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Overview
This paper considers the problem of maintaining machine learning model
from a distributed stream over a network with high latency. Under this
scenario, the algorithm should be:

• Communication-efficient among distributed sites
• Able to accurately keep track of the continuously changing model
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Figure 1: Machine learning from distributed stream over WAN

Problem Statement
Goals of Learning

• Learn the probabilistic graphical model [1]: Bayesian Networks [2]
• Discuss the problem of estimating parameters: conditional probabil-

ity distribution (CPD) of each variable given its parents
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Figure 2: Cancer Bayesian Network with CPDs

Distributed Stream
• Each site receives an individual stream of observations
• A coordinator maintains a Bayesian Network and answers queries
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Figure 3: Learn Bayesian Network Parameters from Distributed Stream

Research Challenge and Solution Idea
Exact Counting: Report each event exactly to the coordinator
Drawback: High network communication cost becomes the bottleneck
Approximate Counter [3]: Substantially reduces the number of mes-
sages sent but maintains the value of counter with approximate error
Challenge: Design algorithms using approximate counters to reduce the
communication while achieving the joint distribution as accurate as MLE
Solution Idea: Error and communication as an optimization problem

Minimize communication s.t. e−ε ≤ P̃ (x)

P̂ (x)
≤ eε

where ε is the error budget, x is the input vector, P̃ (x) is the probability
using approximate counters and P̂ (x) is the probability using MLE.

Communication Efficient Algorithms
We propose a set of algorithms that are different based on how they set
the error parameter for each approximate counter.
Baseline: Divides the error budget uniformly across all variables
Uniform: Improved randomized analysis by utilizing the property of ap-
proximate counter: unbiased and variance bounded
Non-uniform: Uneven error parameter assignment, account for the car-
dinalities of different variables and the parents

Table 1: Theoretical Result Summary
(ε: error budget, n: number of variables, m: total number of events)

Algorithm Approx. Factor of Counters Communication (msgs.)
Exact 1 O(mn)

Baseline O( ε
n
) O(n

2

ε
logm)

Uniform O( ε√
n
) O(n

3/2

ε
logm)

Non-uniform uneven at least Uniform

Experiment
Experiment Setting

• Live implementation on an EC2 cluster on Amazon Web Services
• Training data is generated based on the ground truth
• Testing data contains 1000 events and estimate the probability of

each event using parameters learnt by the distributed algorithms
• Error budget is set to 0.1
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Figure 4: Error to the ground truth. (Left: Alarm, Right: Munin)
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Figure 5: Communication cost and training time of different algorithms

Conclusion
• Compared to maintain the exact MLE, our algorithms reduce the

communication that is only logarithmic in the number of events
• Offer provable guarantees on the estimation of joint probability
• Provide optimal strategy for maintaining parameters by utilizing the

approximate counter properties and the information of Bayesian Net-
work structure

• Empirically show the reduced communication and similar prediction
errors as the MLE for estimation and classification tasks
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