
Finding Interesting Correlations
with Conditional Heavy Hitters

Katsiaryna Mirylenka, Themis Palpanas (University of Trento)

Graham Cormode, Divesh Srivastava (AT&T Labs)

• Need to mine patterns from streams of updates
– Each item in the stream gives more information

– Stream is too large to store or forward

• Common application domains:

– Network health monitoring (anomaly detection)

– Intrusion detection over streams of events

• Prior work on stream mining in small space
– For “heavy hitters” (frequent items, frequent itemset)

– For quantiles, entropy and other statistical quantities

– For data mining and machine learning (clustering, classifiers)

Limitations of current approaches

Existing streaming primitives not always suited to these cases:

 Tracking heavy hitters in network monitoring is too crude
– Some sources or destinations are always popular

– These may drown out the informative cases

– Want to study data at a finer level of detail

 Frequent itemset mining in intrusion detection is not scalable
– Enormous search space of possible combinations

– Existing algorithms need a lot of space

– Do not offer ‘real-time’ performance

 Want mining primitive between these two extremes
– Finer than heavy hitters, simpler than frequent itemsets

– We propose Conditional Heavy Hitters

 2

Conditional Heavy Hitters

 Observation: much data can be abstracted as pairs of items
– (Source, destination) in network data

– (Current, next) states in Markov chain models

– Pairs of attributes in database systems

 First item is primary, other is secondary
– Abstract as (parent, child) pairs

– Seek (parent, child) pairs where the child is frequent given the parent

 Given parents p, and children c, define
– fp as the frequency (count) of parent p in the stream

– fp,c as the frequency (count) of pair (p,c) in the stream

– Pr[c|p] as the conditional probability of c given p, fp,c/fp

 Conditional heavy hitters are those (p, c) pairs with Pr[c|p] >

– Define algorithms to find the top- based on their fp,c values

3

parent

….

child1

child2

childn

child3

Exact Parent Algorithms

1. GlobalHH algorithm for the CHH problem:
– Keep exact statistics on parent frequencies

– Keep approximate counts of (parent, child) pairs via SS

– Use approximate and exact information to estimate Pr[c|p]

– Output CHHs based on these estimates

– Error in estimate of Pr[c|p] is at most n/(k fp)

2. ConditionalSpaceSaving (CSS) algorithm is tuned to CHH definition:
– Keeps information about k different items and their counts

– If next item in stream is stored, update its count

– If not, overwrite item with lowest Pr[c|p] estimate, update count

– Use some implementation tricks to make fast to update

– CondHH algorithm: uses CSS to estimate Pr[c|p]

4

child parent

Exact
count SS

child parent

Exact
count CSS

Approximate Parent Algorithms

 Previous algorithms assumed we could store all parents
– Not realistic as the domain of parents increases, so keep approximate statistics

3. FamilyHH: natural generalization of GlobalHH
– Keep SS for parents, and another SS for (parent,child) pairs

– Use both approximate counts to estimate Pr[c|p]

– Given O(k) space, error in Pr[c|p] is at most n/(k fp)

4. SparseHH algorithm is the most involved
– Keep SS on parents, CSS on parent, child pairs

– Given new (parent, child) pair, must initialize its fp,c estimate

– Use hashing/Bloom filter techniques for these estimates

– Experimentally determine how to divide available memory

5

child parent

SS SS

child parent

SS CSS

Sparse Data Results

 World Cup data is sparse: 1/10 parents have a CHH child

 CondHH and SparseHH do well, both based on CSS
– Keep very similar information internally

– Other methods not competitive

6

0

0.2

0.4

0.6

0.8

1

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

P
re

ci
si

o
n

Total memory (Mbytes)

GlobalHH
FamilyHH
CondHH
SparseHH

0

0.2

0.4

0.6

0.8

1
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

R
e

ca
ll

Total memory (Mbytes)

Dense Data Results

 Taxicab data is relatively dense, many parents have CHH child

 CondHH can take more advantage of available memory

 SparseHH converges on CondHH as more memory is used
– Other algorithms and variations are not competitive

7

0

0.2

0.4

0.6

0.8

1

1 2 3 4

P
re

ci
si

o
n

Total memory (Mbytes)

GlobalHH

CondHH

SparseHH

0

0.2

0.4

0.6

0.8

1

1 2 3 4

R
e

ca
ll

Total memory (Mbytes)

Throughput and Conclusions

 Algs have good throughput
– Not much variation as memory

increases

– CondHH and SparseHH are
slightly more expensive, due to
more complex processing

– Throughput is still 5 x 105 items
/ second per core

8

 High precision and recall of CHHs is possible on data streams
– SparseHH algorithm works well over a variety of data types

– CondHH is preferred when the data is more dense

 Future work:
– Evaluate for Markov Chain parameter estimation

– Compare to other recently proposed definitions

