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Streaming Data Processing 

 Much big data arrives in the form of streams of updates 

– Each item in the stream gives more information 

– Stream is too large to store or forward 

 Much prior work on streaming algorithms using small space 

– For “heavy hitters” (frequent items, frequent itemsets) 

– For quantiles, entropy and other statistical quantities 

– For data mining and machine learning  (clustering, classifiers) 

 Common application domains: 

– Network health monitoring (anomaly detection) 

– Intrusion detection over streams of events 
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Limitations of current approaches 

Existing streaming primitives not always suited to these cases: 

 Tracking heavy hitters in network monitoring is too crude 

– Some sources or destinations are always popular 

– These may drown out the informative cases 

– Want to study data at a finer level of detail 

 Frequent itemset mining in intrusion detection is not scalable 

– Enormous search space of possible combinations 

– Existing algorithms need a lot of space 

– Do not offer ‘real-time’ performance 

 Want mining primitive between these two extremes 

– Finer than heavy hitters, simpler than frequent itemsets 
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Conditional Heavy Hitters 

 Observation:  much data can be abstracted as pairs of items 

– (Source, destination) in network data 

– (Current, next) states in Markov chain models 

– Pairs of attributes in database systems 

 First item is primary, other is secondary 

– Abstract as (parent, child) pairs 

 Introduce the notion of conditional heavy hitters: 

– (parent, child) pairs where the child is frequent given the parent 

– We formalize this definition, and give algorithms to find them 
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Conditional Heavy Hitters Definitions 

 Given parents p, and children c, define 

– fp as the frequency (count) of parent p in the stream 

– fp,c  as the frequency (count) of pair (p,c) in the stream 

– Pr[p] as the probability of p, fp/n 

– Pr[c|p] as the conditional probability of c given p, fp,c/fp 

 Conditional heavy hitters are those (p, c) pairs with Pr[c|p] >  

– Needs refinement: if fp = fp,c = 1, then Pr[c|p]=1 

– Restrict attention to those with the top- largest fp,c values 

 Still a technically difficult problem 

– Lower bound shows a lot of space needed to give guarantees 
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Outline 

 Introduce a sequence of four algorithms to find  
Conditional Heavy Hitters (CHH) 

 Initial two algorithms store information on all parents 

 Subsequent two algs track approximate information on parents 

 Experimental study identifies where each algorithm performs 
best 

6 

parent 

…. 

child1 

child2 

childn 

child3 



Space Saving Algorithm for HH 

 Basic building block is an algorithm for heavy hitters (HH) 

 SpaceSaving is an efficient HH algorithm [Metwally et al ‘05] 

 Keeps information about k different items and their counts 

– If next item in stream is stored, update its count 

– If not, overwrite least frequent item and update count 

 Guarantees error at most (n/k) on any count 

 SpaceSaving (SS) often performs very well in practice 
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1. GlobalHH Algorithm 

 Natural first approach to CHH problem: 

– Keep exact statistics on parent frequencies 

– Keep approximate counts of (parent, child) pairs via SS 

– Use approximate and exact information to estimate Pr[c|p] 

– Output CHHs based on these estimates 

 Provides guarantees on estimated values: 

– Error in estimate of Pr[c|p] is at most  n/(k fp) 

– Error improves if distribution is skewed 

 

8 

child parent 

Exact count SS 



2. CondHH Algorithm 

 Previous algorithm is not tuned to the CHH definition 

– SS algorithm prunes based on raw frequency 

– Instead, CondHH algorithm prunes based on (estimated) Pr[c|p] 

 Introduce ConditionalSpaceSaving (CSS) algorithm: 

– Keeps information about k different items and their counts 

– If next item in stream is stored, update its count 

– If not, overwrite item with lowest Pr[c|p] estimate, update count 

– Use some implementation tricks to make fast to update 

 CondHH: use CSS for (parent, child) pairs to estimate Pr[c|p] 
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3. FamilyHH Algorithm 

 Previous algorithms assumed we could store all parents 

– Not realistic as the domain of parents increases 

 FamilyHH: natural generalization of  GlobalHH 

– Keep SS for parents, and another SS for (parent,child) pairs 

– Use both approximate counts to estimate Pr[c|p] 

 Similar worst case guarantees to GlobalHH 

– Given O(k) space, error in Pr[c|p] is at most n/(k fp) 
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4. SparseHH Algorithm 

 Last algorithm is the most involved 

– Keep SS on parents, CSS on parent, child pairs 

 Given new (parent, child) pair, need to initialize its fp,c estimate 

– Can use additional data structures to track this information 

– Use hashing/Bloom filter techniques to minimize space 

– Experimentally determine how to divide available memory 

 No worst-case guarantees on performance,  

– So we compare all algorithms empirically 
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Algorithm Summary 

Algorithm Parent Parent,Child 

1. GlobalHH Exact SS 

2. CondHH Exact CSS 

3. FamilyHH SS SS 

4. SparseHH SS CSS 
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 Other algorithms proposed, performed less well 

 For more details, see paper 



Experimental Study 

 Implemented and evaluated on variety of data 

– WorldCup data of  (ClientID, ObjectID) request pairs 

– Taxicab GPS data: 54K trajectories in a 2nd order Markov model 

 Distinguish between data that is sparse and dense 

– Sparse data has few distinct children per parent (on average) 

– Dense data has many distinct children per parent (on average) 

 Measure precision and recall of CHH recovery 
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Sparse Data Results 

 World Cup data is sparse: 1/10 parents have a CHH child 

 CondHH and SparseHH do well, both based on CSS 

– Keep very similar information internally 

– Other methods not competitive 
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Dense Data Results 

 Taxicab data is relatively dense, many parents have CHH child 

 CondHH can take more advantage of available memory 

 SparseHH converges on CondHH as more memory is used 

 Other algorithms are not competitive 
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Throughput and Performance 

 Not much variation as memory increases 

 CondHH and SparseHH are slightly more expensive, due to 
more complex processing 

 Throughput is still 5 x 105 items / second per core 
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Concluding Remarks 

 High precision and recall of CHHs is possible on data streams 

– SparseHH algorithm works well over a variety of data types 

– CondHH is preferred when the data is more dense 

 Future work:  

– Evaluate for Markov Chain parameter estimation 

– Compare to other recently proposed definitions 
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ParentHH Algorithm 

 Keep small amount of information for each parent about its 
child distribution 

– Run an instance of SS for each parent 

– Track child distribution accurately 

– Use stored information to estimate Pr[c|p] and output CHHs 

 Also provides guarantees on accuracy 

– Given total space k, error in estimate of Pr[c|p] is |P|/s 

– P denotes total number of parents 
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