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Computational scalability and “big” data 

 Most work on massive data tries to scale up the computation 

 Many great technical ideas: 

– Use many cheap commodity devices 

– Accept and tolerate failure 

– Move data to code, not vice-versa 

– MapReduce: BSP for programmers 

– Break problem into many small pieces 

– Add layers of abstraction to build massive DBMSs and warehouses 

– Decide which constraints to drop: noSQL, BASE systems 

 Scaling up comes with its disadvantages: 

– Expensive (hardware, equipment, energy), still not always fast 

 This talk is not about this approach! 
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Downsizing data 

 A second approach to computational scalability:  
scale down the data! 

– A compact representation of a large data set 

– Capable of being analyzed on a single machine 

– What we finally want is small: human readable analysis / decisions 

– Necessarily gives up some accuracy: approximate answers 

– Often randomized (small constant probability of error) 

– Much relevant work: samples, histograms, wavelet transforms 

 Complementary to the first approach: not a case of either-or 

 Some drawbacks: 

– Not a general purpose approach: need to fit the problem 

– Some computations don’t allow any useful summary 
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Outline for the talk 

 An introduction to sketches (high level, no proofs) 

 An application: Finding correlations among many observations 

 

 There are many other (randomized) compact summaries:  

– Sketches: Bloom filter, Count-Min, AMS, Hyperloglog 

– Sample-based: simple samples, count distinct  

– Locality Sensitive hashing: fast nearest neighbor search 

– Summaries for more complex objects: graphs and matrices 

 Not in this talk – ask me afterwards for more details! 
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What are “Sketch” Data Structures? 

 Sketch is a class of summary that is a linear transform of input 

– Sketch(x) = Sx for some matrix S 

– Hence, Sketch(x + y) =  Sketch(x) +  Sketch(y) 

– Trivial to update and merge 

 Often describe S in terms of hash functions 

– S must have compact description to be worthwhile 

– If hash functions are simple, sketch is fast 

 Analysis relies on properties of the hash functions 

– Seek “limited independence” to limit space usage 

– Proofs usually study the expectation and variance of the estimates 
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Sketches 

 Count Min sketch [C, Muthukrishnan 04] encodes item counts 

– Allows estimation of frequencies (e.g. for selectivity estimation) 

– Some similarities to Bloom filters 

 Model input data as a vector x of dimension U  

– Create a small summary as an array of w  d in size 

– Use d hash function to map vector entries to [1..w] 

W 

d 
Array: 

CM[i,j] 
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Count-Min Sketch Structure 

 Update: each entry in vector x is mapped to one bucket per row. 

 Merge two sketches by entry-wise summation 

 Query: estimate x[j] by taking mink CM[k,hk(j)] 
– Guarantees error less than e||x||1 in size O(1/e) 

– Probability of more error reduced by adding more rows 
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Sketching for Euclidean norm 

 AMS sketch presented in [Alon Matias Szegedy 96] 

– Allows estimation of Euclidean norm of a sketched vector 

– Leads to estimation of (self) join sizes, inner products 

– Data-independent dimensionality reduction  
(‘Sparse Johnson-Lindenstrauss lemma’) 

 Here, describe (fast) AMS sketch by generalizing CM sketch  

– Use extra hash functions g1...gd {1...U} {+1,-1} 

– Now, given update (j,+c), set CM[k,hk(j)] += c*gk(j) 

 Estimate squared Euclidean norm  = mediank i CM[k,i]2 

– Intuition: gk hash values cause ‘cross-terms’ to cancel out, on average 

– The analysis formalizes this intuition 

– median reduces chance of large error 
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Sketches in practice: Packet stream analysis 

 AT&T Gigascope / GS tool: stream data analysis 

– Developed since early 2000s 

– Based on commodity hardware + Endace packet capture cards 

 High-level (SQL like) language to express continuous queries 

– Allows “User Defined Aggregate Functions” (UDAFs) plugins 

– Sketches in gigascope since 2003 at network line speeds (Gbps) 

– Flexible use of sketches to summarize behaviour in groups 

– Rolled into standard query set for network monitoring 

– Software-based approach to attack, anomaly detection 

 Current status: latest generation of GS in production use at AT&T 
Also in Twitter analytics, Yahoo, other query log analysis tools 
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Looking for Correlations 

 Given many (time) series, find the highly correlated pairs 

– And hope that there aren’t too many spurious correlations... 

 Input model: we have m observations of n time series 

– One new observation of all series at each time step 
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Computing the Correlation 

 Stats refresher: time series modeled as random variables X, Y 

– The covariance Cov(X,Y) = E[XY] – E[X] E[Y] = E[(X–E[X])(Y – E[Y])] 

– The correlation is covariance normalized by standard deviations 
Cor(X,Y) = Cov(X,Y)/σ(X)σ(Y) 

 If we had all the time (and space) in the world:  

– Compute a vector x = 1/σ(X) [ X1 – μx, X2 – μx ... Xm – μx] 

– For all x, y pairs, compute Cor(X,Y) = x · y (vector inner product) 

– Time taken: O(nm) preprocessing + O(n2m) for pair computations 

– Can write as a matrix product MMT, where M is normalized data 

 O(nm) not so bad: linear in the size of the input data 

 O(n2m) is bad: grows quadratically as number of series increases 

– Can’t do better if many pairs are correlated 

– But in general, most pairs are uncorrelated – so there is hope 
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Sketching version 1 

 Can apply sketching to the data 

– Replace each series with a sketch of the series 

– Can use linear properties of sketches to update and zero mean 
even as new observations are made 
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 Obtain approximate correlations (with error ε) 

 Time cost reduced to O(mn + n2b), with b = O(1/ε2) 

 Better, but still quadratic in n! 



Sketching version 2 

 Need a smarter data structure to find large correlations quickly 

– If most pairs are uncorrelated, no use testing them all 

 Simple idea: bunch series into groups, add them up in groups 

– If no correlations in two groups, their sum should be uncorrelated 

– If there is a correlation, the sum should remain correlated 

 Challenge:  

1. Turn the “should be”s into more precise statements! 

2. How to find the correlated pair(s) from correlated groups?  

 Solution outline:  a combination of sketching + group testing 

1. Use some standard statistical techniques to analyze probabilities 

2. Use some nifty coding theory to “decode” results  
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Bucketing the sketches 

 Create a smaller correlation matrix 

– Randomly permute the indexing of the series 

– Sum together the series placed in the same bucket 

– Subtract the effect of diagonal elements (self-correlations) 14 



Coding up the buckets 

 For each pair of buckets, do additional coding to find which 
entries were heavy (group testing within buckets) 

– Repeat the sketching with different subsets of series 

 Intuition: use a Hamming code to mask out some entries 

– See which combinations are “heavy” to identify the heavy index 

 

 

 

 

 

 

 Rather vulnerable to noise from sketching, collisions 
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More sketching!  Sketch all the things! 

 Improvement 1: use sketching ideas within the buckets! 

– Randomly multiply each series in the bucket by +1 or -1 

– Decreases the chance of errors (in a provable way) 
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More coding!  Code all the things! 

 Improvement 2: Error correcting codes to recover (noisy) pairs  

 

 

 

 

 

 Care needed in code choice: each extra bit = more sketches 

– Only need to code the low-order bits of the permuted (i, j) 

– The high order bits are given by the bucket id 

– Can just store the random permutation of ids explicitly 

– Use Low Density Parity-Check codes: simple & work with sketches 
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Putting it all together 

 Mistakes still happen: from sketches, collisions etc. 

– Repeat the process a few times in parallel 

– Only report pairs found at least half the time 

– Makes false positives vanishingly small, recall is high 

 Proof needed: Formal analysis of correctness to show: 

– Good chance that each heavy pair is isolated in a bucket 

– Noise from colliding pairs is small 

– Sketches for the bucket are (mostly) correct 

 Assumptions: if small correlations are polynomially small, 
not too many large correlations, the space is subquadratic 

– And fast: sketch computations done via fast matrix multiply 
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Proof-of-concept experiments 

 Tests on synthetic data 

– 50 vectors of length 1000  

– Sketches size 120 

– 10 buckets, 10 repetitions 

 A few “planted” correlations 

– Test threshold 0.35 

 Can recover significant 
correlations, miss some close 
to the boundary 

– Experiments ongoing! 
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Caveats and Cautions 

 Randomized sketches can be powerful and effective, but they: 

– Don’t give the exact answer  
(so not widely implemented or used) 

– Tend to be special purpose  
(so used for specific important problems) 

– Require some new ways of thinking 
(so take some getting used to) 

 Some resistance to the randomness– can be argued against: 

– Want the exact answer?   Most large data is highly noisy  

– Hard to debug?  Randomized algorithms are simple(ish), repeatable 

– Want determinism? Hash tables are everywhere, caching, solar rays 
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 There are two approaches in response to growing data sizes 

– Scale the computation up; scale the data down 

 Sketches are a useful general technique for data reduction 

– Developed for streaming algorithms (in computer science) 

– Related to compressed sensing, dimensionality reduction (math/stat) 

 Continuing interest in applying and developing new theory 

– Always looking for new collaborators/students/postdocs 

 

Summary 
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Ad: The Alan Turing Institute in London 
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