Finding Interesting Correlations with Conditional Heavy Hitters

Katsiaryna Mirylenka, Themis Palpanas (University of Trento)
Graham Cormode, Divesh Srivastava (AT&T Labs)

• Need to mine patterns from streams of updates
 – Each item in the stream gives more information
 – Stream is too large to store or forward

• Common application domains:
 – Network health monitoring (anomaly detection)
 – Intrusion detection over streams of events

• Prior work on stream mining in small space
 – For “heavy hitters” (frequent items, frequent itemset
 – For quantiles, entropy and other statistical quantities
 – For data mining and machine learning (clustering, cla
Limitations of current approaches

Existing streaming primitives not always suited to these cases:

- Tracking heavy hitters in network monitoring is **too crude**
 - Some sources or destinations are always popular
 - These may drown out the informative cases
 - Want to study data at a finer level of detail

- Frequent itemset mining in intrusion detection is **not scalable**
 - Enormous search space of possible combinations
 - Existing algorithms need a lot of space
 - Do not offer ‘real-time’ performance

- Want mining primitive between these two extremes
 - Finer than heavy hitters, simpler than frequent itemsets
 - We propose **Conditional Heavy Hitters**
Conditional Heavy Hitters

- **Observation:** much data can be abstracted as pairs of items
 - (Source, destination) in network data
 - (Current, next) states in Markov chain models
 - Pairs of attributes in database systems

- First item is primary, other is secondary
 - Abstract as (parent, child) pairs
 - Seek (parent, child) pairs where the child is frequent given the parent

- Given parents \(p \), and children \(c \), define
 - \(f_p \) as the frequency (count) of parent \(p \) in the stream
 - \(f_{p,c} \) as the frequency (count) of pair \((p,c) \) in the stream
 - \(\Pr[c|p] \) as the *conditional* probability of \(c \) given \(p \), \(f_{p,c}/f_p \)

- Conditional heavy hitters are those \((p, c) \) pairs with \(\Pr[c|p] > \phi \)
 - Define algorithms to find the top-\(\tau \) based on their \(f_{p,c} \) values
Exact Parent Algorithms

1. **GlobalHH** algorithm for the CHH problem:
 - Keep exact statistics on parent frequencies
 - Keep approximate counts of \((\text{parent}, \text{child})\) pairs via SS
 - Use approximate and exact information to estimate \(\Pr[c|p]\)
 - Output CHHs based on these estimates
 - Error in estimate of \(\Pr[c|p]\) is at most \(n/(k f_p)\)

2. **ConditionalSpaceSaving (CSS)** algorithm is tuned to CHH definition:
 - Keeps information about \(k\) different items and their counts
 - If next item in stream is stored, update its count
 - If not, overwrite item with lowest \(\Pr[c|p]\) estimate, update count
 - Use some implementation tricks to make fast to update
 - **CondHH** algorithm: uses CSS to estimate \(\Pr[c|p]\)
Approximate Parent Algorithms

- Previous algorithms assumed we could store all parents
 - Not realistic as the domain of parents increases, so keep approximate statistics

3. **FamilyHH**: natural generalization of **GlobalHH**
 - Keep SS for parents, and another SS for (parent, child) pairs
 - Use both approximate counts to estimate Pr[c | p]
 - Given O(k) space, error in Pr[c | p] is at most n/(k f_p)

4. **SparseHH** algorithm is the most involved
 - Keep SS on parents, CSS on parent, child pairs
 - Given new (parent, child) pair, must initialize its $f_{p,c}$ estimate
 - Use hashing/Bloom filter techniques for these estimates
 - Experimentally determine how to divide available memory
Sparse Data Results

- World Cup data is sparse: 1/10 parents have a CHH child
- CondHH and SparseHH do well, both based on CSS
 - Keep very similar information internally
 - Other methods not competitive
Dense Data Results

- Taxicab data is relatively dense, many parents have CHH child
- CondHH can take more advantage of available memory
- SparseHH converges on CondHH as more memory is used
 - Other algorithms and variations are not competitive
Throughput and Conclusions

- Algs have good throughput
 - Not much variation as memory increases
 - CondHH and SparseHH are slightly more expensive, due to more complex processing
 - Throughput is still 5×10^5 items / second per core

- High precision and recall of CHHs is possible on data streams
 - SparseHH algorithm works well over a variety of data types
 - CondHH is preferred when the data is more dense

- Future work:
 - Evaluate for Markov Chain parameter estimation
 - Compare to other recently proposed definitions