Matching and Covering in Streaming Graphs

Graham Cormode
g.cormode@warwick.ac.uk

Joint work with
Rajesh Chitnis, Hossein Esfandiari, MohammadTaghi Hajiaghayi (UMD)
S. Muthukrishnan, Morteza Monemizadeh (Rutgers)
Hossein Jowhari (Warwick)
A tale of three graphs

♦ The telephone call-graph
 – Each edge denotes a call between two phones
 – $2-3 \times 10^9$ calls made each day in US, maybe 0.5×10^9 phones
 – Can store this information (for billing etc.)

♦ The social graph
 – Each edge denotes a link from one person to another
 – $>10^9$ people, $>10^{11}$ links
 – Store people (nodes) in memory, but maybe not all links

♦ The IP graph
 – Each edge denotes communication between IP addresses
 – 10^9 packets/hour/router in a large ISP, 2^{32} possible addresses
 – Not feasible to store nodes or edges
Big Graphs

- Increasingly many “big” graphs:
 - Internet/web graph (2^{64} possible edges)
 - Online social networks (10^{11} edges)

- Many natural problems on big graphs:
 - Connectivity/reachability/distance between nodes
 - Summarization/sparsification
 - Traditional optimization goals: vertex cover, maximal matching

- Various models for handling big graphs:
 - Parallel (BSP/MapReduce): store and process the whole graph
 - Sampling: try to capture a subset of nodes/edges
 - Streaming (this talk): seek a compact summary of the graph
 - Ideally, computable by distributed observers
Streaming graph model

♦ The “you get one chance” model:
 – See each edge only once
 – Space used must be sublinear in the size of the input
 – Analyze costs (time to process each edge, accuracy of answer)

♦ Variations within the model:
 – See each edge exactly once or at least once?
 ■ Assume exactly once, this assumption can be removed
 – Insertions only, or edges added and deleted?
 – How sublinear is the space?
 ■ Semi-streaming: linear in \(n \) (nodes) but sublinear in \(m \) (edges)
 ■ “Strictly streaming”: sublinear in \(n \), polynomial or logarithmic
Streaming is hard!

- With sublinear in \(n \) (nodes) space, life is difficult
 - Cannot remember whether or not a given edge was seen
 - Therefore, cannot determine (e.g.) whether graph is connected
 - Standard relaxations, specifically randomization, do not help
 - Formal hardness proved via communication complexity

- Different relaxations are needed to make any progress
 - Relax space: allow linear in \(n \) space – semi-streaming model
 - Make assumptions about input
 - Solution is not too large: parameterized streaming model
 - Graph has some additional structure: e.g. sparsity assumptions
Parameterized Streaming

♦ For many “real life” graphs we can make such assumptions
 – About edge density (few real massive graphs are dense)
 – About cost/size of the solution

♦ Draw inspiration from fixed parameter-tractability (FPT)
 – For (NP) Hard problems: assume solution has size k
 – Naïve solutions have cost $\exp(n)$
 – Seek solutions with cost $\text{poly}(n)\exp(k)$ – OK for small k
 – Report “no” if solution size is greater than k
A key technique is **kernelization**
- Reduce input (graph) G to a smaller (graph) instance G'
- Such that solution on G' corresponds to solution on G
- Size of G' is $\text{poly}(k)$
- So naïve (exponential) algorithm on G' is FPT

Kernelization is a powerful technique
- Any problem that is FPT has a kernelization solution
Kernelization for Vertex Cover

Vertex cover: find a set of vertices S so every edge has at least one vertex in S

- Set $k' = k$, desired size of vertex cover
- Repeat till neither of the following rules can be applied
 1. There is a vertex v in G with degree $> k'$. v must be in any cover. Remove v and all edges incident on v from G, decrease k' by one.
 2. There is an isolated vertex v in G. Remove v from G.
- If neither rule can be applied, but $m > k'^2$ then G does not have a vertex cover of size at most k'.
- Else, G' is a kernel with at most $2k'^2$ nodes and k'^2 edges
 - Can run exponential time algorithm on G' to test for vertex cover

Kernelization on Graph Streams

♦ A simple algorithm for **insertions only**
 – Maintain a matching \(M \) (greedily) on the graph seen so far
 – For any \(v \) in the matching, keep up to \(k \) edges incident on \(v \) as \(G_M \)
 – If \(|M| > k \), quit: any vertex cover must have more than \(k \) nodes
 – At any time, run kernelization algorithm on the stored edges \(G_M \)

♦ **Key insight**: size of \(M \) is a lower bound on size of vertex cover

♦ **Proof outline**: argue that kernelization on \(G_M \) mimics that on \(G \)
 – Every step on \(G_M \) can be applied to \(G \) correspondingly
 – We keep “enough” edges on a node to test if it is high-degree

♦ **Guarantees** \(O(k^2) \) space: at most \(k \) edges on \(2k \) nodes
 – Lower bound of \(\Omega(k^2) \) in the streaming model for Vertex Cover
 – Can run with distributed observers, then merge and prune
Kernelization on Dynamic Graph Streams

- More challenging case: dynamic graph streams
 - Edges are inserted and deleted, over distributed observers
- Previous algorithm breaks: deleting a matched edge means we no longer have a maximal matching
- Study promise problem that max matching always at most size k
- Need some additional technology: L_0 sampling
 - Allows us to deal with high degree nodes
 - A sketch algorithm: maintains linear transform of input
 - Allows inserts and deletes to be analyzed easily
 - Mergeable: sketches can be “added” to sketch union of inputs
L₀ Sampling

♦ Goal: sample (near) uniformly from items with non-zero frequency

♦ General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05]
 – Consider input to define a vector of frequencies
 – Sub-sample all items (present or not) with probability p
 – Generate a sub-sampled vector of frequencies \(f_p \)
 – Feed \(f_p \) to a \textit{k-sparse recovery} data structure
 ■ Allows reconstruction of \(f_p \) if number of non-zero entries < k
 – If vector \(f_p \) is k-sparse, sample from reconstructed vector
 – Repeat in parallel for exponentially shrinking values of p
Sampling Process

- Exponential set of probabilities, \(p=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16} \ldots \frac{1}{U} \)
 - Let \(N = F_0 = |\{ i : f_i \neq 0\}| \)
 - Want there to be a level where k-sparse recovery will succeed
 - At level \(p \), expected number of items selected \(S \) is \(Np \)
 - Pick level \(p \) so that \(\frac{k}{3} < Np \leq \frac{2k}{3} \)
- **Chernoff bound**: with probability exponential in \(k \), \(1 \leq S \leq k \)
 - Pick \(k = O(\log \frac{1}{\delta}) \) to get \(1-\delta \) probability
k-Sparse Recovery

- Given vector x with at most k non-zeros, recover x via sketching
 - A core problem in compressed sensing/compressive sampling
- Randomized construction: hash elements to $O(k)$ buckets
 - Elements are probably isolated in each bucket
 - Keep count of items and sum of item identifiers in each cell
 - Sum/count will reveal item id
 - Avoid false positives: keep fingerprint of items in each cell
- Can keep a sketch of size $O(k \log U)$ to recover up to k items

<table>
<thead>
<tr>
<th>Sum, $\sum_{i: h(i) = j} i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count, $\sum_{i: h(i) = j} x_i$</td>
</tr>
<tr>
<td>Fingerprint, $\sum_{i: h(i) = j} x_i r^i$</td>
</tr>
</tbody>
</table>
Neighborhood sampling

- Back to maximal matchings and vertex cover
 - **Algorithm outline**: keep information about the graph in \(L \) and \(H \)
 - \(H \): set of high degree nodes (degree > 2k)
 - Keep an \(L_0 \) sketch of the neighbourhood of each node in \(H \)
 - \(L \): set of edges neither of whose endpoints is in \(H \)

- Given \(L \) and \(H \), we can find a maximal matching
 - Recover edges from sketches of \(H \) (at most \(k+1 \) from each node)
 - Combine with \(L \) and greedily find a matching on this set

- **Proof outline.** We need to argue:
 1. We can maintain \(L \) and \(H \) correctly
 2. The matching found is good
Maintaining L and H

- **Invariant**: Every edge is stored in exactly one place
 - Use timestamps on nodes becoming heavy to break ties
 - If a light node becomes heavy, put all its edges into a sketch
 - If a heavy node becomes light, can recover all its edges
 - And put these into L
 - Edge deletions delete the edge from the one place it was stored

- **Space Analysis**:
 - Cannot be more than $2k+1$ high degree nodes in H
 - Else, could find a matching larger than k between them
 - Cannot be more than $4k^2$ edges in L
 - Else could find a larger matching as nodes in L are low-degree
 - Consequently, space used is $O(k^2 \text{ polylog}(k))$
Correctness of the algorithm

♦ **Key point:** for high degree nodes, we have a ‘surfeit of riches’
 – Doesn’t matter which edges we remember, there are enough to match this node somehow
 – So can match all nodes in \(H \) using the recovered edges
 – \(L \) consists of all edges not incident on \(H \), so have these exactly
 – Hence can greedily find a maximal matching for the graph

♦ **Summary:** can find a maximal matching in \(O^{\sim}(k^2) \) space
 – Under the promise that the matching is always at most \(k \) in size
 – **Centralized:** need to track membership of \(L \) and \(H \)
 – Use the maximal matching in an FPT vertex cover algorithm

♦ Can remove the limitations with a hash/sampling based approach
 – See SODA’16 paper with McGregor and Vorotnikova
Matching under sparsity

- Many graphs (phone, web, social) are ‘sparse’
 - Asymptotically fewer than $O(n^2)$ edges
- Characterize sparsity by bounded arboricity c
 - Edges can be partitioned into at most c forests
 - Equivalent to the largest local density, $|E(U)|/(|U|-1)$ for $U \subseteq V$
 - $E(U)$ is the number of edges in the subgraph induced by U
 - E.g. planarity corresponds to 3-bounded arboricity
- Use structural properties of sparse graphs to give results
α-Goodness

Define an edge in a stream to be α-good if neither of its endpoints appears more than α times in the suffix of the input.

- Intuition: This definition sparsifies the graph but approximately preserves the matching.
- Estimating the number of α-good edges is easier than finding the matching itself.

Edge is 1-good if at most 1 edge on each endpoint arrives later.
Easy case: trees (c=1)

- Consider a tree T with maximum matching size M^*
- $|E_1| \leq 2M^*$: The subgraph E_1 has degree at most 2, no cycles
 - So can make a matching for T from E_1 using at least half the edges
- $|E_1| \geq M^*$: Proof by induction on number of nodes n
 - Base case: $n=2$ is trivial
 - Inductive case: add an edge (somewhere in the stream) that connects a leaf to an internal node
 - Either M^* and $|E_1|$ stay the same, or $|E_1|$ increases by 1 and M^* increases by at most 1
 - At most 1 edge is ejected from E_1, but the new edge replaces it
General case

- **Upper bound**: $|E_{6c}| \leq (22.5c + 6)/3 \ M^*$
 - E_α has degree at most $\alpha + 1$, and invoke a bound on M^* [Han 08]
- **Lower bound**: $M^* \leq 3 |E_{6c}|$
 - Break nodes into low L and high degree H classes (as before)
 - Relate the size of a maximum matching to number of high degree nodes plus edges with both ends low degree
 - Define HH: the nodes in H that only link to others in H
 - There must still be plenty of these by a counting argument
 - Use bounded arboricity to argue that half the nodes in HH have degree less than $6c$ (averaging argument)
 - These must all have a $6c$-good edge (not too many neighbors)
- Combine these to conclude $M^* \leq 3 |E_{6c}| \leq (22.5c + 6)M^*$
Testing edges for α-Goodness

- To estimate matching size, count number of α-good edges
- Follow a sampling strategy similar to L_0 sampling
 - Uniformly sample an edge (u, v) from the stream (easy to do)
 - Count number of subsequent edges incident on u and v
 - Terminate procedure if more than α incident edges
- Need to sample many times in parallel to get result
 - Sample rate too low: no edges found are α-good
 - Sample rate too high: space too high
 - But we can drop the instances that fail
- **Goldilocks effect**: We can find a sample rate that is just right
 - And bound the space of the over-sampling instances
Parallel guessing

- Make parallel guesses of sampling rates p_i
 - Run $1/\varepsilon \log n$ guesses with sampling rates $p_i = (1+\varepsilon)^i$
 - Terminate level i if more than $O(\alpha^2 \log n/\varepsilon^2)$ guesses are active

- **Estimate**: Use lowest non-terminated level to make estimate

- **Correctness**: there is a ‘good’ level that will not be terminated
 - E_α might go up and down as we see more edges
 - But the matching size only increases as the stream goes on
 - Use the previous analysis relating E_α to matching size to bound
 - Also argue that using other levels to estimate is OK

- **Result**: use $O(c/\varepsilon^2 \log n)$ space to $O(c)$ approximate M^*
Open Problems

- More consideration to the distributed case
 - Many of the pieces can be easily distributed (e.g. sketches)
 - But some pieces (e.g. a-good definition) are inherently centralized

- Other notions of structure/sparsity beyond arboricity?

- Extend to the weighted matching case: some recent results here

- Connections between the streaming and online models?

- Other problems for which kernelization/FPT makes sense?
 - Hypergraph problems, optimization problems...
Concluding Remarks

- Use of l_0 sketches has arisen in several recent graph algorithms
 - Streaming graph connectivity in $O(n \text{ polylog})$ space
 [Ahn, Guha, McGregor 12]
 - Dynamic graph connectivity in polylogarithmic worst-case time
 [Kapron, King, Mountjoy 13]
- Prompts several natural questions:
 - Can other streaming ideas inspire new (distributed) graph algorithms?
 - Can streaming (bounded space) lead to dynamic (fast updates)?
 - Can the primitives (l_0 sampling) be engineered for practical use?
 - Can assumptions (promises on input) be removed or weakened?

Thank you!