
Tracking Distributed 
Aggregates over Time-based 

Sliding Windows 

Graham Cormode
AT&T Labs

Ke Yi
HKUST



Distributed Monitoring

There are many scenarios where we need to track events:

� Network health monitoring within a large ISP

� Collecting and monitoring environmental data with sensors

� Observing usage and abuse of distributed data centers

All can be abstracted as a collection of observers who want to All can be abstracted as a collection of observers who want to 

collaborate to compute a function of their observations

From this we generate the Continuous Distributed Model

2 Continuous Distributed Monitoring



Continuous Distributed Model

Coordinator

k sites

local stream(s) 

seen at each site

Track f(S
1
,…,S

k
)

3

� Other structures possible (e.g., hierarchical)

� Site-site communication only changes things by factor 2

� Goal:: Coordinator continuously tracks (global) function of streams

– Achieve communication and space poly(k,1/ε,log n)

– n events at a local site, adding up to N events globally

S
1 S

k



Prior Work in Distributed Monitoring

� Much interest in these problems in DB and TCS areas

� Track holistic functions of the (global) data distribution

– Quantiles and heavy hitters [C, Garofalakis, Muthukrishnan, Rastogi 05]

– Empirical Entropy [Arackaparambil Brody Chakrabarti 09]

– Frequency Moments [C, Muthukrishnan, Yi 08]– Frequency Moments [C, Muthukrishnan, Yi 08]

– Geometric approach [Sharman, Schuster, Keren 06]

� Track functions only over sliding window of recent events

– Samples [C, Muthukrishnan, Yi, Zhang 10]

– Counts and frequencies [Chan Lam Lee Ting 10]

� This work: new framework for monitoring over sliding windows

4



Sliding Window

� In many cases, only care about recent events

� Prompts the sliding window model:

Current windowHistory

– Only track events occurring within time T

� Consider several monitoring problems in sliding window:

– Counting: (approximately) how many events in the window?

– Heavy hitters: what are (approximate) heavy items in the window?

– Quantiles: (approximate) the frequency distribution in the window

5



Forward/backward framework

� Key insight:

Current window

Departing Arriving

T 2T 3T 4T

� Key insight:

– Complexity of sliding window comes from non-monotonicity

– Break any window into forward (arrivals) and backward (expiries)

– Solve each separately, improving overall 

� Optimal results for several problems follow:

– Counting: O(k/ε log (εN/k)) communication, O(1/ε log εN) space

– Heavy hitters: O(k/ε log (εN/k)) communication, O(1/ε log εN) space

– Quantiles: O(k/ε log2 1/ε log (εN/k)) comm, O(1/ε log21/ε log εN) space
6



Warm up: Counting

� Forwards (for each site independently):

– Within each (fixed) window, start a fresh counter

– Update every time count increases by (1+ε) factor

� Backwards (for each site independently):

– Assume can keep all items from the last window 1

(1+ε)

(1+ε)2

(1+ε)3

(1+ε)4

(1+ε)5

– Assume can keep all items from the last window

– Send a message every time count decreases by (1+ε) factor

� Analysis: O(1/ε log εn) messages to count n items

– Adds up to at most O(k/ε log(εN/k)) from all sites

� Make space efficient: keep “exponential histogram”

– Takes space O(1/ε log εn) space, reports 1+ε approx counts

7

1



Full Space Heavy Hitters Protocol

� Forward protocol broken into phases: n ≥ 2a/ε
– Track counts of items as they arrive

– Inform coordinator when a count goes up by 2a

– Ensures that coordinator knows counts accurate up to εn

� Backward protocol broken into phases: n ≤ 2a+1/ε� Backward protocol broken into phases: n ≤ 2a+1/ε
– Inform coordinator of all counts more than 2a at start of phase

– Also inform when a count goes down by 2a

– Essentially reverse the forward protocol

� In both cases, at most O(1/ε) communication per phase

� So O(1/ε log εn) per site, O(k/ε log (εN/k)) total

8



Reduced Space Heavy Hitters

� Reduce space used by keeping only approximate information

– Forward case: run a standard heavy hitters algorithm

– Keep O(1/ε) items and counts, and obtain εn accuracy

– Backward case: run a sliding-window heavy hitters algorithm

– Keep O(1/ε) items, counts & timestamps, get ε2a accuracy– Keep O(1/ε) items, counts & timestamps, get ε2a accuracy

– Total space reduced to O(1/ε log n) per site

� Coordinator space O(k/ε): keep current heavy hitters from 

each site

� Communication remains O(k/ε log (εN/k)) per window

9



Quantiles

� Forward protocol: guess window sizes W = 2a/ε
– For each W, further break window down into blocks

– Keep a compact quantile summary of each block

– Send summary to coordinator when a block fills

– Any window can be broken into a few blocks– Any window can be broken into a few blocks

– Tolerate a little imprecision in block size within error bounds

� Backward protocol: almost identical to forward

– Just need to keep track of recent blocks locally

– Only send needed summaries to coordinator at end of window

� Communication cost O(k/ε log2 (1/ε) log (N/k) per window

� Space O(1/ε log2 (1/ε) log εn) at each site

10



Other Functions

� Can use similar approach for several other functions:

– Distinct counts: track unique items seen across sites

– Entropy: track the entropy of the observed frequency distribution

– Geometric functions: diameter and convex hull of points

11



Concluding Remarks

� Introduced forward/backward framework for monitoring

– Allows efficient solutions for sliding window problems

– Improves on bounds from prior work [Chan et al 2010]

– Simplifies analysis, reduces cases to handle

– (Near) optimal solutions for counting and heavy hitters– (Near) optimal solutions for counting and heavy hitters

� Open problems:

– Bounds for quantiles are not optimal by log(1/ε) factors

– Extend to other problems?

– Build into systems, empirical studies

12


