
Finding Interesting Correlations
with Conditional Heavy Hitters

Katsiaryna Mirylenka, Themis Palpanas (University of Trento)

Graham Cormode, Divesh Srivastava (AT&T Labs)

• Need to mine patterns from streams of updates
– Each item in the stream gives more information

– Stream is too large to store or forward

• Common application domains:

– Network health monitoring (anomaly detection)

– Intrusion detection over streams of events

• Prior work on stream mining in small space
– For “heavy hitters” (frequent items, frequent itemset)

– For quantiles, entropy and other statistical quantities

– For data mining and machine learning (clustering, classifiers)

Limitations of current approaches

Existing streaming primitives not always suited to these cases:

 Tracking heavy hitters in network monitoring is too crude
– Some sources or destinations are always popular

– These may drown out the informative cases

– Want to study data at a finer level of detail

 Frequent itemset mining in intrusion detection is not scalable
– Enormous search space of possible combinations

– Existing algorithms need a lot of space

– Do not offer ‘real-time’ performance

 Want mining primitive between these two extremes
– Finer than heavy hitters, simpler than frequent itemsets

– We propose Conditional Heavy Hitters

 2

Conditional Heavy Hitters

 Observation: much data can be abstracted as pairs of items
– (Source, destination) in network data

– (Current, next) states in Markov chain models

– Pairs of attributes in database systems

 First item is primary, other is secondary
– Abstract as (parent, child) pairs

– Seek (parent, child) pairs where the child is frequent given the parent

 Given parents p, and children c, define
– fp as the frequency (count) of parent p in the stream

– fp,c as the frequency (count) of pair (p,c) in the stream

– Pr[c|p] as the conditional probability of c given p, fp,c/fp

 Conditional heavy hitters are those (p, c) pairs with Pr[c|p] > 

– Define algorithms to find the top- based on their fp,c values

3

parent

….

child1

child2

childn

child3

Exact Parent Algorithms

1. GlobalHH algorithm for the CHH problem:
– Keep exact statistics on parent frequencies

– Keep approximate counts of (parent, child) pairs via SS

– Use approximate and exact information to estimate Pr[c|p]

– Output CHHs based on these estimates

– Error in estimate of Pr[c|p] is at most n/(k fp)

2. ConditionalSpaceSaving (CSS) algorithm is tuned to CHH definition:
– Keeps information about k different items and their counts

– If next item in stream is stored, update its count

– If not, overwrite item with lowest Pr[c|p] estimate, update count

– Use some implementation tricks to make fast to update

– CondHH algorithm: uses CSS to estimate Pr[c|p]

4

child parent

Exact
count SS

child parent

Exact
count CSS

Approximate Parent Algorithms

 Previous algorithms assumed we could store all parents
– Not realistic as the domain of parents increases, so keep approximate statistics

3. FamilyHH: natural generalization of GlobalHH
– Keep SS for parents, and another SS for (parent,child) pairs

– Use both approximate counts to estimate Pr[c|p]

– Given O(k) space, error in Pr[c|p] is at most n/(k fp)

4. SparseHH algorithm is the most involved
– Keep SS on parents, CSS on parent, child pairs

– Given new (parent, child) pair, must initialize its fp,c estimate

– Use hashing/Bloom filter techniques for these estimates

– Experimentally determine how to divide available memory

5

child parent

SS SS

child parent

SS CSS

Sparse Data Results

 World Cup data is sparse: 1/10 parents have a CHH child

 CondHH and SparseHH do well, both based on CSS
– Keep very similar information internally

– Other methods not competitive

6

0

0.2

0.4

0.6

0.8

1

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

P
re

ci
si

o
n

Total memory (Mbytes)

GlobalHH
FamilyHH
CondHH
SparseHH

0

0.2

0.4

0.6

0.8

1
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

R
e

ca
ll

Total memory (Mbytes)

Dense Data Results

 Taxicab data is relatively dense, many parents have CHH child

 CondHH can take more advantage of available memory

 SparseHH converges on CondHH as more memory is used
– Other algorithms and variations are not competitive

7

0

0.2

0.4

0.6

0.8

1

1 2 3 4

P
re

ci
si

o
n

Total memory (Mbytes)

GlobalHH

CondHH

SparseHH

0

0.2

0.4

0.6

0.8

1

1 2 3 4

R
e

ca
ll

Total memory (Mbytes)

Throughput and Conclusions

 Algs have good throughput
– Not much variation as memory

increases

– CondHH and SparseHH are
slightly more expensive, due to
more complex processing

– Throughput is still 5 x 105 items
/ second per core

8

 High precision and recall of CHHs is possible on data streams
– SparseHH algorithm works well over a variety of data types

– CondHH is preferred when the data is more dense

 Future work:
– Evaluate for Markov Chain parameter estimation

– Compare to other recently proposed definitions

