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Distributed Monitoring

There are many scenarios where we need to track events:

� Network health monitoring within a large ISP

� Collecting and monitoring environmental data with sensors

� Observing usage and abuse of distributed data centers

All can be abstracted as a collection of observers who want to All can be abstracted as a collection of observers who want to 

collaborate to compute a function of their observations

From this we generate the Continuous Distributed Model
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Continuous Distributed Model

Coordinator

k sites

local stream(s) 

seen at each site

Track f(S1,…,Sk)

3

� Site-site communication only changes things by factor 2

� Goal:: Coordinator continuously tracks (global) function of streams

– Achieve communication poly(k,1/ε,log n)

– Also bound space used by each site, time to process each update

S1 Sk
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Challenges

� Monitoring is Continuous…

– Real-time tracking, rather than one-shot query/response

� …Distributed…

– Each remote site only observes part of the global stream(s)

– Communication constraints: must minimize monitoring burden

…Streaming…
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� …Streaming…

– Each site sees a high-speed local data stream and can be resource 

(CPU/memory) constrained

� …Holistic…

– Challenge is to monitor the complete global data distribution

– Simple aggregates (e.g., aggregate traffic) are easier



Baseline Approach

� Sometimes periodic polling suffices for simple tasks

– E.g., SNMP polls total traffic at coarse granularity

� Still need to deal with holistic nature of aggregates

� Must balance polling frequency against communication 
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– Very frequent polling causes high communication, 

excess battery use in sensor networks

– Infrequent polling means delays in observing events

� Need techniques to reduce communication 

while guaranteeing rapid response to events



Variations in the model

� Multiple streams define the input A

� Given function f, several types of problem to study:

– Threshold Monitoring: identify when f(A) > τ
Possibly tolerate some approximation based on ετ

– Value Monitoring: always report accurate approximation of f(A)– Value Monitoring: always report accurate approximation of f(A)

– Set Monitoring: f(A) is a set, always provide a “close” set

� Direct communication between sites and the coordinator

– Other network structures possible (e.g., hierarchical)
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The Countdown Problem

� A first abstract problem that has many applications

� Each observer sees events

� Want to alert when a total of τ events have been seen

– Report when more than 10,000 vehicles have passed sensors

– Identify the 1,000,000th customer at a chain of stores– Identify the 1,000,000th customer at a chain of stores

� Trivial solution: send 1 bit for each event, coordinator counts

– O(τ) communication

– Can we do better? 
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A First Approach

� One of k sites must see τ/k events before threshold is met

� So each site counts events, sends message when τ/k are seen

� Coordinator collects current count ni from each site

– Compute new threshold τ’ = τ - ∑i=1
k ni

– Repeat procedure for τ’ until τ’ < k, then count all events– Repeat procedure for τ’ until τ’ < k, then count all events

� Analysis: τ > τ’/(1-1/k) > τ’’/(1-1/k)2 > …

– Number of thresholds = log (τ/k) / log(1/(1-1/k)) = O(k log (τ/k))

– Total communication: O(k2 log (τ/k)) [each update costs O(k)]

� Can we do better? 
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A Quadratic Improvement

� Observation: O(k) communication per update is wasteful

� Try to wait for more updates before collecting

� Protocol operates over log (τ/k) rounds [C.,Muthukrishnan, Yi 08]

– In round j, each site waits to receive τ/(2j k) events

– Subtract this amount from local count n , and alert coordinator– Subtract this amount from local count ni, and alert coordinator

– Coordinator awaits k messages in round j, then starts round j+1

– Coordinator informs all sites at end of each round

� Analysis: k messages in each round, log (τ/k) rounds

– Total communication is O(k log (τ/k))

– Correct, since total count can’t exceed τ until final round
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Approximate variation

� Sometimes, we can tolerate approximation

� Only need to know if threshold τ is reached approximately

� So we can allow some bounded uncertainty:

– Do not report when count < (1-ε) τ
– Definitely report when count > τ– Definitely report when count > τ
– In between, do not care

� Previous protocol adapts immediately:

– Just wait until distance to threshold reaches ετ
– Cost of the protocol reduces to O(k log 1/ε) (independent of τ)
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Extension: Randomized Solution

� Cost is high when k grows very large

� Randomization reduces this dependency, with parameter ε
� Now, each site waits to see O(ε2τ/k) events

– Roll a die: report with probability 1/k, otherwise stay silent

– Coordinator waits to receive O(1/ε2) reports, then terminates– Coordinator waits to receive O(1/ε2) reports, then terminates

� Analysis: in expectation, coordinator stops after τ(1-ε/2) events

– With Chernoff bounds, show that it stops before τ events

– And does not stop before τ(1-ε) events

� Gives a randomized, approximate solution: uncertainty of ετ
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Monitoring Entropy

� Countdown solutions relied on monotonicity and linearity

� Entropy is a function which is neither monotone or linear!

� Let fi be the total number of occurrences of item i

� Let m be the total number of all items = ∑i fi

� This defines an empirical probability distribution: � This defines an empirical probability distribution: 

– Item i has empirical probability fi/m

� We want to monitor the entropy of this distribution:

H = ∑i fi/m log (m/fi)

– Specifically, report whether H > τ or H < (1-ε)τ
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Entropy Protocol

� Protocol based on [Arackaparambil Brody Chakrabarti 09]

� Initially, collect all items from sites for 100 items (say)

– Empirical entropy is changing rapidly here

� In each subsequent round i, coordinator computes τi

– Run approximate countdown protocol for τ with ε = ½ – Run approximate countdown protocol for τi with ε = ½ 

– Collect frequency distribution from all sites, compute entropy

� Analysis: suppose we have m items, and there are n arrivals

– Can bound the change in entropy as 2n/(m+n) log (m+n)
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Change in Entropy

� Entropy change as fi goes to (fi + gi) is at most

∑i | fi / m log (m/fi) – (fi + gi)/(m+n) log (m+n)/(fi + gi) |

≤ ∑i | fi/m log (m+n) – (fi + gi)/(m+n) log (m+n) |

≤ ∑i |fi / m – (fi + gi)/(m+n) | log(m+n)

≤ ∑i | fi (m+n) – (fi + gi)m | log (m+n) / m(m+n)

≤ ∑ | f n – g m | log (m+n)/m(m+n)
i i i i

≤ ∑i | fi n – gi m | log (m+n)/m(m+n)

≤ ∑i (fi n +  gi m)/m(m+n) log (m+n)

≤ (mn + mn)/m(m+n) log (m+n)

≤ 2n/(m+n) log (m+n)
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Entropy Protocol Analysis

� Change in entropy is at most 2n/(m+n) log (m+n)

– If we set n < m, then this is bounded by 2n/m log (2m)

� Need to know if entropy changes by at least ετ/2

– (the smallest amount to force coordinator to change output)

� So set τi = ετm/(4 log 2m)� So set τi = ετm/(4 log 2m)

– So long as n is less than this, entropy changes by at most ετ/2

� Analysis: letting N be total number of observations so far,

– Observations increase by a (1+ ετ/4 log 2N) factor each round 

– Bounds total number of rounds as O((log2 N)/ετ)

– Countdown protocol costs O(k) per round
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Extension: Entropy Sketches

� Currently, each site sends current distribution each round

– If there are D distinct items seen, total cost is O(kD(log2 N)/(ετ))

– Can be very costly when D is high!

� Solution: send a compact sketch of the data distribution

– Sketches for entropy give a 1±ε approximation in O(1/ε2) space– Sketches for entropy give a 1±ε approximation in O(1/ε2) space

– Sketches are combined to produce a sketch of the whole dbn

– Total cost is O(k/(τε3) log2 N)

� Lower bound for deterministic algorithms: Ω(kε-1/2 log (εN/k))

– Room for improvement in dependence on ε, log N
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General Non-linear Functions

� For general, non-linear f(), the problem becomes a lot harder!

S1 Sk

Query:  f(S1,…,Sk) > τ ?
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� For general, non-linear f(), the problem becomes a lot harder!

– E.g., information gain over global data distribution 

� Non-trivial to decompose the global threshold into “safe” local 

site constraints

� E.g., consider N=(N1+N2)/2 and f(N) = 6N – N2 > 1

Tricky to break into thresholds for f(N1) and f(N2)



The Geometric Approach

� A general purpose geometric approach [Scharfman et al.’06]

� Each site tracks a local statistics vector vi (e.g., data distribution)

� Global condition is  f(v) > τ, where  v = ∑iλi vi (∑iλi = 1)

– v = convex combination of local statistics vectors
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– v = convex combination of local statistics vectors

� All sites share estimate e =∑ιλi vi
’ of v

based on latest update vi
’ from site i

� Each site i tracks its drift from its most recent update Δvi = vi-vi
’



Covering the convex hull

� Key observation:   v = ∑iλi⋅(e+Δvi)    

(a convex combination of “translated” local drifts)

� v lies in the convex hull of 

the (e+Δvi) vectors 

� Convex hull is completely 
∆v1

∆v2

Continuous Distributed Monitoring22

� Convex hull is completely 

covered  by spheres with 

radii ||Δvi/2||2 centered at 

e+Δvi/2

� Each such sphere can be 

constructed independently

e

∆v1

∆v3

∆v4
∆v5



Monochromatic Regions

� Monochromatic Region:  For all points x in the region f(x) is on 

the same side of the threshold (f(x) > τ or f(x) ≤ τ)

� Each site independently checks its sphere is monochromatic 

– Find max and min for f() in local sphere region (may be costly)

– Broadcast updated value of vi if not monochrome
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e

∆v1

∆v2

∆v3

∆v4
∆v5

f(x) > τ



Restoring Monochomicity

� After broadcast,  ||Δvi||2 = 0 ⇒ Sphere at i is monochromatic
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e

∆v1

∆v2

∆v3

∆v4
∆v5

f(x) > τ



Restoring Monochomicity

� After broadcast,  ||Δvi||2 = 0 ⇒ Sphere at i is monochromatic

– Global estimate e is updated, which may cause more site update 

broadcasts

� Coordinator case: Can allocate local slack vectors to sites to 

enable “localized” resolutions

– Drift (=radius) depends on slack (adjusted locally for subsets)
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– Drift (=radius) depends on slack (adjusted locally for subsets)

e

∆v1

∆v2

∆v3 = 0∆v4
∆v5

f(x) > τ



Extension: Transforms and Shifts

� Subsequent extensions further reduce cost [Scharfman et al. 10]

– Same analysis of correctness holds 

when spheres are allowed to be ellipsoids

– Additional offset vectors can be used 

to increase radius when close to 

threshold values
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threshold values

– Combining these observations

allows additional cost savings
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Drawing a Sample

� A basic ‘set monitoring’ problem is to draw a uniform sample

� Given inputs of total size N, draw a sample of size s

– Uniform over all subsets of size s

� Overall approach:

– Define a general sampling technique amenable to distribution– Define a general sampling technique amenable to distribution

– Bound the cost

– Extend to sliding windows
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Binary Bernoulli Sampling

� Always sample with probability p = 2-i

� Randomly pick i bits, each of which is 0/1 with probability ½

� Select item if all i random bits are 0

� (Conceptually) store the random bits for each item

– Can easily pick more random bits if the sampling rate decreases– Can easily pick more random bits if the sampling rate decreases
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Sampling Protocol

� Protocol based on [C., Muthukrishnan, Yi, Zhang 10]

� In round i, each site samples with p = 2-i

– Sampled items are sent to the coordinator

– Coordinator picks one more random bit

– End round i when coordinator has s items with (i+1) zeros– End round i when coordinator has s items with (i+1) zeros

– Coordinator informs each site that a new round has started

– Coordinator picks extra random bits for items in its sample
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Protocol Costs

� Correctness: coordinator always has (at least) s items

– Sampled with the same probability p

– Can subsample to reach exactly s items

� Cost: each round is expected to send O(s) items total

– Can bound this with high probability via Chernoff bounds– Can bound this with high probability via Chernoff bounds

– Number of rounds is similar bounded as O(log N)

– Communication cost is O((k+s) log N) 

� Lower bound on communication cost of Ω(k + s log N)

– At least this many items are expected to appear in the sample

– O(k log (k/sN) + s log n) upper bound by adjusting probabilities
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Extension: Sliding Window

Current window

T 2T 3T 4T

Departing Arriving

� Extend to sliding windows: only sample from last T arrivals

� Key insight: can break window into ‘arriving’ and ‘departing’

– Use multiple instances of Countdown protocol to track expiries

� Cost of such a protocol is O(ks log (W/s))

– Near-matching Ω(ks log(W/ks)) lower bound
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Early Work

� Continuous distributed monitoring arose in several places:

– Networks: Reactive monitoring [Dilman Raz 01]

– Databases: Distributed triggers [Jain et al. 04]

� Initial work on tracking multiple values

– “Adaptive Filters” [Olston Jiang Widom 03]– “Adaptive Filters” [Olston Jiang Widom 03]

– Distributed top-k [Babcock Olston 03]
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Filters
x

“push”

Filters
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adjust



Prediction Models

� Prediction further reduces cost [C, Garofalakis, Muthukrishnan, Rastogi 05]

– Combined with approximate (sketch) representations

Prediction used at 

coordinator for query 

answering

p
Rif )( Rifpsk
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Predicted Distribution
Prediction error 

tracked locally

by sites

(local constraints) 

True Distribution (at site)

Rif

True Sketch (at site)

)(sk Rif

Predicted Sketch



Problems in Distributed Monitoring

� Much interest in these problems in TCS and Database areas

� Many specific functions of (global) data distribution studied:

– Set expressions [Das Ganguly Garofalakis Rastogi 04]

– Quantiles and heavy hitters [C, Garofalakis, Muthukrishnan, Rastogi 05]

– Number of distinct elements [C., Muthukrishnan, Zhuang 06]– Number of distinct elements [C., Muthukrishnan, Zhuang 06]

– Conditional Entropy [Arackaparambil, Bratus, Brody, Shubina 10]

– Spectral properties of data matrix [Huang et al. 06]

– Anomaly detection in networks [Huang et al. 07]

� Track functions only over sliding window of recent events

– Samples [C, Muthukrishnan, Yi, Zhang 10]

– Counts and frequencies [Chan Lam Lee Ting 10]
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Other Work

� Many open problems remain in this area

– Improve bounds for previously studied problems

– Provide bounds for other important problems

– Give general schemes for larger classes of functions

� Much ongoing work� Much ongoing work

– See EU-support LIFT project, lift-eu.org

� Two specific open problems:

– Develop systems and tools for continuous distributed monitoring

– Provide a deeper theory for continuous distributed monitoring
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Monitoring Systems

� Much theory developed, but less progress on deployment

� Some empirical study in the lab, with recorded data

� Still applications abound: Online Games [Heffner, Malecha 09]

– Need to monitor many varying stats and bound communication

� Several steps to follow:� Several steps to follow:

– Build libraries of code for basic monitoring problems

– Evolve these into general purpose systems (distributed DBMSs?)

� Several questions to resolve:

– What functions to support?  General purpose, or specific?

– What keywords belong in a query language for monitoring?

Continuous Distributed Monitoring38



Theoretical Foundations

“Communication complexity” studies lower bounds of distributed 

one-shot computations

� Gives lower bounds for various problems,  e.g., 

count distinct (via reduction to abstract problems)

� Need new theory for continuous computations

– Based on info. theory and models of how streams evolve?
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– Based on info. theory and models of how streams evolve?

– Link to distributed source coding or network coding?
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Concluding Remarks

� Continuous distributed monitoring is a natural model

� Captures many real world applications

� Much non-trivial work in this model

� Much work remains to do!
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Thank You!
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