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• Need to mine patterns from streams of updates 
– Each item in the stream gives more information 

– Stream is too large to store or forward 

• Common application domains: 

– Network health monitoring (anomaly detection) 

– Intrusion detection over streams of events 

• Prior work on stream mining in small space 
– For “heavy hitters” (frequent items, frequent itemset) 

– For quantiles, entropy and other statistical quantities 

– For data mining and machine learning  (clustering, classifiers) 

 



Limitations of current approaches 

Existing streaming primitives not always suited to these cases: 

 Tracking heavy hitters in network monitoring is too crude 
– Some sources or destinations are always popular 

– These may drown out the informative cases 

– Want to study data at a finer level of detail 

 

 Frequent itemset mining in intrusion detection is not scalable 
– Enormous search space of possible combinations 

– Existing algorithms need a lot of space 

– Do not offer ‘real-time’ performance 

 

 Want mining primitive between these two extremes 
– Finer than heavy hitters, simpler than frequent itemsets 

– We propose Conditional Heavy Hitters 
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Conditional Heavy Hitters 

 Observation:  much data can be abstracted as pairs of items 
– (Source, destination) in network data 

– (Current, next) states in Markov chain models 

– Pairs of attributes in database systems 

 First item is primary, other is secondary 
– Abstract as (parent, child) pairs 

– Seek (parent, child) pairs where the child is frequent given the parent 

 Given parents p, and children c, define 
– fp as the frequency (count) of parent p in the stream 

– fp,c  as the frequency (count) of pair (p,c) in the stream 

– Pr[c|p] as the conditional probability of c given p, fp,c/fp 

 Conditional heavy hitters are those (p, c) pairs with Pr[c|p] >  

– Define algorithms to find the top- based on their fp,c values 
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Exact Parent Algorithms 

1. GlobalHH algorithm for the CHH problem: 
– Keep exact statistics on parent frequencies 

– Keep approximate counts of (parent, child) pairs via SS 

– Use approximate and exact information to estimate Pr[c|p] 

– Output CHHs based on these estimates 

– Error in estimate of Pr[c|p] is at most n/(k fp) 

 

2. ConditionalSpaceSaving (CSS) algorithm is tuned to CHH definition: 
– Keeps information about k different items and their counts 

– If next item in stream is stored, update its count 

– If not, overwrite item with lowest Pr[c|p] estimate, update count 

– Use some implementation tricks to make fast to update 

– CondHH algorithm: uses CSS to estimate Pr[c|p] 
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Approximate Parent Algorithms 

 Previous algorithms assumed we could store all parents 
– Not realistic as the domain of parents increases, so keep approximate statistics 

 

3. FamilyHH: natural generalization of  GlobalHH 
– Keep SS for parents, and another SS for (parent,child) pairs 

– Use both approximate counts to estimate Pr[c|p] 

– Given O(k) space, error in Pr[c|p] is at most n/(k fp) 

 

4. SparseHH algorithm is the most involved 
– Keep SS on parents, CSS on parent, child pairs 

– Given new (parent, child) pair, must initialize its fp,c estimate 

– Use hashing/Bloom filter techniques for these estimates 

– Experimentally determine how to divide available memory 
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Sparse Data Results 

 World Cup data is sparse: 1/10 parents have a CHH child 

 CondHH and SparseHH do well, both based on CSS 
– Keep very similar information internally 

– Other methods not competitive 
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Dense Data Results 

 Taxicab data is relatively dense, many parents have CHH child 

 CondHH can take more advantage of available memory 

 SparseHH converges on CondHH as more memory is used 
– Other algorithms and variations are not competitive 
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Throughput and Conclusions 

 Algs have good throughput 
– Not much variation as memory 

increases 

– CondHH and SparseHH are 
slightly more expensive, due to 
more complex processing 

– Throughput is still 5 x 105 items 
/ second per core 
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 High precision and recall of CHHs is possible on data streams 
– SparseHH algorithm works well over a variety of data types 

– CondHH is preferred when the data is more dense 

 Future work:  
– Evaluate for Markov Chain parameter estimation 

– Compare to other recently proposed definitions 


