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Big data, big problem? 

 The big data meme has taken root 

– Organizations jumped on the bandwagon 

– Entered the public vocabulary 

 But this data is mostly about individuals  

– Individuals want privacy for their data 

– How can researchers work on sensitive data? 

 The easy answer: anonymize it and share 

 The problem: we don’t know how to do this 
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Outline 

 Why data anonymization is hard 

 Differential privacy definition and examples 

 Three snapshots of recent work 

 A handful of new directions 
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A recent data release example 

 NYC taxi and limousine commission released 2013 trip data 

– Contains start point, end point, timestamps, taxi id, fare, tip amount 

– 173 million trips “anonymized” to remove identifying information 

 Problem: the anonymization was easily reversed  

– Anonymization was a simple hash of the identifiers 

– Small space of ids, easy to brute-force dictionary attack 

 But so what?  

– Taxi rides aren’t sensitive? 
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Almost anything can be sensitive 

 Can link people to taxis and find out where they went 

– E.g. paparazzi pictures of celebrities 
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Bradley Cooper (actor) Jessica Alba (actor) 

Sleuthing by Anthony Tockar while interning at Neustar 



Finding sensitive activities 

 Find trips starting at remote, “sensitive” locations 

– E.g. Larry Flynt’s Hustler Club [an “adult entertainment venue”] 

 Can find where the venue’s customers live with high accuracy 

– “Examining one of the clusters revealed that only one of the 5 
likely drop-off addresses was inhabited; a search for that 
address revealed its resident’s name.  
In addition, by examining other drop-offs at this address, I 
found that this gentleman also frequented such establishments 
as “Rick’s Cabaret” and “Flashdancers”.  
Using websites like Spokeo and Facebook, I was also able to find 
out his property value, ethnicity, relationship status, court 
records and even a profile picture!” 

 Oops 
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We’ve heard this story before... 
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We need to solve this 
data release problem... 



Crypto is not the (whole) solution 

 Security is binary: allow access to data iff you have the key 

– Encryption is robust, reliable and widely deployed 

 Private data release comes in many shades:   
reveal some information, disallow unintended uses 

– Hard to control what may be inferred 

– Possible to combine with other data sources to breach privacy 

– Privacy technology is still maturing 

 Goals for data release: 

– Enable appropriate use of data while protecting data subjects 

– Keep CEO and CTO off front page of newspapers 

– Simplify the process as much as possible: 1-click privacy? 
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Differential Privacy (Dwork et al 06) 

A randomized algorithm K satisfies ε-differential 
privacy if: 

Given two data sets that differ by one individual, 
D and D’, and any property S: 
 
 Pr[ K(D)  S]  ≤  eε Pr[ K(D’)  S]  
 

A randomized algorithm K satisfies ε-differential 
privacy if: 

Given two data sets that differ by one individual, 
D and D’, and any property S: 
 
 Pr[ K(D)  S]  ≤  eε Pr[ K(D’)  S]  
 

• Can achieve differential privacy for counts by adding a random 
noise value 

• Uncertainty due to noise “hides” whether someone is present 
in the data 



Achieving ε-Differential Privacy 

  (Global) Sensitivity of publishing:   
  s = maxx,x’ |F(x) – F(x’)|, x, x’ differ by 1 individual 

  E.g., count individuals satisfying property P: one individual 
 changing info affects answer by at most 1; hence s = 1 
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Technical Highlights 

 There are a number of building blocks for DP: 

– Geometric and Laplace mechanism for numeric functions 

– Exponential mechanism for sampling from arbitrary sets 

 Uses a user-supplied “quality function” for (input, output) pairs 

 And “cement” to glue things together: 

– Parallel and sequential composition theorems 

 With these blocks and cement, can build a lot 

– Many papers arrive from careful combination of these tools! 

 Useful fact: any post-processing of DP output remains DP 

– (so long as you don’t access the original data again) 

– Helps reason about privacy of data release processes 
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Case Study: Sparse Spatial Data 

 Consider location data of many individuals 

– Some dense areas (towns and cities), some sparse (rural) 

 Applying DP naively simply generates noise 

– lay down a fine grid, signal overwhelmed by noise 

 Instead: compact regions with sufficient number of points 
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Private Spatial Decompositions (PSDs) 

 

 

 

 

 

 

 

 Build: adapt existing methods to have differential privacy 

 Release: a private description of data distribution  
(in the form of bounding boxes and noisy counts) 

quadtree kd-tree 
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Building a kd-tree 

 Process to build a kd-tree 

 Input: data set 

 Choose dimension to split 

 Get median in this dimension  

 Create child nodes  

 Recurse until some stopping condition is met:  

 E.g. only 1 point remains in the current cell 
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Building a Private kd-tree 

 Process to build a private kd-tree 

 Input: maximum height h, minimum leaf size L, data set 

 Choose dimension to split 

 Get (private) median in this dimension (exponential mechanism) 

 Create child nodes and add noise to the counts 

 Recurse until some stopping condition is met : 

 Max height is reached 

 Noisy count of this node less than L 

 Budget along the root-leaf path has used up 

 The entire PSD satisfies DP by the composition property 

 

15 



Building PSDs – privacy budget allocation 

 Data owner specifies a total budget  reflecting the level of 
anonymization desired 

 Budget is split between medians and counts 

– Tradeoff accuracy of division with accuracy of counts 

 Budget is split across levels of the tree 

– Privacy budget used along any root-leaf path should total  

 
 Sequential 

composition 

Parallel composition 
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Privacy budget allocation 

 How to set an i for each level? 

– Compute the number of nodes touched by a ‘typical’ query 

– Minimize variance of such queries 

– Optimization: min i  2
h-i / i

2 s.t. i i =  

– Solved by i  (2(h-i))1/3 : more to leaves 

– Total error (variance) goes as 2h/2 

 Tradeoff between noise error and spatial uncertainty 

– Reducing h drops the noise error 

– But lower h increases the size of leaves, more uncertainty 
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Post-processing of noisy counts 

 Can do additional post-processing of the noisy counts 

– To improve query accuracy and achieve consistency 

 Intuition: we have count estimate for a node and for its children 

– Combine these independent estimates to get better accuracy 

– Make consistent with some true set of leaf counts 

 Formulate as a linear system in n unknowns 

– Avoid explicitly solving the system 

– Expresses optimal estimate for node v in terms of estimates of 
ancestors and noisy counts in subtree of v 

– Use the tree-structure to solve in three passes over the tree 

– Linear time to find optimal, consistent estimates 

 



Differential privacy for data release 

 Differential privacy is an attractive model for data release 

– Achieve a fairly robust statistical guarantee over outputs 

 Problem: how to apply to data release where f(x) = x?  

– Trying to use global sensitivity does not work well 

 General recipe: find a model for the data (e.g. PSDs) 

– Choose and release the model parameters under DP 

 A new tradeoff in picking suitable models 

– Must be robust to privacy noise, as well as fit the data 

– Each parameter should depend only weakly on any input item 

– Need different models for different types of data 

 Next 3 biased examples of recent work following this outline 
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age 

Example 1: PrivBayes [SIGMOD14] 

 Directly materializing tabular data: low signal, high noise 

 Use a Bayesian network to approximate the full-dimensional 
distribution by lower-dimensional ones: 

 age workclass 

education title 

income 

low-dimensional distributions: high signal-to-noise 
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 STEP 1: Choose a suitable Bayesian Network BN 

       - in a differentially private way 
       - sample (via exponential mechanism) edges in the network 

       - design surrogate quality function with low sensitivity 

 STEP 2: Compute distributions implied by edges of BN 

       - straightforward to do under differential privacy (Laplace) 

 STEP 3: Generate synthetic data by sampling from the BN 

        - post-processing: no privacy issues 

 Evaluate utility of synthetic data for variety of different tasks 
 - performs well for multiple tasks (classification, regression) 

PrivBayes (SIGMOD14) 
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Example 2: Graph Data 

 Releasing graph structured data remains a big challenge 

– Each individual (node) can have a big impact on graph structure 

 Current work focuses on releasing graph statistics 

– Counts of small subgraphs like stars, triangles, cliques etc. 

– These counts are parameters for graph models 

– Sensitivity of these counts is large: one edge can change a lot 
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Attributed Graph Data [SIGMOD 16] 

 Real graphs (e.g. social networks) have attributes 

– Different types of node, different types of edge 

 Define graph models that have attribute distributions 

– Capture real graph structure e.g. number of triangles 

 Learn parameters from input graphs (under differential privacy) 

 Sample “realistic” graphs from the learned model 
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Example 3: Trajectory Data 

 More and more location and mobility data available 

– From GPS enabled devices, approximate location from wifi/phone 

 Location and movements are very sensitive! 

 Location and movements are very identifying! 

– Easy to identify ‘work’ and ‘home’ locations from traces 

– 4 random points identify 95% of individuals [Montjoye et al 2013] 

 Aim for Differentially Private Trajectories [VLDB 15] 

– Find a model that works for trajectory data 

– Based on Markov models at multiple resolutions 
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Original Trajectories 
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Local Differential Privacy 

 Data release assumes a trusted third party aggregator 

– What if I don’t want to trust a third party?  

– Back to crypto: fiddly secure multiparty computation protocols 

 OR: run a DP algorithm with one participant for each user 

– Not as silly as it sounds: noise cancels over large groups 

– Implemented by Google and Apple (browsing/app statistics) 

 Local Differential privacy state of the art in 2016: 
Randomized response (1965): five decade lead time! 

 Lots of opportunity for new work:  

– Designing optimal mechanisms for local differential privacy 

– Adapt to apply beyond simple counts 
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Trusted Third Parties 

 The following scenario occurs very often: 

– Organizations A and B have collected data on people 

– They want to join their data on a unique identifier then remove it 

– They don’t want the other to know their data 

 Technical solutions may be possible, but complex 

 Growing support for using a Trusted Third Party 

– Give data to TTP 

– They link the data sets, then remove ids 

 ESRC’s Administrative Data Research Network: 

– Requests vetted for approval by experts 
– “There is a very small risk of ‘statistical disclosure’, when specific  

information from a de-identified data collection can be associated  
with a particular individual, household or business.” 
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Care.data 2.0 

 Care.data: 2014 effort to make all UK NHS data available to 
researchers (both academic and corporate) 

– National debate ensued, around poor communication of risks 

– Project delayed, seems to have ground to a halt 

 2016: DeepMind forms agreement with an NHS trust 

– 1.6M records shared for kidney disease study 

– Minor public comment 

– DeepMind promises to be very careful with the data 

– So that’s OK then?  
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DP Pros and Cons 

 Differential privacy is currently popular 

– Why? Easy mechanisms and composition properties, deep theory 

– Proposed as an interactive mechanism, but easy to use for release 

 Still some doubts and questions: 

– How to interpret ?  How to set a value of ? 

 My answer: let    [let noise  0] 

– How robust is differential privacy in the wild? 

 It is possible to build an accurate classifier and make inferences 

– Sometimes the noise is just too high for utility: too much for some 

 But alternate privacy definitions have a high bar to entry... 
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Challenge: Transition ideas to practice 

 Many organizations would like academics to work on their data 
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We have some great data for your team to look at! 

Thanks, but how are you going to 
deal with privacy issues? 

It’s fine, we can get you the data  

… er, how’s the release process going? 

OK, you can work on the data so long as you get 
security clearance, a credit check, swear an oath in 

blood, and travel to our secure data centre in Aachen 
where you can access the data on a TRS-80 and… 



Summary 

 Private data release is a confounding problem! 

– We haven’t yet got it right consistently enough 

– The idea of “1 click privacy” is still a long way off 

 Current privacy work gives some cause for optimism 

– Statistical privacy, safety in numbers, and robust models 

 Lots of technical work left to do:  

– Structured data: graphs, movement patterns 

– Unstructured data: text, images, video? 

– Develop standards for (certain kinds of) data release 
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