
1

What's Hot, What's Not,
What's New and What's Next

Graham Cormode, DIMACS
graham@dimacs.rutgers.edu

Joint work with S. Muthukrishnan

2

Outline

• What's the problem?

• What's hot and what's not?

• What's new?

• What's next?

3

Data Stream Phenomenon

• Networks are sources of massive data: just
metadata per hour per router is gigabytes

• Too much information to store or transmit

• So process data as it arrives: one pass, small space

• Approximate answers to most questions are OK

4

Network Stream Problems

Questions on networks are often simple, complexity
comes from space and time restrictions.

• How many distinct host addresses?

• Destinations using most bandwidth?

• Address with biggest change in traffic overnight?

5

Data Stream Algorithms

• Recent interest in "data stream algorithms":
small space, one pass approximations

• Alon, Matias, Szegedy 96: frequency moments
Henzinger, Raghavan, Rajagopalan 98 graph streams

• In last few years:
Counting distinct items, finding frequent items,
quantiles, wavelet and Fourier representations,
histograms...

6

The Gap

A big gap between theory and practice: good theory
results aren't yet ready for primetime.

Approximate within 1±ε with probability > 1-δ. Eg:
AMS sketches for F2 estimation, set ε=1%, δ=1%

• Space O(1/ε2 log 1/δ) is approx 106 words = 4Mb
Network device may have 100k-4Mb space total

• Each data item requires pass over whole space
At network line speeds can afford a few dozen
memory accesses, perhaps more with parallelization

7

Bridging the Gap

• The Count-Min sketch and change detection data
structures attempt to bridge the gap

• Simple, small, fast data stream summaries which
have application to a large number of problems

• Some subtlety: to beat 1/ε2 lower bounds, must
explicitly avoid estimating frequency moments

• Applications to fundamental problems in networks,
finding heavy hitters and large changes

8

Outline

• What's the problem?

• What's hot and what's not?

• What's new?

• What's next?

9

1. Heavy Hitters

• Focus on the Heavy Hitters problem: Find users (IP
addresses) consuming more than 1% of bandwidth

• In algorithms, "Frequent Items": Find items and their
counts when count more than φN

• Heavily studied problem (arrivals only): Charikar,
Chen, Farach-Colton 02, Karp,Papadimitriou,Shenker 03,
Manku, Motwani 02, Demaine, LopezOrtiz, Munro 02

10

Stream of Packets

• Packets arrive in a stream. Extract from header:
Identifier, i: Source or destination IP address
Count: connections / packets / bytes

• Stream defines a vector a[1..U], initially all 0
Each packet increases one entry, a[i].
In networks U =232 or 264, too big to store

• Heavy Hitters are those i's where a[i]>φN
Maintain N = sum of counts

11

Heavy Hitters Solution

Naive solution: keep the array a and for every item in
the stream, test whether a[i]>φN, keep heap of items

Solution here: replace a[i] with a small data structure
which approximates all a[i] upto εN with prob 1-δ

Ingredients:

–2-wise hash fns h1..hlog 1/δ {1..U}� {1..2/ε}

–Array of counters CM[1..2/ε, 1..log2 1/δ]

12

Update Algorithm

+count

+count

+count

+count

h1(i)

hlog 1/δ(i)

i,count

CM Sketch
2/ε

log 1/δ

13

Approximation

Approximate â[i] = minj CM[hj(i),j]

Analysis: In j'th row, CM[hj(i),j] = a[i] + Xi,j

Xi,j = Σ a[k] | hj(i) = hj(k)

E(Xi,j) = Σ a[k]*Pr[hj(i)=hj(k)]
≤ Pr[hj(i)=hj(k)] * Σ a[k]
= εN/2 by pairwise independence of h

14

Analysis

Pr[Xi,j ≥ εN] = Pr[Xi,j ≥ 2E(Xi,j)]
≤ 1/2 by Markov inequality

Hence, Pr[â[i] ≥ a[i] + εN] = Pr[∀ j. Xi,j > εN]
≤ 1/2log 1/δ = δ

Final result:
with certainty a[i] ≤ â[i] and
with probability at least 1-δ, â[i]< a[i]+εN

15

Results

• Every item with count > φN is output and with
prob 1-δ, each item in output has count > (φ-ε)N

• Space = 2/ε log2 1/δ counters + log2 1/δ hash fns
Time per update = log2 1/δ hashes
(2-wise hash functions are fast and simple)

• Fast enough and lightweight enough for use in
network implementations

• Something novel: allows arbitrary fractional and
negative updates to counters, so more flexible

16

Implementations

Implementations work pretty well, better than theory
suggests: 2 or 3 hash functions suffice in practice

Running in AT&T's Gigascope, on live 2.4Gbs streams

– Each query may fire many instantiations of CM
sketch, how do they scale?

– Should sketching be done at low level (close to
NIC) or at high level (after aggregation)?

– Always allocate space for a sketch, or run exact
algorithm until count of distinct IPs is large?

17

Frequent Items with Deletions

• When items are deleted (eg in a database relation),
finding frequent items more difficult.

• Items from the past may become frequent,
following a deletion, so need to be able to recover
item labels.

• Impose a (binary) tree structure on the universe,
nodes correspond to sum of counts of leaves.

• Keep a sketch for each level and search the tree for
frequent items with divide and conquer.

18

Deletions - Fine Details

• Other sketches could be used but CM sketch
guarantees to find all hot items, smaller space

• Binary tree costs factor of log U in update time and
space, can be improved by using tree of higher
branching factor, at cost of search time.

• Meta-question: do deletions really occur in
Network data at the packet level?

• Meta-answer: usually no. But negative values
occur when you compare streams by subtraction...

19

Outline

• What's the problem?

• What's hot and what's not?

• What's new?

• What's next?

20

2. Change Detection

• Find items with big change between streams x and y
Find IP addresses with big change in traffic overnight

• "Change" could be absolute difference in counts, or
large ratio, or large variance...

• Absolute difference: find large values in a(x) - a(y)
Relative difference: find large values a(x)[i]/a(y)[i]

• CM sketch can approximate the differences, but how
to find the items without testing everything? Divide
and conquer will not work here!

21

Change Detection

• Use Non-Adaptive Group Testing: (randomized)
structure of CM sketch defines groups of items

• Within each group, test for "deltoids": keep more
information than just counts.

• Test depends on kind of deltoid being searched for,
but same structure of groups used for all.

22

Group Structure

• Use a 2-wise hash function to divide the universe
into 2/ε groups, as in CM sketch

• Repeat log 1/δ times to amplify probability

• Keep a test for each group to determine if there is a
deltoid within it.

• If there is a deltoid in the group need to identify it,
so also keep tests on subsets of each group.

23

Group Sub-Structure

• Keep 2log U subgroups in each group based on
Hamming code

• For each item i in group, include i in subgroup j if
j'th bit of i is 1, else include in subgroup j'

• To find deltoids, read results of tests of subgroups:
if test j is positive, bit j = 1, test j' positive, bit j=0

• If j and j' both positive, two deltoids in same group,
reject the group (also if j and j' both negative)

24

Tests

• How to construct a test for the presence of a
deltoid?

• Naively, could keep sketch for each group, but
space blows up (1/ε2 or worse)

• For absolute change deltoids, keeping counts of
items suffices, proof similar to CM sketch

• For relative change, appropriate counts also suffice,
new proof needed.

25

Relative Change Test

• Keep different information for each stream.

• For stream x, keep T(x)[j] = Σ a(x)[i] | h(i) = j

• For stream y, keep T(y)[j] = Σ (1/a(y)[i]) | h(i) = j

• Test: if T(x)[j]*T(y)[j] > φ Σ (a(x)[i]/a(y)[i])

• Test has one-sided error, will always say yes if
(a(x)[i]/a(y)[i])> φ Σ (a(x)[i]/a(y)[i])

26

Relative Change Test

• To bound false positives, and ensure true positives
are not obscured by noise, need to argue that each
test gives good enough estimate of (a(x)[i]/a(y)[i])

• Error variable Xij = T(x)[j]*T(y)[j] - (a(x)[i]/a(y)[i])
and let p = Pr[h(i) = h(j)] = 1/#groups = ε/2

27

Illegible Equations Slide

E(Xij) = E(T(x)[j]*T(y)[j] - (a(x)[i]/a(y)[i]))
= (a(x)[i] + a(x)[j] | h(j) = h(i))*

(1/a(y)[i] + 1/a(y)[j] | h(j) = h(i))
- (a(x)[i]/a(y)[i])

≤ a(x)[i]*p*Σ 1/a(y)[j] + 1/a(y)[i]*p*Σ a(x)[j]
+ p*(Σj≠i a(x)[j])*(Σj≠i 1/a(y)[j])

≤ p(Σa(x)[i])*(Σ1/a(y)[i])= ε||a(x)||
1

||1/a(y)||1/2

28

Consequences

• Expected error is 1/2 of ε ||a(x)||
1

||1/a(y)||1

• By Markov again, constant probability that there is
error at most ε ||a(x)||

1
||1/a(y)||1 for each test,

amplify to probability 1-δ with log 1/δ tests

• Can argue that if this condition is met, and ε < φ,
then will find relative change deltoid with
probability at least 1-δ

• With probability 1-δ, every item output has change
at least φ Σ (a(x)[i]/a(y)[i]) - ε ||a(x)||

1
||1/a(y)||1

29

Nuances

• Error term is ε||a(x)||1 ||1/a(y)||1 not Σ (a(x)[i]/a(y)[i])
— but the latter is not possible in small space

• Requires one of the streams to be aggregated and
reformatted, to compute 1/a(y).

• No problem if streams are naturally aggregated (eg
SNMP data)

• Scenario: enough space to capture one stream,
then "compress" into Group Testing data structure
for later comparison and analysis with new streams

30

Results

• Show that with probability 1-δ, all deltoids are
found, no items which are far from being deltoids

• Space is O(1/ε log U log 1/δ)
Update time is O(log U log 1/δ)
Time to search is linear in the space used

• First one pass solution for absolute change deltoids,
and first result on relative change deltoids

31

Experiments
Precision of Relative Deltoids on phone data,

phi=0.1%, delta=0.25

0
0.2
0.4
0.6
0.8

1

0.1
00

%
0.0

79
%

0.0
63

%
0.0

50
%

0.0
40

%
0.0

32
%

0.0
25

%
0.0

20
%

0.0
16

%
0.0

13
%

0.0
10

%

Epsilon

Pr
ec

is
io

n

Group Testing

Sampling

Recall of Relative Deltoids on phone data,
phi=0.1%, delta=0.25

0
0.2
0.4
0.6
0.8

1

0.1
00

%
0.0

79
%

0.0
63

%
0.0

50
%

0.0
40

%
0.0

32
%

0.0
25

%
0.0

20
%

0.0
16

%
0.0

13
%

0.0
10

%

Epsilon

R
ec

al
l

Group Testing

Sampling

Recall = fraction of deltoids found

Precision = fraction of returned
items that are deltoids

Full details to appear in
INFOCOM ‘04

Timing Comparison for Detecting Different
Changes with Group Testing

0
500,000

1,000,000
1,500,000
2,000,000
2,500,000

0.5
00

0.2
50

0.1
25

0.0
63

0.0
31

0.0
16

0.0
08

0.0
04

0.0
02

0.0
01

Delta

Items /
Second

Relative Change

Absolute Change

Variance

32

Improvements

• Can keep additional tests (CM sketches) to verify
the candidate items, reduces space for identification

• log U factor can be painful for high speed data, can
decrease this at the cost of more space...

• Instead of reading off one bit at a time, read off
one nibble (4x speed, 4x space),
or one byte (8x speed, 32x space)

33

Outline

• What's the problem?

• What's hot and what's not?

• What's new?

• What's next?

34

Other Applications

These techniques can be applied to several other
fundamental stream problems:
– Range Sum Estimation
– Inner Product Estimation
– Approximate Quantiles Finding
– Hierarchical Heavy Hitters (HHH) etc.
– Wavelets and Histograms…

Pairwise independence sufficient for all

Group testing paradigm approach is fundamental

35

Ongoing Work

• Agenda: Move other stream algorithms from the
theoretical to the practical

• More implementations and experiments with
existing and developing work

• Other problems: eg Burst detection on text streams

• Other scenarios: Items in hierarchies, eg IP
addresses (HHH in VLDB 03, HHHH in progress)

36

Other Directions

• Massive geometric data — streams of points from
mobile clients. Massive Graphs — streams of edges

• Some problems can be solved by turning them into
vector style problems and using sketches etc.

• More satisfying to find new solutions. Eg, Radial
Histogram: a division space allowing approximation
of geometric aggregates, join size estimation.

37

Questions

• Why do ghouls and demons hang out together?

• Because demons are a ghouls best friend.

