What's Hot, What's Not, What's New and What's Next

Graham Cormode, DIMACS
graham@dimacs.rutgers.edu

Joint work with S. Muthukrishnan
Outline

- What's the problem?
- What's hot and what's not?
- What's new?
- What's next?
Data Stream Phenomenon

- Networks are sources of massive data: just metadata per hour per router is gigabytes
- Too much information to store or transmit
- So process data as it arrives: one pass, small space
- Approximate answers to most questions are OK
Network Stream Problems

Questions on networks are often simple, complexity comes from space and time restrictions.

- How many distinct host addresses?
- Destinations using most bandwidth?
- Address with biggest change in traffic overnight?
Data Stream Algorithms

- Recent interest in "data stream algorithms": small space, one pass approximations
- Alon, Matias, Szegedy 96: frequency moments
 Henzinger, Raghavan, Rajagopalan 98 graph streams
- In last few years:
 Counting distinct items, finding frequent items, quantiles, wavelet and Fourier representations, histograms...
The Gap

A big gap between theory and practice: good theory results aren't yet ready for primetime.

Approximate within $1 \pm \epsilon$ with probability $> 1 - \delta$. Eg: AMS sketches for F_2 estimation, set $\epsilon = 1\%$, $\delta = 1\%$

- Space $O(1/\epsilon^2 \log 1/\delta)$ is approx 10^6 words = 4Mb
 Network device may have 100k-4Mb space total

- Each data item requires pass over whole space
 At network line speeds can afford a few dozen memory accesses, perhaps more with parallelization
Bridging the Gap

• The Count-Min sketch and change detection data structures attempt to bridge the gap

• Simple, small, fast data stream summaries which have application to a large number of problems

• Some subtlety: to beat $1/\varepsilon^2$ lower bounds, must explicitly avoid estimating frequency moments

• Applications to fundamental problems in networks, finding heavy hitters and large changes
Outline

• What's the problem?

• What's hot and what's not?

• What's new?

• What's next?
1. Heavy Hitters

- Focus on the Heavy Hitters problem: Find users (IP addresses) consuming more than 1% of bandwidth

- In algorithms, "Frequent Items": Find items and their counts when count more than ϕN

- Heavily studied problem (arrivals only): Charikar, Chen, Farach-Colton 02, Karp, Papadimitriou, Shenker 03, Manku, Motwani 02, Demaine, LopezOrtiz, Munro 02
Stream of Packets

- Packets arrive in a stream. Extract from header:
 - Identifier, i: Source or destination IP address
 - Count: connections / packets / bytes

- Stream defines a vector $a[1..U]$, initially all 0
 - Each packet increases one entry, $a[i]$.
 - In networks $U = 2^{32}$ or 2^{64}, too big to store

- Heavy Hitters are those i's where $a[i] > \phi N$
 - Maintain $N = \text{sum of counts}$
Heavy Hitters Solution

Naive solution: keep the array a and for every item in the stream, test whether $a[i] > \phi N$, keep heap of items

Solution here: replace $a[i]$ with a small data structure which approximates all $a[i]$ upto εN with prob $1-\delta$

Ingredients:

- 2-wise hash fns $h_1...h_{\log \frac{1}{\delta}} \{1..U\} \rightarrow \{1..\frac{2}{\varepsilon}\}$

- Array of counters $CM[1..\frac{2}{\varepsilon}, 1..\log_2 \frac{1}{\delta}]$
Update Algorithm

\[h_1(i) \]

\[h_{\log \frac{1}{\delta}}(i) \]

CM Sketch

\[\log \frac{1}{\delta} \]

\[\frac{2}{\varepsilon} \]
Approximation

Approximate \(\hat{a}[i] = \min_j CM[h_j(i),j] \)

Analysis: In j'th row, \(CM[h_j(i),j] = a[i] + X_{i,j} \)

\[
X_{i,j} = \sum a[k] \mid h_j(i) = h_j(k)
\]

\[
E(X_{i,j}) = \sum a[k] \cdot \Pr[h_j(i) = h_j(k)] \\
\leq \Pr[h_j(i) = h_j(k)] \cdot \sum a[k] \\
= \varepsilon N/2 \text{ by pairwise independence of } h
\]
Analysis

\[\Pr[X_{i,j} \geq \varepsilon N] = \Pr[X_{i,j} \geq 2E(X_{i,j})] \leq 1/2 \text{ by Markov inequality} \]

Hence, \[\Pr[\hat{a}[i] \geq a[i] + \varepsilon N] = \Pr[\forall j. X_{i,j} > \varepsilon N] \leq 1/2^{\log 1/\delta} = \delta \]

Final result:
 with certainty \(a[i] \leq \hat{a}[i] \) and
 with probability at least \(1-\delta \), \(\hat{a}[i] < a[i] + \varepsilon N \)
Results

• Every item with count $> \phi N$ is output and with prob $1-\delta$, each item in output has count $> (\phi-\epsilon)N$

• Space $= \frac{2}{\epsilon} \log_2 \frac{1}{\delta}$ counters + $\log_2 \frac{1}{\delta}$ hash fns
 Time per update $= \log_2 \frac{1}{\delta}$ hashes
 (2-wise hash functions are fast and simple)

• Fast enough and lightweight enough for use in network implementations

• Something novel: allows arbitrary fractional and negative updates to counters, so more flexible
Implementations

Implementations work pretty well, better than theory suggests: 2 or 3 hash functions suffice in practice.

Running in AT&T's Gigascope, on live 2.4Gbs streams

- Each query may fire many instantiations of CM sketch, how do they scale?
- Should sketching be done at low level (close to NIC) or at high level (after aggregation)?
- Always allocate space for a sketch, or run exact algorithm until count of distinct IPs is large?
Frequent Items with Deletions

- When items are deleted (e.g., in a database relation), finding frequent items more difficult.

- Items from the past may become frequent, following a deletion, so need to be able to recover item labels.

- Impose a (binary) tree structure on the universe, nodes correspond to sum of counts of leaves.

- Keep a sketch for each level and search the tree for frequent items with divide and conquer.
Deletions - Fine Details

- Other sketches could be used but CM sketch guarantees to find all hot items, smaller space.
- Binary tree costs factor of $\log U$ in update time and space, can be improved by using tree of higher branching factor, at cost of search time.
- Meta-question: do deletions really occur in Network data at the packet level?
- Meta-answer: usually no. But negative values occur when you compare streams by subtraction...
Outline

- What's the problem?
- What's hot and what's not?
- What's new?
- What's next?
2. Change Detection

- Find items with big change between streams x and y
 Find IP addresses with big change in traffic overnight

- "Change" could be absolute difference in counts, or large ratio, or large variance...

- Absolute difference: find large values in \(a(x) - a(y) \)
 Relative difference: find large values \(\frac{a(x)[i]}{a(y)[i]} \)

- CM sketch can approximate the differences, but how to find the items without testing everything? Divide and conquer will not work here!
Change Detection

- Use **Non-Adaptive Group Testing**: (randomized) structure of CM sketch defines groups of items

- Within each group, **test** for "deltoids": keep more information than just counts.

- Test depends on kind of deltoid being searched for, but same structure of groups used for all.
Group Structure

- Use a 2-wise hash function to divide the universe into $2/\varepsilon$ groups, as in CM sketch.
- Repeat $\log 1/\delta$ times to amplify probability.
- Keep a test for each group to determine if there is a deltoid within it.
- If there is a deltoid in the group need to identify it, so also keep tests on subsets of each group.
Group Sub-Structure

- Keep $2 \log U$ subgroups in each group based on Hamming code.

- For each item i in group, include i in subgroup j if j'th bit of i is 1, else include in subgroup j'.

- To find deltoids, read results of tests of subgroups: if test j is positive, bit $j = 1$, test j' positive, bit $j = 0$.

- If j and j' both positive, two deltoids in same group, reject the group (also if j and j' both negative).
Tests

- How to construct a test for the presence of a deltoid?

- Naively, could keep sketch for each group, but space blows up \((1/\varepsilon^2\text{ or worse})\)

- For absolute change deltoids, keeping counts of items suffices, proof similar to CM sketch

- For relative change, appropriate counts also suffice, new proof needed.
Relative Change Test

- Keep different information for each stream.

- For stream x, keep $T(x)[j] = \sum a(x)[i] \mid h(i) = j$

- For stream y, keep $T(y)[j] = \sum (1/a(y)[i]) \mid h(i) = j$

- Test: if $T(x)[j]*T(y)[j] > \phi \sum (a(x)[i] / a(y)[i])$

- Test has one-sided error, will always say yes if $(a(x)[i] / a(y)[i]) > \phi \sum (a(x)[i] / a(y)[i])$
Relative Change Test

- To bound false positives, and ensure true positives are not obscured by noise, need to argue that each test gives good enough estimate of \(\frac{a(x)[i]}{a(y)[i]} \)

- Error variable \(X_{ij} = T(x)[j]*T(y)[j] - \frac{a(x)[i]}{a(y)[i]} \)
 and let \(p = \Pr[h(i) = h(j)] = 1/ \#\text{groups} = \frac{\varepsilon}{2} \)
E(X_{ij}) = E(T(x)[j]*T(y)[j] - (a(x)[i]/a(y)[i]))
= (a(x)[i] + a(x)[j] | h(j) = h(i))*
 (1/a(y)[i] + 1/a(y)[j] | h(j) = h(i))
 - (a(x)[i]/a(y)[i])

\leq a(x)[i]*p*\sum 1/a(y)[j] + 1/a(y)[i]*p*\sum a(x)[j]
 + p*(\sum_{j \neq i} a(x)[j] + \sum_{j \neq i} 1/a(y)[j])

\leq p(\sum a(x)[i])*(\sum 1/a(y)[i]) = \varepsilon ||a(x)||_1 ||1/a(y)||_1 / 2
Consequences

- Expected error is $1/2$ of $\varepsilon \|a(x)\|_1 \|1/a(y)\|_1$

- By Markov again, constant probability that there is error at most $\varepsilon \|a(x)\|_1 \|1/a(y)\|_1$ for each test, amplify to probability $1-\delta$ with $\log 1/\delta$ tests

- Can argue that if this condition is met, and $\varepsilon < \phi$, then will find relative change deltoid with probability at least $1-\delta$

- With probability $1-\delta$, every item output has change at least $\phi \sum (a(x)[i]/a(y)[i]) - \varepsilon \|a(x)\|_1 \|1/a(y)\|_1$
Nuances

- Error term is $\varepsilon \|a(x)\|_1 \|1/a(y)\|_1$ not $\sum (a(x)[i]/a(y)[i])$ — but the latter is not possible in small space.

- Requires one of the streams to be aggregated and reformatted, to compute $1/a(y)$.

- No problem if streams are naturally aggregated (e.g., SNMP data).

- Scenario: enough space to capture one stream, then "compress" into Group Testing data structure for later comparison and analysis with new streams.
Results

• Show that with probability $1-\delta$, all deltoids are found, no items which are far from being deltoids

• Space is $O\left(\frac{1}{\varepsilon \log U \log \frac{1}{\delta}}\right)$
 Update time is $O\left(\log U \log \frac{1}{\delta}\right)$
 Time to search is linear in the space used

• First one pass solution for absolute change deltoids, and first result on relative change deltoids
Experiments

Recall = fraction of deltoids found

Precision = fraction of returned items that are deltoids

Full details to appear in INFOCOM ‘04
Improvements

• Can keep additional tests (CM sketches) to verify the candidate items, reduces space for identification.

• log U factor can be painful for high speed data, can decrease this at the cost of more space...

• Instead of reading off one bit at a time, read off one nibble (4x speed, 4x space), or one byte (8x speed, 32x space).
Outline

• What's the problem?

• What's hot and what's not?

• What's new?

• What's next?
Other Applications

These techniques can be applied to several other fundamental stream problems:

- Range Sum Estimation
- Inner Product Estimation
- Approximate Quantiles Finding
- Hierarchical Heavy Hitters (HHH) etc.
- Wavelets and Histograms…

Pairwise independence sufficient for all

Group testing paradigm approach is fundamental
Ongoing Work

- **Agenda:** Move other stream algorithms from the theoretical to the practical

- More implementations and experiments with existing and developing work

- Other problems: eg Burst detection on text streams

- Other scenarios: Items in hierarchies, eg IP addresses (HHH in VLDB 03, HHHHH in progress)
Other Directions

- Massive geometric data — streams of points from mobile clients. Massive Graphs — streams of edges

- Some problems can be solved by turning them into vector style problems and using sketches etc.

- More satisfying to find new solutions. Eg, Radial Histogram: a division space allowing approximation of geometric aggregates, join size estimation.
Questions

• Why do ghouls and demons hang out together?

• Because demons are a ghouls best friend.