Finding Interesting Correlations with Conditional Heavy Hitters

Katsiaryna Mirylenka (University of Trento) Themis Palpanas (University of Trento) **Graham Cormode (AT&T Labs)** Divesh Srivastava (AT&T Labs)

Streaming Data Processing

- Much big data arrives in the form of streams of updates
 - Each item in the stream gives more information
 - Stream is too large to store or forward
- Much prior work on streaming algorithms using small space
 - For "heavy hitters" (frequent items, frequent itemsets)
 - For quantiles, entropy and other statistical quantities
 - For data mining and machine learning (clustering, classifiers)
- Common application domains:
 - Network health monitoring (anomaly detection)
- ² Intrusion detection over streams of events

Limitations of current approaches

Existing streaming primitives not always suited to these cases:

- Tracking heavy hitters in network monitoring is too crude
 - Some sources or destinations are always popular
 - These may drown out the informative cases
 - Want to study data at a finer level of detail
- Frequent itemset mining in intrusion detection is not scalable
 - Enormous search space of possible combinations
 - Existing algorithms need a lot of space
 - Do not offer 'real-time' performance
- Want mining primitive between these two extremes
 - Finer than heavy hitters, simpler than frequent itemsets

Conditional Heavy Hitters

Observation: much data can be abstracted as pairs of items

- (Source, destination) in network data
- (Current, next) states in Markov chain models
- Pairs of attributes in database systems
- First item is primary, other is secondary
 - Abstract as (parent, child) pairs
- Introduce the notion of conditional heavy hitters:
 - (parent, child) pairs where the child is frequent given the parent
 - We formalize this definition, and give algorithms to find them

Conditional Heavy Hitters Definitions

Given parents p, and children c, define

- f_p as the frequency (count) of parent p in the stream
- f_{p,c} as the frequency (count) of pair (p,c) in the stream
- Pr[p] as the probability of p, f_p/n
- Pr[c|p] as the *conditional* probability of c given p, $f_{p,c}/f_p$
- Conditional heavy hitters are those (p, c) pairs with Pr[c|p] > ♦
 - Needs refinement: if $f_p = f_{p,c} = 1$, then Pr[c|p]=1
 - Restrict attention to those with the top- τ largest $f_{p,c}$ values
- Still a technically difficult problem
 - Lower bound shows a lot of space needed to give guarantees

Outline

- Introduce a sequence of four algorithms to find Conditional Heavy Hitters (CHH)
- Initial two algorithms store information on all parents
- Subsequent two algs track approximate information on parents
- Experimental study identifies where each algorithm performs best

Space Saving Algorithm for HH

- Basic building block is an algorithm for heavy hitters (HH)
- SpaceSaving is an efficient HH algorithm [Metwally et al '05]
- Keeps information about k different items and their counts
 - If next item in stream is stored, update its count
 - If not, overwrite least frequent item and update count
- Guarantees error at most (n/k) on any count
- SpaceSaving (SS) often performs very well in practice

1. GlobalHH Algorithm

- Natural first approach to CHH problem:
 - Keep exact statistics on parent frequencies
 - Keep approximate counts of (parent, child) pairs via SS
 - Use approximate and exact information to estimate Pr[c|p]
 - Output CHHs based on these estimates
- Provides guarantees on estimated values:
 - Error in estimate of Pr[c|p] is at most n/(k f_p)
 - Error improves if distribution is skewed

2. CondHH Algorithm

Previous algorithm is not tuned to the CHH definition

- SS algorithm prunes based on raw frequency
- Instead, CondHH algorithm prunes based on (estimated) Pr[c|p]
- Introduce ConditionalSpaceSaving (CSS) algorithm:
 - Keeps information about k different items and their counts
 - If next item in stream is stored, update its count
 - If not, overwrite item with lowest Pr[c|p] estimate, update count
 - Use some implementation tricks to make fast to update
- CondHH: use CSS for (parent, child) pairs to estimate Pr[c|p]

3. FamilyHH Algorithm

- Previous algorithms assumed we could store all parents
 - Not realistic as the domain of parents increases
- FamilyHH: natural generalization of GlobalHH
 - Keep SS for parents, and another SS for (parent, child) pairs
 - Use both approximate counts to estimate Pr[c|p]
- Similar worst case guarantees to GlobalHH
 - Given O(k) space, error in Pr[c|p] is at most n/(k f_p)

4. SparseHH Algorithm

- Last algorithm is the most involved
 - Keep SS on parents, CSS on parent, child pairs
- Given new (parent, child) pair, need to initialize its f_{p.c} estimate
 - Can use additional data structures to track this information
 - Use hashing/Bloom filter techniques to minimize space
 - Experimentally determine how to divide available memory
- No worst-case guarantees on performance,
 - So we compare all algorithms empirically

Algorithm Summary

Algorithm	Parent	Parent,Child
1. GlobalHH	Exact	SS
2. CondHH	Exact	CSS
3. FamilyHH	SS	SS
4. SparseHH	SS	CSS

- Other algorithms proposed, performed less well
- For more details, see paper

Experimental Study

- Implemented and evaluated on variety of data
 - WorldCup data of (ClientID, ObjectID) request pairs
 - Taxicab GPS data: 54K trajectories in a 2nd order Markov model
- Distinguish between data that is sparse and dense
 - Sparse data has few distinct children per parent (on average)
 - Dense data has many distinct children per parent (on average)
- Measure precision and recall of CHH recovery

Sparse Data Results

- World Cup data is sparse: 1/10 parents have a CHH child
- CondHH and SparseHH do well, both based on CSS
 - Keep very similar information internally
 - Other methods not competitive

Dense Data Results

- Taxicab data is relatively dense, many parents have CHH child
- CondHH can take more advantage of available memory
- SparseHH converges on CondHH as more memory is used
- Other algorithms are not competitive

Throughput and Performance

- Not much variation as memory increases
- CondHH and SparseHH are slightly more expensive, due to more complex processing
- Throughput is still 5 x 10⁵ items / second per core

Concluding Remarks

High precision and recall of CHHs is possible on data streams

- SparseHH algorithm works well over a variety of data types
- CondHH is preferred when the data is more dense
- Future work:
 - Evaluate for Markov Chain parameter estimation
 - Compare to other recently proposed definitions

ParentHH Algorithm

- Keep small amount of information for each parent about its child distribution
 - Run an instance of SS for each parent
 - Track child distribution accurately
 - Use stored information to estimate Pr[c|p] and output CHHs
- Also provides guarantees on accuracy
 - Given total space k, error in estimate of Pr[c|p] is |P|/s
 - P denotes total number of parents

