
Sub-quadratic search for
significant correlations

Graham Cormode

Jacques Dark

University of Warwick

G.Cormode@Warwick.ac.uk

Computational scalability and “big” data

 Most work on massive data tries to scale up the computation

 Many great technical ideas:

– Use many cheap commodity devices

– Accept and tolerate failure

– Move data to code, not vice-versa

– MapReduce: BSP for programmers

– Break problem into many small pieces

– Add layers of abstraction to build massive DBMSs and warehouses

– Decide which constraints to drop: noSQL, BASE systems

 Scaling up comes with its disadvantages:

– Expensive (hardware, equipment, energy), still not always fast

 This talk is not about this approach!
2

Downsizing data

 A second approach to computational scalability:
scale down the data!

– A compact representation of a large data set

– Capable of being analyzed on a single machine

– What we finally want is small: human readable analysis / decisions

– Necessarily gives up some accuracy: approximate answers

– Often randomized (small constant probability of error)

– Much relevant work: samples, histograms, wavelet transforms

 Complementary to the first approach: not a case of either-or

 Some drawbacks:

– Not a general purpose approach: need to fit the problem

– Some computations don’t allow any useful summary
3

Outline for the talk

 An introduction to sketches (high level, no proofs)

 An application: Finding correlations among many observations

 There are many other (randomized) compact summaries:

– Sketches: Bloom filter, Count-Min, AMS, Hyperloglog

– Sample-based: simple samples, count distinct

– Locality Sensitive hashing: fast nearest neighbor search

– Summaries for more complex objects: graphs and matrices

 Not in this talk – ask me afterwards for more details!

4

What are “Sketch” Data Structures?

 Sketch is a class of summary that is a linear transform of input

– Sketch(x) = Sx for some matrix S

– Hence, Sketch(x + y) =  Sketch(x) +  Sketch(y)

– Trivial to update and merge

 Often describe S in terms of hash functions

– S must have compact description to be worthwhile

– If hash functions are simple, sketch is fast

 Analysis relies on properties of the hash functions

– Seek “limited independence” to limit space usage

– Proofs usually study the expectation and variance of the estimates

5

Sketches

 Count Min sketch [C, Muthukrishnan 04] encodes item counts

– Allows estimation of frequencies (e.g. for selectivity estimation)

– Some similarities to Bloom filters

 Model input data as a vector x of dimension U

– Create a small summary as an array of w  d in size

– Use d hash function to map vector entries to [1..w]

W

d
Array:

CM[i,j]

6

Count-Min Sketch Structure

 Update: each entry in vector x is mapped to one bucket per row.

 Merge two sketches by entry-wise summation

 Query: estimate x[j] by taking mink CM[k,hk(j)]
– Guarantees error less than e||x||1 in size O(1/e)

– Probability of more error reduced by adding more rows

+c

+c

+c

+c

h1(j)

hd(j)

j,+c

d
 ro

w
s

w = 2/e

7

Sketching for Euclidean norm

 AMS sketch presented in [Alon Matias Szegedy 96]

– Allows estimation of Euclidean norm of a sketched vector

– Leads to estimation of (self) join sizes, inner products

– Data-independent dimensionality reduction
(‘Sparse Johnson-Lindenstrauss lemma’)

 Here, describe (fast) AMS sketch by generalizing CM sketch

– Use extra hash functions g1...gd {1...U} {+1,-1}

– Now, given update (j,+c), set CM[k,hk(j)] += c*gk(j)

 Estimate squared Euclidean norm = mediank i CM[k,i]2

– Intuition: gk hash values cause ‘cross-terms’ to cancel out, on average

– The analysis formalizes this intuition

– median reduces chance of large error

 8

+c*g1(j)

+c*g2(j)

+c*g3(j)

+c*g4(j)

h1(j)

hd(j)

j,+c

Sketches in practice: Packet stream analysis

 AT&T Gigascope / GS tool: stream data analysis

– Developed since early 2000s

– Based on commodity hardware + Endace packet capture cards

 High-level (SQL like) language to express continuous queries

– Allows “User Defined Aggregate Functions” (UDAFs) plugins

– Sketches in gigascope since 2003 at network line speeds (Gbps)

– Flexible use of sketches to summarize behaviour in groups

– Rolled into standard query set for network monitoring

– Software-based approach to attack, anomaly detection

 Current status: latest generation of GS in production use at AT&T
Also in Twitter analytics, Yahoo, other query log analysis tools

9

Looking for Correlations

 Given many (time) series, find the highly correlated pairs

– And hope that there aren’t too many spurious correlations...

 Input model: we have m observations of n time series

– One new observation of all series at each time step

10

tyle
rvige

n
.co

m
/sp

u
rio

u
s-co

rre
latio

n
s

Computing the Correlation

 Stats refresher: time series modeled as random variables X, Y

– The covariance Cov(X,Y) = E[XY] – E[X] E[Y] = E[(X–E[X])(Y – E[Y])]

– The correlation is covariance normalized by standard deviations
Cor(X,Y) = Cov(X,Y)/σ(X)σ(Y)

 If we had all the time (and space) in the world:

– Compute a vector x = 1/σ(X) [X1 – μx, X2 – μx ... Xm – μx]

– For all x, y pairs, compute Cor(X,Y) = x · y (vector inner product)

– Time taken: O(nm) preprocessing + O(n2m) for pair computations

– Can write as a matrix product MMT, where M is normalized data

 O(nm) not so bad: linear in the size of the input data

 O(n2m) is bad: grows quadratically as number of series increases

– Can’t do better if many pairs are correlated

– But in general, most pairs are uncorrelated – so there is hope

11

Sketching version 1

 Can apply sketching to the data

– Replace each series with a sketch of the series

– Can use linear properties of sketches to update and zero mean
even as new observations are made

12

 Obtain approximate correlations (with error ε)

 Time cost reduced to O(mn + n2b), with b = O(1/ε2)

 Better, but still quadratic in n!

Sketching version 2

 Need a smarter data structure to find large correlations quickly

– If most pairs are uncorrelated, no use testing them all

 Simple idea: bunch series into groups, add them up in groups

– If no correlations in two groups, their sum should be uncorrelated

– If there is a correlation, the sum should remain correlated

 Challenge:

1. Turn the “should be”s into more precise statements!

2. How to find the correlated pair(s) from correlated groups?

 Solution outline: a combination of sketching + group testing

1. Use some standard statistical techniques to analyze probabilities

2. Use some nifty coding theory to “decode” results

13

Bucketing the sketches

 Create a smaller correlation matrix

– Randomly permute the indexing of the series

– Sum together the series placed in the same bucket

– Subtract the effect of diagonal elements (self-correlations) 14

Coding up the buckets

 For each pair of buckets, do additional coding to find which
entries were heavy (group testing within buckets)

– Repeat the sketching with different subsets of series

 Intuition: use a Hamming code to mask out some entries

– See which combinations are “heavy” to identify the heavy index

 Rather vulnerable to noise from sketching, collisions
15

More sketching! Sketch all the things!

 Improvement 1: use sketching ideas within the buckets!

– Randomly multiply each series in the bucket by +1 or -1

– Decreases the chance of errors (in a provable way)

16

More coding! Code all the things!

 Improvement 2: Error correcting codes to recover (noisy) pairs

 Care needed in code choice: each extra bit = more sketches

– Only need to code the low-order bits of the permuted (i, j)

– The high order bits are given by the bucket id

– Can just store the random permutation of ids explicitly

– Use Low Density Parity-Check codes: simple & work with sketches

17

       

Putting it all together

 Mistakes still happen: from sketches, collisions etc.

– Repeat the process a few times in parallel

– Only report pairs found at least half the time

– Makes false positives vanishingly small, recall is high

 Proof needed: Formal analysis of correctness to show:

– Good chance that each heavy pair is isolated in a bucket

– Noise from colliding pairs is small

– Sketches for the bucket are (mostly) correct

 Assumptions: if small correlations are polynomially small,
not too many large correlations, the space is subquadratic

– And fast: sketch computations done via fast matrix multiply

18

Proof-of-concept experiments

 Tests on synthetic data

– 50 vectors of length 1000

– Sketches size 120

– 10 buckets, 10 repetitions

 A few “planted” correlations

– Test threshold 0.35

 Can recover significant
correlations, miss some close
to the boundary

– Experiments ongoing!

19

Caveats and Cautions

 Randomized sketches can be powerful and effective, but they:

– Don’t give the exact answer
(so not widely implemented or used)

– Tend to be special purpose
(so used for specific important problems)

– Require some new ways of thinking
(so take some getting used to)

 Some resistance to the randomness– can be argued against:

– Want the exact answer? Most large data is highly noisy

– Hard to debug? Randomized algorithms are simple(ish), repeatable

– Want determinism? Hash tables are everywhere, caching, solar rays

20

 There are two approaches in response to growing data sizes

– Scale the computation up; scale the data down

 Sketches are a useful general technique for data reduction

– Developed for streaming algorithms (in computer science)

– Related to compressed sensing, dimensionality reduction (math/stat)

 Continuing interest in applying and developing new theory

– Always looking for new collaborators/students/postdocs

Summary

21

Ad: The Alan Turing Institute in London

22

ENGINEERING

TECHNOLOGY

DEFENCE &
SECURITY

SMART CITIES

FINANCIAL
SERVICES

HEALTH &
WELLBEING

Inference & Learning

Mathematical Representations

Systems & Platforms

Understanding Human Behaviour

