Finding Interesting Correlations with Conditional Heavy Hitters

Katsiaryna Mirylenka (University of Trento)
Themis Palpanas (University of Trento)
Graham Cormode (AT&T Labs)
Divesh Srivastava (AT&T Labs)
Streaming Data Processing

- Much big data arrives in the form of streams of updates
 - Each item in the stream gives more information
 - Stream is too large to store or forward
- Much prior work on streaming algorithms using small space
 - For “heavy hitters” (frequent items, frequent itemsets)
 - For quantiles, entropy and other statistical quantities
 - For data mining and machine learning (clustering, classifiers)
- Common application domains:
 - Network health monitoring (anomaly detection)
 - Intrusion detection over streams of events
Limitations of current approaches

Existing streaming primitives not always suited to these cases:

- Tracking heavy hitters in network monitoring is too crude
 - Some sources or destinations are always popular
 - These may drown out the informative cases
 - Want to study data at a finer level of detail

- Frequent itemset mining in intrusion detection is not scalable
 - Enormous search space of possible combinations
 - Existing algorithms need a lot of space
 - Do not offer ‘real-time’ performance

- Want mining primitive between these two extremes
 - Finer than heavy hitters, simpler than frequent itemsets
Observation: much data can be abstracted as pairs of items:
- (Source, destination) in network data
- (Current, next) states in Markov chain models
- Pairs of attributes in database systems

First item is primary, other is secondary:
- Abstract as (parent, child) pairs

Introduce the notion of conditional heavy hitters:
- (parent, child) pairs where the child is frequent given the parent
- We formalize this definition, and give algorithms to find them
Conditional Heavy Hitters Definitions

- Given parents p, and children c, define
 - f_p as the frequency (count) of parent p in the stream
 - $f_{p,c}$ as the frequency (count) of pair (p,c) in the stream
 - $Pr[p]$ as the probability of p, f_p/n
 - $Pr[c|p]$ as the *conditional* probability of c given p, $f_{p,c}/f_p$

- Conditional heavy hitters are those (p, c) pairs with $Pr[c|p] > \phi$
 - Needs refinement: if $f_p = f_{p,c} = 1$, then $Pr[c|p]=1$
 - Restrict attention to those with the top-τ largest $f_{p,c}$ values

- Still a technically difficult problem
 - Lower bound shows a lot of space needed to give guarantees
Introduce a sequence of four algorithms to find Conditional Heavy Hitters (CHH)

Initial two algorithms store information on all parents

Subsequent two algorithms track approximate information on parents

Experimental study identifies where each algorithm performs best
Space Saving Algorithm for HH

- Basic building block is an algorithm for heavy hitters (HH)
- SpaceSaving is an efficient HH algorithm [Metwally et al ‘05]
- Keeps information about k different items and their counts
 - If next item in stream is stored, update its count
 - If not, overwrite least frequent item and update count
- Guarantees error at most (n/k) on any count
- SpaceSaving (SS) often performs very well in practice

![Diagram with numbers 6, 4, and 1]
1. GlobalHH Algorithm

- Natural first approach to CHH problem:
 - Keep exact statistics on parent frequencies
 - Keep approximate counts of (parent, child) pairs via SS
 - Use approximate and exact information to estimate $Pr[c|p]$
 - Output CHHs based on these estimates

- Provides guarantees on estimated values:
 - Error in estimate of $Pr[c|p]$ is at most $n/(k f_p)$
 - Error improves if distribution is skewed
2. CondHH Algorithm

- Previous algorithm is not tuned to the CHH definition
 - SS algorithm prunes based on raw frequency
 - Instead, CondHH algorithm prunes based on (estimated) $Pr[c|p]$

- Introduce ConditionalSpaceSaving (CSS) algorithm:
 - Keeps information about k different items and their counts
 - If next item in stream is stored, update its count
 - If not, overwrite item with lowest $Pr[c|p]$ estimate, update count
 - Use some implementation tricks to make fast to update

- CondHH: use CSS for (parent, child) pairs to estimate $Pr[c|p]$
3. **FamilyHH Algorithm**

- Previous algorithms assumed we could store all parents
 - Not realistic as the domain of parents increases
- **FamilyHH**: natural generalization of **GlobalHH**
 - Keep SS for parents, and another SS for (parent, child) pairs
 - Use both approximate counts to estimate $Pr[c|p]$
- Similar worst case guarantees to **GlobalHH**
 - Given $O(k)$ space, error in $Pr[c|p]$ is at most $n/(k f_p)$
4. SparseHH Algorithm

- Last algorithm is the most involved
 - Keep SS on parents, CSS on parent, child pairs
- Given new (parent, child) pair, need to initialize its $f_{p,c}$ estimate
 - Can use additional data structures to track this information
 - Use hashing/Bloom filter techniques to minimize space
 - Experimentally determine how to divide available memory
- No worst-case guarantees on performance,
 - So we compare all algorithms empirically

![Diagram showing parent-child relationships with SS and CSS labels]
Algorithm Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Parent</th>
<th>Parent,Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GlobalHH</td>
<td>Exact</td>
<td>SS</td>
</tr>
<tr>
<td>2. CondHH</td>
<td>Exact</td>
<td>CSS</td>
</tr>
<tr>
<td>3. FamilyHH</td>
<td>SS</td>
<td>SS</td>
</tr>
<tr>
<td>4. SparseHH</td>
<td>SS</td>
<td>CSS</td>
</tr>
</tbody>
</table>

- Other algorithms proposed, performed less well
- For more details, see paper
Experimental Study

- Implemented and evaluated on variety of data
 - WorldCup data of (ClientID, ObjectID) request pairs
 - Taxicab GPS data: 54K trajectories in a 2nd order Markov model

- Distinguish between data that is sparse and dense
 - Sparse data has few distinct children per parent (on average)
 - Dense data has many distinct children per parent (on average)

- Measure precision and recall of CHH recovery
Sparse Data Results

- World Cup data is sparse: 1/10 parents have a CHH child
- CondHH and SparseHH do well, both based on CSS
 - Keep very similar information internally
 - Other methods not competitive
Dense Data Results

- Taxicab data is relatively dense, many parents have CHH child
- CondHH can take more advantage of available memory
- SparseHH converges on CondHH as more memory is used
- Other algorithms are not competitive
Throughput and Performance

- Not much variation as memory increases
- **CondHH** and **SparseHH** are slightly more expensive, due to more complex processing
- Throughput is still 5×10^5 items / second per core
Concluding Remarks

- High precision and recall of CHHs is possible on data streams
 - SparseHH algorithm works well over a variety of data types
 - CondHH is preferred when the data is more dense

- Future work:
 - Evaluate for Markov Chain parameter estimation
 - Compare to other recently proposed definitions
ParentHH Algorithm

- Keep small amount of information for each parent about its child distribution
 - Run an instance of SS for each parent
 - Track child distribution accurately
 - Use stored information to estimate \(\Pr[c|p] \) and output CHHs

- Also provides guarantees on accuracy
 - Given total space \(k \), error in estimate of \(\Pr[c|p] \) is \(|P|/s \)
 - \(P \) denotes total number of parents