Sub-quadratic search for significant correlations

Graham Cormode
Jacques Dark
University of Warwick
G.Cormode@Warwick.ac.uk
Computational scalability and “big” data

- Most work on massive data tries to **scale up the computation**
- Many great technical ideas:
 - Use many cheap commodity devices
 - Accept and tolerate failure
 - Move data to code, not vice-versa
 - MapReduce: BSP for programmers
 - Break problem into many small pieces
 - Add layers of abstraction to build massive DBMSs and warehouses
 - Decide which constraints to drop: noSQL, BASE systems
- Scaling up comes with its disadvantages:
 - Expensive (hardware, equipment, **energy**), still not always fast
- This talk is not about this approach!
Downsizing data

- A second approach to computational scalability: **scale down the data!**
 - A compact representation of a large data set
 - Capable of being analyzed on a single machine
 - What we finally want is small: human readable analysis / decisions
 - Necessarily gives up some accuracy: approximate answers
 - Often randomized (small constant probability of error)
 - Much relevant work: samples, histograms, wavelet transforms

- Complementary to the first approach: not a case of either-or

- Some drawbacks:
 - Not a general purpose approach: need to fit the problem
 - Some computations don’t allow any useful summary
Outline for the talk

- **An introduction** to sketches (high level, no proofs)
- **An application**: Finding correlations among many observations

- There are many other (randomized) compact summaries:
 - **Sketches**: Bloom filter, Count-Min, AMS, Hyperloglog
 - **Sample-based**: simple samples, count distinct
 - **Locality Sensitive hashing**: fast nearest neighbor search
 - **Summaries for more complex objects**: graphs and matrices

- Not in this talk – ask me afterwards for more details!
What are “Sketch” Data Structures?

- **Sketch** is a class of summary that is a **linear transform** of input
 - \(\text{Sketch}(x) = Sx \) for some matrix \(S \)
 - Hence, \(\text{Sketch}(\alpha x + \beta y) = \alpha \text{Sketch}(x) + \beta \text{Sketch}(y) \)
 - Trivial to **update** and **merge**

- Often describe \(S \) in terms of hash functions
 - \(S \) must have compact description to be worthwhile
 - If hash functions are simple, sketch is fast

- Analysis relies on properties of the hash functions
 - Seek “limited independence” to limit space usage
 - Proofs usually study the expectation and variance of the estimates
Sketches

- Count Min sketch [C, Muthukrishnan 04] encodes item counts
 - Allows estimation of frequencies (e.g. for selectivity estimation)
 - Some similarities to Bloom filters

- Model input data as a vector x of dimension U
 - Create a small summary as an array of $w \times d$ in size
 - Use d hash function to map vector entries to $[1..w]$
Count-Min Sketch Structure

- **Update**: each entry in vector \mathbf{x} is mapped to one bucket per row.
- **Merge** two sketches by entry-wise summation
- **Query**: estimate $x[j]$ by taking $\min_k CM[k,h_k(j)]$
 - Guarantees error less than $\varepsilon \|\mathbf{x}\|_1$ in size $O(1/\varepsilon)$
 - Probability of more error reduced by adding more rows

$$w = 2/\varepsilon$$
Sketching for Euclidean norm

- AMS sketch presented in [Alon Matias Szegedy 96]
 - Allows estimation of Euclidean norm of a sketched vector
 - Leads to estimation of (self) join sizes, inner products
 - Data-independent dimensionality reduction
 (‘Sparse Johnson-Lindenstrauss lemma’)

- Here, describe (fast) AMS sketch by generalizing CM sketch
 - Use extra hash functions \(g_1 \ldots g_d \{1 \ldots U\} \rightarrow \{+1, -1\} \)
 - Now, given update \((j, +c)\), set \(CM[k, h_k(j)] += c \cdot g_k(j) \)

- Estimate squared Euclidean norm = median \(k \sum_i CM[k, i]^2 \)
 - Intuition: \(g_k \) hash values cause ‘cross-terms’ to cancel out, on average
 - The analysis formalizes this intuition
 - median reduces chance of large error
Sketches in practice: Packet stream analysis

- **AT&T Gigascope / GS tool**: stream data analysis
 - Developed since early 2000s
 - Based on commodity hardware + Endace packet capture cards

- **High-level (SQL like) language to express continuous queries**
 - Allows “User Defined Aggregate Functions” (UDAFs) plugins
 - Sketches in gigascope since 2003 at network line speeds (Gbps)
 - Flexible use of sketches to summarize behaviour in groups
 - Rolled into standard query set for network monitoring
 - Software-based approach to attack, anomaly detection

- **Current status**: latest generation of GS in production use at AT&T
 Also in Twitter analytics, Yahoo, other query log analysis tools
Looking for Correlations

Given many (time) series, find the highly correlated pairs
- And hope that there aren’t too many spurious correlations...

Input model: we have m observations of n time series
- One new observation of all series at each time step
Computing the Correlation

- **Stats refresher**: time series modeled as random variables X, Y
 - The covariance $\text{Cov}(X,Y) = \text{E}[XY] - \text{E}[X] \text{E}[Y] = \text{E}[(X - \text{E}[X])(Y - \text{E}[Y])]$
 - The correlation is covariance normalized by standard deviations $\text{Cor}(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma(X)\sigma(Y)}$

- If we had all the time (and space) in the world:
 - Compute a vector $x = \frac{1}{\sigma(X)} [X_1 - \mu_x, X_2 - \mu_x ... X_m - \mu_x]$
 - For all x, y pairs, compute $\text{Cor}(X,Y) = x \cdot y$ (vector inner product)
 - Time taken: $O(nm)$ preprocessing + $O(n^2m)$ for pair computations
 - Can write as a matrix product MM^T, where M is normalized data

- $O(nm)$ not so bad: linear in the size of the input data
- $O(n^2m)$ is bad: grows quadratically as number of series increases
 - Can’t do better if many pairs are correlated
 - But in general, most pairs are uncorrelated – so there is hope
Can apply sketching to the data
- Replace each series with a sketch of the series
- Can use linear properties of sketches to update and zero mean even as new observations are made

Obtain approximate correlations (with error ε)
- Time cost reduced to $O(mn + n^2b)$, with $b = O(1/\varepsilon^2)$
- Better, but still quadratic in n!
Sketching version 2

- Need a smarter data structure to find large correlations quickly
 - If most pairs are uncorrelated, no use testing them all

- Simple idea: bunch series into groups, add them up in groups
 - If no correlations in two groups, their sum should be uncorrelated
 - If there is a correlation, the sum should remain correlated

- Challenge:
 1. Turn the “should be”s into more precise statements!
 2. How to find the correlated pair(s) from correlated groups?

- Solution outline: a combination of sketching + group testing
 1. Use some standard statistical techniques to analyze probabilities
 2. Use some nifty coding theory to “decode” results
Bucketing the sketches

- Create a smaller correlation matrix
 - Randomly permute the indexing of the series
 - Sum together the series placed in the same bucket
 - Subtract the effect of diagonal elements (self-correlations)
Coding up the buckets

- For each pair of buckets, do additional coding to find which entries were heavy (group testing within buckets)
 - Repeat the sketching with different subsets of series
- Intuition: use a Hamming code to mask out some entries
 - See which combinations are “heavy” to identify the heavy index

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>Σ</th>
<th>(> 0.5)?</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
<td>0.1</td>
<td>0.4</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0.7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

- Rather vulnerable to noise from sketching, collisions
More sketching! Sketch all the things!

- **Improvement 1**: use sketching ideas within the buckets!
 - Randomly multiply each series in the bucket by +1 or -1
 - Decreases the chance of errors (in a provable way)
More coding! Code all the things!

- **Improvement 2**: Error correcting codes to recover (noisy) pairs

- **Care needed in code choice**: each extra bit = more sketches
 - Only need to code the low-order bits of the permuted \((i, j)\)
 - The high order bits are given by the bucket id
 - Can just store the random permutation of ids explicitly
 - Use **Low Density Parity-Check codes**: simple & work with sketches
Putting it all together

- **Mistakes still happen**: from sketches, collisions etc.
 - Repeat the process a few times in parallel
 - Only report pairs found at least half the time
 - Makes false positives vanishingly small, recall is high

- **Proof needed**: Formal analysis of correctness to show:
 - Good chance that each heavy pair is isolated in a bucket
 - Noise from colliding pairs is small
 - Sketches for the bucket are (mostly) correct

- **Assumptions**: if small correlations are polynomially small, not too many large correlations, the space is subquadratic
 - And fast: sketch computations done via fast matrix multiply
Proof-of-concept experiments

- Tests on synthetic data
 - 50 vectors of length 1000
 - Sketches size 120
 - 10 buckets, 10 repetitions
- A few “planted” correlations
 - Test threshold 0.35
- Can recover significant correlations, miss some close to the boundary
 - Experiments ongoing!
Caveats and Cautions

Randomized sketches can be powerful and effective, but they:
- Don’t give the exact answer
 (so not widely implemented or used)
- Tend to be special purpose
 (so used for specific important problems)
- Require some new ways of thinking
 (so take some getting used to)

Some resistance to the randomness—can be argued against:
- Want the exact answer? Most large data is highly noisy
- Hard to debug? Randomized algorithms are simple(ish), repeatable
- Want determinism? Hash tables are everywhere, caching, solar rays
Summary

- There are two approaches in response to growing data sizes
 - Scale the computation up; scale the data down
- Sketches are a useful general technique for data reduction
 - Developed for streaming algorithms (in computer science)
 - Related to compressed sensing, dimensionality reduction (math/stat)
- Continuing interest in applying and developing new theory
 - Always looking for new collaborators/students/postdocs
Ad: The Alan Turing Institute in London

- Mathematical Representations
- Inference & Learning
- Systems & Platforms
- Understanding Human Behaviour

- ENGINEERING
- TECHNOLOGY
- DEFENCE & SECURITY
- SMART CITIES
- FINANCIAL SERVICES
- HEALTH & WELLBEING