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Computational scalability and “big” data

m Most work on massive data tries to scale up the computation

m Many great technical ideas:

Use many cheap commodity devices
Accept and tolerate failure

Move data to code, not vice-versa
MapReduce: BSP for programmers

Break problem into many small pieces
Add layers of abstraction to build massive DBMSs and warehouses
Decide which constraints to drop: noSQL, BASE systems

m Scaling up comes with its disadvantages:

Expensive (hardware, equipment, energy), still not always fast

m This talk is not about this approach!
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Downsizing data

m A second approach to computational scalability: [
scale down the data! |

A compact representation of a large data set

Capable of being analyzed on a single machine _
What we finally want is small: human readable analysis / decisions
Necessarily gives up some accuracy: approximate answers

Often randomized (small constant probability of error)

Much relevant work: samples, histograms, wavelet transforms

m Complementary to the first approach: not a case of either-or

m Some drawbacks:

Not a general purpose approach: need to fit the problem

— Some computations don’t allow any useful summary



o
Outline for the talk

m An introduction to sketches (high level, no proofs)
m An application: Finding correlations among many observations

m There are many other (randomized) compact summaries:
— Sketches: Bloom filter, Count-Min, AMS, Hyperloglog
— Sample-based: simple samples, count distinct
— Locality Sensitive hashing: fast nearest neighbor search
— Summaries for more complex objects: graphs and matrices

m Not in this talk — ask me afterwards for more details!



_
What are “Sketch” Data Structures?

m Sketch is a class of summary that is a linear transform of input
— Sketch(x) = Sx for some matrix S

— Hence, Sketch(ax + By) = o Sketch(x) + B Sketch(y)
— Trivial to update and merge

m Often describe S in terms of hash functions

— S must have compact description to be worthwhile
— If hash functions are simple, sketch is fast
m Analysis relies on properties of the hash functions
— Seek “limited independence” to limit space usage
— Proofs usually study the expectation and variance of the estimates



o
Sketches

m Count Min sketch [C, Muthukrishnan 04] encodes item counts
— Allows estimation of frequencies (e.g. for selectivity estimation)
— Some similarities to Bloom filters

m Model input data as a vector x of dimension U
— Create a small summary as an array of w x d in size
— Use d hash function to map vector entries to [1..w]
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_
Count-Min Sketch Structure
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m Update: each entry in vector x is mapped to one bucket per row.
m Merge two sketches by entry-wise summation
m Query: estimate x[j] by taking min, CM[k,h,(j)]

— Guarantees error less than €| | x| |, in size O(1/¢)

— Probability of more error reduced by adding more rows
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Sketching for Euclidean norm

m AMS sketch presented in [Alon Matias Szegedy 96]
— Allows estimation of Euclidean norm of a sketched vector
— Leads to estimation of (self) join sizes, inner products

— Data-independent dimensionality reduction
(‘Sparse Johnson-Lindenstrauss lemma’)

m Here, describe (fast) AMS sketch by generalizing CM sketch
— Use extra hash functions g;,...g4{1...U}> {+1,-1}
— Now, given update (j,+c), set CM[k,h,(j)] += c*g,(j)

m Estimate squared Euclidean norm = median, 2.. CM[k,i]?
— Intuition: g, hash values cause ‘cross-terms’ to cancel out, on average

. . . . i +C* g
— The analysis formalizes this intuition Y
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I
Sketches in practice: Packet stream analysis

m AT&T Gigascope / GS tool: stream data analysis ... [fEsr=easats

— Developed since early 2000s
— Based on commodity hardware + Endace packet capture cards

m High-level (SQL like) language to express continuous queries
— Allows “User Defined Aggregate Functions” (UDAFs) plugins
— Sketches in gigascope since 2003 at network line speeds (Gbps)
— Flexible use of sketches to summarize behaviour in groups
— Rolled into standard query set for network monitoring
— Software-based approach to attack, anomaly detection

m Current status: latest generation of GS in production use at AT&T
Also in Twitter analytics, Yahoo, other query log analysis tools



Looking for Correlations
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m Given many (time) series, find the highly correlated pairs

— And hope that there aren’t too many spurious correlations...

m Input model: we have m observations of n time series

— One new observation of all series at each time step
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I
Computing the Correlation

m Stats refresher: time series modeled as random variables X, Y
— The covariance Cov(X,Y) = E[XY] — E[X] E[Y] = E[(X—E[X])(Y — E[Y])]
— The correlation is covariance normalized by standard deviations
Cor(X,Y) = Cov(X,Y)/a(X)o(Y)
m |f we had all the time (and space) in the world:
— Compute avector x=1/0(X) [ X; =1, X, = 1 ... X, — W]
— For all x, y pairs, compute Cor(X,Y) = x - y (vector inner product)
— Time taken: O(nm) preprocessing + O(n?m) for pair computations
— Can write as a matrix product MMT, where M is normalized data
m O(nm) not so bad: linear in the size of the input data

m O(n’m) is bad: grows quadratically as number of series increases

— Can’t do better if many pairs are correlated

" _ Butin general, most pairs are uncorrelated — so there is hope



I
Sketching version 1

m Can apply sketching to the data
— Replace each series with a sketch of the series

— Can use linear properties of sketches to update and zero mean
even as new observations are made
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m Obtain approximate correlations (with error €)
m Time cost reduced to O(mn + n2b), with b = O(1/£?)
12 m Better, but still quadraticin n!



I
Sketching version 2

m Need a smarter data structure to find large correlations quickly
— If most pairs are uncorrelated, no use testing them all

m Simple idea: bunch series into groups, add them up in groups
— If no correlations in two groups, their sum should be uncorrelated
— If there is a correlation, the sum should remain correlated

m Challenge:
1. Turn the “should be”s into more precise statements!
2. How to find the correlated pair(s) from correlated groups?

m Solution outline: a combination of sketching + group testing
1. Use some standard statistical techniques to analyze probabilities
2.  Use some nifty coding theory to “decode” results
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I
Bucketing the sketches

/
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m Create a smaller correlation matrix
— Randomly permute the indexing of the series
— Sum together the series placed in the same bucket
4 _ Subtract the effect of diagonal elements (self-correlations)



Coding up the buckets

m For each pair of buckets, do additional coding to find which
entries were heavy (group testing within buckets)

m Intuition: use a Hamming code to mask out some entries

— Repeat the sketching with different subsets of series

— See which combinations are “heavy” to identify the heavy index
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m Rather vulnerable to noise from sketching, collisions
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I
More sketching! Sketch all the things!

B Improvement 1: use sketching ideas within the buckets!
— Randomly multiply each series in the bucket by +1 or -1
— Decreases the chance of errors (in a provable way)
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I
More coding! Code all the things!

m Improvement 2: Error correcting codes to recover (noisy) pairs

Correlation Row i 1 1 1 1 0 1 0 1
Correlation Column | 1 0 0 1 1 1 1 1
Bucket (p, q) 1.22 | 0.34 | -0.20 | 147 | 0.02 | -0.67 | -0.28 | -0.44

(=0.5or<-0.57)

VYV AV %

m Care needed in code choice: each extra bit = more sketches
— Only need to code the low-order bits of the permuted (i, j)
— The high order bits are given by the bucket id
— Can just store the random permutation of ids explicitly
— Use Low Density Parity-Check codes: simple & work with sketches
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Putting it all together

m Mistakes still happen: from sketches, collisions etc.

— Repeat the process a few times in parallel

— Only report pairs found at least half the time
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— Makes false positives vanishingly small, recall is high

m Proof needed: Formal analysis of correctness to show:

— Good chance that each heavy pair is isolated in a bucket

Correlation Row | 1 1 1 1 1] 1 o 1

Correlation Column | 1 0 1] 1 1 1 1 1
Bucket (p, ) | 122 | 034 [-0.20 [ 1.47 | 0.02 [-0.67 | 0.28 | 0.44 |

(>050r<05% [ 1 o o0 1 0 1 0 0

— Noise from colliding pairs is small

— Sketches for the bucket are (mostly) correct

Decode: (i, [}

m Assumptions: if small correlations are polynomially small,
not too many large correlations, the space is subquadratic

— And fast: sketch computations done via fast matrix multiply
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I
Proof-of-concept experiments

Empirical Correlation Matrix
Q 10 20 30 40
=

m Tests on synthetic data
— 50 vectors of length 1000
— Sketches size 120
— 10 buckets, 10 repetitions

m Afew “planted” correlations
Filtered Results — Test threshold 0.35

0 10 20 30 40

m Can recover significant
correlations, miss some close
to the boundary

— Experiments ongoing!
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Caveats and Cautions

m Randomized sketches can be powerful and effective, but they:

— Don’t give the exact answer
(so not widely implemented or used)

— Tend to be special purpose
(so used for specific important problems)

— Require some new ways of thinking *w
(so take some getting used to)

B Some resistance to the randomness— can be argued against:

— Want the exact answer? Most large data is highly noisy
— Hard to debug? Randomized algorithms are simple(ish), repeatable
— Want determinism? Hash tables are everywhere, caching, solar rays
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I
Summary

m There are two approaches in response to growing data sizes

— Scale the computation up; scale the data down
m Sketches are a useful general technique for data reduction

— Developed for streaming algorithms (in computer science)

— Related to compressed sensing, dimensionality reduction (math/stat)
m Continuing interest in applying and developing new theory

— Always looking for new collaborators/students/postdocs
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