are also sampled at the next level. Total size: $O(s \log w)$

Guaranteed: There is a blue window with $\geq s$ sampled items that covers the unexpired portion of the frozen window

Dealing with the frozen window: The algorithm

- Each site builds its own level-sampling structure for the current window until it freezes
 - Needs $O(s \log w)$ space and O(1) time per item
 - lacktriangleq Necessary unless communication is $\Omega(w)$

Dealing with the frozen window: The algorithm

- Each site builds its own level-sampling structure for the current window until it freezes
 - Needs $O(s \log w)$ space and O(1) time per item
 - lacktriangleq Necessary unless communication is $\Omega(w)$
- When the current window freezes
 - For each level, do a k-way merge to build the level of the global structure at the coordinator Total communication $O((k+s)\log w)$

Future directions

- Applications
 - Heavy hitters and quantiles can be tracked in $\tilde{O}(k+1/\epsilon^2)$ Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k\gg 1/\epsilon$
 - Also for sliding windows
 - ${}^{f \square}$ ϵ -approximations in bounded VC dimensions: $\tilde{O}(k+1/\epsilon^2)$
 - \bullet -nets: $\tilde{O}(k+1/\epsilon)$

Future directions

- Applications
 - Heavy hitters and quantiles can be tracked in $\tilde{O}(k+1/\epsilon^2)$ Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k\gg 1/\epsilon$
 - Also for sliding windows
 - $^{f \square}$ ϵ -approximations in bounded VC dimensions: $\tilde{O}(k+1/\epsilon^2)$
 - \bullet -nets: $\tilde{O}(k+1/\epsilon)$
- Is random sampling the best way to solve these problems?

Future directions

- Applications
 - Heavy hitters and quantiles can be tracked in $\tilde{O}(k+1/\epsilon^2)$ Beats deterministic bound $\tilde{\Theta}(k/\epsilon)$ for $k\gg 1/\epsilon$
 - Also for sliding windows
 - ${}^{f \square}$ ϵ -approximations in bounded VC dimensions: $\tilde{O}(k+1/\epsilon^2)$
 - \bullet -nets: $\tilde{O}(k+1/\epsilon)$
- Is random sampling the best way to solve these problems?
 - New result: Heavy hitters and quantiles can be tracked in $\tilde{O}(k+\sqrt{k}/\epsilon)$, using a different sampling method

The End

THANK YOU

Q and A