
Finding Interesting Correlations
with Conditional Heavy Hitters

Katsiaryna Mirylenka (University of Trento)

Themis Palpanas (University of Trento)

Graham Cormode (AT&T Labs)

Divesh Srivastava (AT&T Labs)

Streaming Data Processing

 Much big data arrives in the form of streams of updates

– Each item in the stream gives more information

– Stream is too large to store or forward

 Much prior work on streaming algorithms using small space

– For “heavy hitters” (frequent items, frequent itemsets)

– For quantiles, entropy and other statistical quantities

– For data mining and machine learning (clustering, classifiers)

 Common application domains:

– Network health monitoring (anomaly detection)

– Intrusion detection over streams of events

2

Limitations of current approaches

Existing streaming primitives not always suited to these cases:

 Tracking heavy hitters in network monitoring is too crude

– Some sources or destinations are always popular

– These may drown out the informative cases

– Want to study data at a finer level of detail

 Frequent itemset mining in intrusion detection is not scalable

– Enormous search space of possible combinations

– Existing algorithms need a lot of space

– Do not offer ‘real-time’ performance

 Want mining primitive between these two extremes

– Finer than heavy hitters, simpler than frequent itemsets

3

Conditional Heavy Hitters

 Observation: much data can be abstracted as pairs of items

– (Source, destination) in network data

– (Current, next) states in Markov chain models

– Pairs of attributes in database systems

 First item is primary, other is secondary

– Abstract as (parent, child) pairs

 Introduce the notion of conditional heavy hitters:

– (parent, child) pairs where the child is frequent given the parent

– We formalize this definition, and give algorithms to find them

4

parent

….

child1

child2

childn

child3

Conditional Heavy Hitters Definitions

 Given parents p, and children c, define

– fp as the frequency (count) of parent p in the stream

– fp,c as the frequency (count) of pair (p,c) in the stream

– Pr[p] as the probability of p, fp/n

– Pr[c|p] as the conditional probability of c given p, fp,c/fp

 Conditional heavy hitters are those (p, c) pairs with Pr[c|p] > 

– Needs refinement: if fp = fp,c = 1, then Pr[c|p]=1

– Restrict attention to those with the top- largest fp,c values

 Still a technically difficult problem

– Lower bound shows a lot of space needed to give guarantees

5

Outline

 Introduce a sequence of four algorithms to find
Conditional Heavy Hitters (CHH)

 Initial two algorithms store information on all parents

 Subsequent two algs track approximate information on parents

 Experimental study identifies where each algorithm performs
best

6

parent

….

child1

child2

childn

child3

Space Saving Algorithm for HH

 Basic building block is an algorithm for heavy hitters (HH)

 SpaceSaving is an efficient HH algorithm [Metwally et al ‘05]

 Keeps information about k different items and their counts

– If next item in stream is stored, update its count

– If not, overwrite least frequent item and update count

 Guarantees error at most (n/k) on any count

 SpaceSaving (SS) often performs very well in practice

7

7

1

4

6

1. GlobalHH Algorithm

 Natural first approach to CHH problem:

– Keep exact statistics on parent frequencies

– Keep approximate counts of (parent, child) pairs via SS

– Use approximate and exact information to estimate Pr[c|p]

– Output CHHs based on these estimates

 Provides guarantees on estimated values:

– Error in estimate of Pr[c|p] is at most n/(k fp)

– Error improves if distribution is skewed

8

child parent

Exact count SS

2. CondHH Algorithm

 Previous algorithm is not tuned to the CHH definition

– SS algorithm prunes based on raw frequency

– Instead, CondHH algorithm prunes based on (estimated) Pr[c|p]

 Introduce ConditionalSpaceSaving (CSS) algorithm:

– Keeps information about k different items and their counts

– If next item in stream is stored, update its count

– If not, overwrite item with lowest Pr[c|p] estimate, update count

– Use some implementation tricks to make fast to update

 CondHH: use CSS for (parent, child) pairs to estimate Pr[c|p]

9

child parent

Exact count CSS

3. FamilyHH Algorithm

 Previous algorithms assumed we could store all parents

– Not realistic as the domain of parents increases

 FamilyHH: natural generalization of GlobalHH

– Keep SS for parents, and another SS for (parent,child) pairs

– Use both approximate counts to estimate Pr[c|p]

 Similar worst case guarantees to GlobalHH

– Given O(k) space, error in Pr[c|p] is at most n/(k fp)

10

child parent

SS SS

4. SparseHH Algorithm

 Last algorithm is the most involved

– Keep SS on parents, CSS on parent, child pairs

 Given new (parent, child) pair, need to initialize its fp,c estimate

– Can use additional data structures to track this information

– Use hashing/Bloom filter techniques to minimize space

– Experimentally determine how to divide available memory

 No worst-case guarantees on performance,

– So we compare all algorithms empirically

11

child parent

SS CSS

Algorithm Summary

Algorithm Parent Parent,Child

1. GlobalHH Exact SS

2. CondHH Exact CSS

3. FamilyHH SS SS

4. SparseHH SS CSS

12

 Other algorithms proposed, performed less well

 For more details, see paper

Experimental Study

 Implemented and evaluated on variety of data

– WorldCup data of (ClientID, ObjectID) request pairs

– Taxicab GPS data: 54K trajectories in a 2nd order Markov model

 Distinguish between data that is sparse and dense

– Sparse data has few distinct children per parent (on average)

– Dense data has many distinct children per parent (on average)

 Measure precision and recall of CHH recovery

13

Sparse Data Results

 World Cup data is sparse: 1/10 parents have a CHH child

 CondHH and SparseHH do well, both based on CSS

– Keep very similar information internally

– Other methods not competitive

14

0

0.2

0.4

0.6

0.8

1

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

P
re

ci
si

o
n

Total memory (Mbytes)

GlobalHH
FamilyHH
CondHH
SparseHH

0

0.2

0.4

0.6

0.8

1
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

R
e

ca
ll

Total memory (Mbytes)

Dense Data Results

 Taxicab data is relatively dense, many parents have CHH child

 CondHH can take more advantage of available memory

 SparseHH converges on CondHH as more memory is used

 Other algorithms are not competitive

15

0

0.2

0.4

0.6

0.8

1

1 2 3 4

P
re

ci
si

o
n

Total memory (Mbytes)

GlobalHH

CondHH

SparseHH

0

0.2

0.4

0.6

0.8

1

1 2 3 4

R
e

ca
ll

Total memory (Mbytes)

Throughput and Performance

 Not much variation as memory increases

 CondHH and SparseHH are slightly more expensive, due to
more complex processing

 Throughput is still 5 x 105 items / second per core
16

Concluding Remarks

 High precision and recall of CHHs is possible on data streams

– SparseHH algorithm works well over a variety of data types

– CondHH is preferred when the data is more dense

 Future work:

– Evaluate for Markov Chain parameter estimation

– Compare to other recently proposed definitions

17

18

ParentHH Algorithm

 Keep small amount of information for each parent about its
child distribution

– Run an instance of SS for each parent

– Track child distribution accurately

– Use stored information to estimate Pr[c|p] and output CHHs

 Also provides guarantees on accuracy

– Given total space k, error in estimate of Pr[c|p] is |P|/s

– P denotes total number of parents

19

