
1

What’s New: Finding
Significant Differences in
Network Data Streams

S. Muthukrishnan
muthu@cs.rutgers.edu

Graham Cormode

2

Network Data Analysis

Network managers must measure and analyze traffic:

• Maintenance: Failure detection, routing optimization

• Provisioning: Usage monitoring, prediction

• Accounting: Billing, TOS abuse, marketing

• Security: Intrusion detection, attacker identification

3

The Problem

Metadata observed while routing packets in IP
networks is truly massive.

The size of packet headers seen per hour per router
can be gigabytes

Too much information to store or transmit, but each
packet is seen as it is processed

� So try (near) real time analysis of packet streams:
make summary based on live traffic, query offline

4

Challenges

Many challenges for near-real time analysis:

• Full packet logs not normally kept for later analysis,
so cannot backtrack on past data

• Want to record information in network, at line
speeds

• Must use small (SRAM) memory, limited memory
accesses to keep pace of OC48 speeds.

5

Network Data Analysis

Fundamental network management questions often
map onto “simple” functions of the data:

• How many distinct host addresses?

• Destinations using most bandwidth?

• Address with biggest change in traffic overnight?

The complexity arises from having limited space and fast
response requirements.

6

What's New?

• Focus on a particular problem, Change Detection.

• Find the item with biggest change in traffic
between two measurements

• Could be between difference between traffic on
different days, or on different links, etc.

• Many ways to measure 'change' in behavior, we use
changes in traffic size per address

7

Measuring Change

Call an item (address) with large change a deltoid.
Measure change as:

• Absolute change: find large difference in traffic —
Find all i so |x[i] − y[i]| > φ ||x − y||
||x - y || is sum of changes, φ is threshold < 1

• Relative change: find large percentage difference

• Variational Change: find large variance in readings
over several measurements

8

Change Detection

• Use Non-Adaptive Group Testing: will pick groups
of items in a randomized fashion

• Within each group, test for "deltoids": items that
have shown a large change in behavior

• Must keep enough information to recover identity
of deltoids.

• We separate the structure of the groups from the
tests, and consider each in turn.

9

Groups: Simple Case

• Suppose there is just one large item, i, whose
“weight” is more than half the weight of all items.

• Use a pan-balance metaphor:
this item will always be on
the heavier side

• Assume we have a test which tells us which group
is heavy. The large item is always in that group.

• Arrange these tests to let us identify the deltoid.

10

Solving the simple case

• Keep a test of items whose identifier is odd, and for
even: result of test tells whether i is odd or even

• Similarly, keep tests for every bit position. If there
are items 1... n, then need log n tests

• Then can just read off the index of the heavy item

• Now, turn original problem into this simple case…

11

Spread into Buckets

Allocate items into buckets:

• With enough buckets, we expect to achieve the simple
case: each deltoid lands in a bucket where the rest of
weight is small

• Repeat enough times independently to guarantee
finding all deltoids

12

Group Structure

Scheme finds all deltoids with weight at least φ of total
amount of change, none with less than φ − ε.

• Use a universal hash function to divide the universe
into 2/ε groups, repeat t = log 1/δ times.

• Keep a test for each group to determine if there is a
deltoid within it. Keep 2log n subgroups in each
group based on the bit positions to identify deltoids.

Update procedure: for each update, find the groups the
items belongs to and update the corresponding tests.

13

Group Testing

• Searching: For each group whose test is positive,
read results of tests of subgroups:
if test j is positive, bit j = 1, test j' positive, bit j=0

• Avoid false positives: If test j and j' both positive,
there are two deltoids in same group, so reject the
group (also if j and j' both negative).

• Avoid false positives: Check the recovered item
belongs to that group. If so, output it as a deltoid.

• Result: Find all deltoids, if tests gave correct results.

14

Test for Absolute Changes

• Non-Adaptive Group testing: Group items in the
universe and test for a large change in each group

• Build tests based on keeping sum of traffic of items
in each (sub)group

• Tests can fail: false positives and false negatives

• Will use universal hash functions: these give simple
guarantees on probability any pair of items collide

15

Building the Test

• Suppose i is an absolute change deltoid, then
|x[i] − y[i]| > φ ||x − y||

• For each group G, keep T[G] = Σ j ∈ G (x[j] − y[j])

• Test is positive if |T[G]| > φ ||x − y||

• Argue that in each group i falls in there is a good
chance that i will be discovered as a deltoid.
Repetitions amplify this probability

16

Proof outline

Test will give false positive if
|x[i] - y[i] |< (φ−ε) ||x − y||

and |Σ j ∈ G (x[j] - y[j])| > φ ||x − y||

Test may give false negative if
|x[i] - y[i]| > (φ+ε) ||x − y||

and | Σj ∈ G (x[j] − y[j])| < φ ||x − y||

Neither can happen if (stronger condition)
Z = Σ j ∈ G, j ≠ i |(x[j] - y[j])| < ε ||x − y||

17

Proof Outline

Expectation of Z = Σ j ∈ G, j ≠ i |(x[j] - y[j])|
= Σ j Pr[hash(i)=hash(j)] * |x[j] - y[j]|
= ε/2 * ||x − y||

Pr[Z > ε ||x − y||] = Pr[Z > 2E(Z)]
< 1/2 by Markov inequality

Repetitions give high probability of finding all deltoids.

Additional (verification) tests on each item found give
low probability of false positives

18

Absolute Change Code

For each (item, count)

For a = 1 to t do

b = hash(a,item)

For c = 1 to log n do

If (bit(item,c)=1)

T[a,b,c]+=count

t can be quite small (3 or 4), can be parallelized

log n typically is 32 for IP addresses, can be reduced at
expense of more memory used

19

Relative Change Test

Keep different information for each stream.

• For stream x, keep T(x)[j] = Σ h(i) = j a(x)[i]
sum counts of items in the group

• For stream y, keep T(y)[j] = Σ h(i) = j (1/a(y)[i])
sum reciprocal of counts of items in the group

• Test: if T(x)[j]*T(y)[j] > φ Σ (a(x)[i]/a(y)[i])
test if product of counts exceeds threshold

• Must be able to find (1/a(y)[i]) – open problem to
remove this restriction

20

Relative Change Test

• Test has one-sided error, will always say yes if
(a(x)[i]/a(y)[i])> φ Σ (a(x)[i]/a(y)[i])

• To bound false positives, and ensure true positives
are not obscured by noise, need to argue that each
test gives good enough estimate of (a(x)[i]/a(y)[i])

• In full paper, show that expected error is
½ ε ||a(x)||1 ||1/a(y)||1. So with constant probability
this is good estimate of the change.

• The group structure amplifies this probability to 1-δ

21

Results

• With probability 1-δ, all deltoids are found, no
items which are far from being deltoids

• Space is O(1/ε log n log 1/δ)
Update time is O(log n log 1/δ) per item
Time to search is linear in the space used

• The same group structure works for different
objective functions, if there is an efficient test.

22

Experiments

Precision of Relative Deltoids on phone data,
phi=0.1%, delta=0.25

0
0.2
0.4
0.6
0.8

1

0.1
00

%
0.0

79
%

0.0
63

%
0.0

50
%

0.0
40

%
0.0

32
%

0.0
25

%
0.0

20
%

0.0
16

%
0.0

13
%

0.0
10

%

Epsilon
Pr

ec
is

io
n

Group Testing

Sampling

Recall of Relative Deltoids on phone data,
phi=0.1%, delta=0.25

0
0.2
0.4
0.6
0.8

1

0.1
00

%
0.0

79
%

0.0
63

%
0.0

50
%

0.0
40

%
0.0

32
%

0.0
25

%
0.0

20
%

0.0
16

%
0.0

13
%

0.0
10

%

Epsilon

R
ec

al
l

Group Testing

Sampling

Recall = fraction of deltoids found Precision = fraction of returned
items that are deltoids

Relative Changes

23

Experiments

Absolute Changes

24

Experiments

Timing Comparison for Detecting Different
Changes with Group Testing

0
500,000

1,000,000
1,500,000
2,000,000
2,500,000

0.5
00

0.2
50

0.1
25

0.0
63

0.0
31

0.0
16

0.0
08

0.0
04

0.0
02

0.0
01

Delta

Items /
Second

Relative Change

Absolute Change

Variance

Experiments run on lightly loaded 2.4GHz PC

25

Conclusions

• Fast, efficient way to keep summaries of observed
traffic.

• Items with large change in behavior can be
recovered easily.

• Easy to add, subtract, scale summaries to find
changes from average or other prediction models.

• Gives a new tool for network data analysis

26

27

Probability Calculation

E(Xij) = E(T(x)[j]*T(y)[j] - (a(x)[i]/a(y)[i]))
= (a(x)[i] + a(x)[j] | h(j) = h(i))*

(1/a(y)[i] + 1/a(y)[j] | h(j) = h(i))
- (a(x)[i]/a(y)[i])

≤ a(x)[i]*p*Σ 1/a(y)[j] + 1/a(y)[i]*p*Σ a(x)[j]
+ p*(Σj≠i a(x)[j])*(Σj≠i 1/a(y)[j])

≤ p(Σa(x)[i])*(Σ1/a(y)[i])= ε||a(x)||1 ||1/a(y)||1/2

•Error variable Xij = T(x)[j]*T(y)[j] - (a(x)[i]/a(y)[i])
and let p = Pr[h(i) = h(j)] = 1/#groups = ε/2

28

Details

• Error term is ε||a(x)||1 ||1/a(y)||1 not Σ (a(x)[i]/a(y)[i])
— but the latter is not possible in small space

• Requires one of the streams to be aggregated and
reformatted, to compute 1/a(y).

• No problem if streams are naturally aggregated (eg
SNMP data)

• Scenario: enough space to capture one stream,
then "compress" into Group Testing data structure
for later comparison and analysis with new streams

29

Data Stream Model

• Stream defines a vector x[1..U], initially all 0
In networks U =232 or 264, too big to store

• Stream of updates (i, cj): x[i] = x[i] + cj
Each packet is an update: i= IP address, cj=size

