
Estimating Dominance Norms 
of Multiple Data Streams

Graham Cormode
graham@dimacs.rutgers.edu

Joint work with S. Muthukrishnan



Data Stream Phenomenon

• Data is being produced faster than our ability 
to process it

• Leads to the data stream paradigm: process 
the data as it arrives, don’t store or 
communicate the full data

• Motivated by networks (Gb per hour per 
router), also applied to databases, scientific 
data feeds, sensor networks and so on

• Theoretically leads to search for one pass, 
online algorithms with poly-log space and 
time per item in the stream



Multiple Signals
Previous work considers only a single signal at a 

time

Many data streams consist of multiple signals 
from several distributions, from which we want 
to extract some global information

Examples: 
– financial transactions from many different individuals

– web clickstreams from many users registered on 
different machines

– multiple readings from multiple sensors in 
atmospheric monitoring



Prior Work
• Growing body of work on data stream 

processing in algorithms, database and network 
fields

• Many computations possible on streams –
notably, finding frequency moments, Lp norms, 
quantiles, wavelet representation and so on 

• Babcock Babu Datar Motwani Widom 02, 
Garofalakis, Gehrke, Rastogi 02, Muthukrishnan
03 give surveys from different perspectives

• But almost exclusively focus is on single massive 
streams, not many massive streams!



Data Stream Model
• Model data streams as simply structured 

series of items

• n items in the stream S=(i, a[i,j]) means a[i,j] 
is the value of distribution j at location i

• Assume: a[i,j] is bounded by polynomial in n

• Don’t assume that j is made explicit in stream 
or that we see updates for every [i,j] pair



Dominance Norm

• The dominance norm measures the “worst 
case influence” of the different signals

• Defined as Dom(S) = Σi max j {a[i,j]}

• Can think of this as the L1 norm of the 
upper-envelope of the signals, 

• Alternatively, as a function of the marginals 
of a matrix of the signal values



Dominance Norm

• Maximum possible utilization of a resource

• Applied in financial applications, electrical grid

• Treat as an indicator of actionable events



Dominance Norm
• Suppose each a[i,j] is 0 or 1

• Consider each signal to be a set Xj, then 

Dom(S) = |Uj Xj|

This can be solved using existing stream 
algorithms for finding unions of multiple sets

Can also be thought of as counting the number 
of distinct items i in the stream

Can this be generalized for arbitrary a[i,j]?
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Space Cost
• log1+ε (max val / min val) distinct element 

algorithm instances  = O(log (n) / ε)

• Space required is O(poly-log(n) / ε2) per 
instance using prior work

• Total space is O(poly-log(n)/ε3)

• Cubic space dependency on 1/ε is high – can 
we do better?



Reducing Space
• Try to keep just 1 distinct element count 

algorithm, and so reduce space cost

• Need a more flexible algorithm and new 
analysis

• Make a new use of Stable Distributions, used 
before in stream processing 

• See Indyk’00, CIKM’02, CDIM’03



Idealized Algorithm
Suppose there were a distribution X such that 

E(cX) = 1 (an impossible property

• Let xi,k be values drawn from X.  

• Set z = 0 initially

• For every (i,a[i,j]) in the stream, 

z = z + Σk=1
a[i,j] xi,k

• Then E(z) = Σi maxi {a[i,j]}, and can be used 
to estimate Dom(S)



Reduction to Norms
Fix the idealized algorithm and make it practical.

Replace impossible dbn X with stable distributions 
by turning problem into one of norm 
approximation.

Let b be the matrix with b[i,k] = |{j|k ≤ a[i,j]}|

• Define ||b||pp = Σi,k bp

• Dom(S) = |{i,k | b[i,k] > 0}| = ||b||00

Approximate the value of ||b||00 with ||b||pp for 
suitably chosen small value of p. 



Choosing the p-value

Absolute value of any entry in the matrix < n

||b||0 = Σ |bi|0 ≤ Σ |bi|p ≤ Σ Bp |bi|0 ≤ np ||b||0

Setting np = (1+ε) means 

||b||0 ≤ ||bi||pp ≤ (1+ε) ||b||0
So setting  p = ε / log n, allows approximation 
of L0 by Lp – reducing p zeros in on L0



Stable Distributions
Use stable distributions to approximate ||b||pp

Stable distributions have property that

a1X1+a2X2+ … anXn =     ||(a1, a2, … , an)||pX

if X1 … Xn are stable with stability parameter p

Stable distributions exist and can be simulated for 
all parameters 0 < p ≤ 2.

in dbn.



Approximation Algorithm
• Let xi,k be values drawn from Stable Distribution with 

parameter p = ε/log n.  

• Set z = 0 initially

• For every (i,a[i,j]) in the stream, 

z = z + Σk=1
a[i,j] xi,k

• Repeat independently in parallel O(1/ε2 log 1/δ)
times, take the median of |z|s as the answer



Approximation Result
• Each z distributed as ||b||p X

• median (|z|p) = median(||b||pp |X|p)  
= ||b||pp median(|X|p)

Result (with rescaling of ε):
With probability at least 1-δ, 

(1-ε)Dom(S) ≤ median(|z|p) ≤ (1+ε)Dom(S)
median(|X|p)



Issues to Resolve
• What is the scale factor, median(|X|p)?

• How to compute efficiently (faster than O(a[i,j]) per 
update?

• How to avoid storing xi,k explicitly?

– Use appropriate pseudo-random number 
generator to find xi,k when needed

– use standard transforms to draw from stable 
distributions via uniform distribution



Scale Factor
• Use result from stats: in the limit as p → 0, 

|X|p is distributed as E-1, inverse exponential 
distribution

• Cumulative density function of E-1

F(x) = exp(-1/x)

• Median: F(x) = ½ = exp(-1/median(|X|0)

• So median(|X|0) = 1/ln 2



Efficient Computation
• Direct implementation means adding a[i,j]

values to the counters for every update

• But, each value is drawn from a stable 
distribution, and we know sum of stables is a 
stable

• Use same trick as before, round to nearest 
power of (1+ε) and just add the O(log (n)/ε)
values to the counters

• So update time is O(log (n)/ε3)



Full results
• Approximate the Dominance norm within 

1±ε with probability at least 1-δ using O(1/ε2

log (1/δ)) counters

• Time per update is O(1/ε3 log (1/δ))

• Possible to ‘subtract off’ the effect of earlier 
insertions – not possible with most distinct 
element algorithms

• A few other aspects not mentioned, full 
details in the paper



Other Dominances
• Natural questions: are other notions of 

dominance on multiple streams tractable?

• Take Min-Dominance: 

MinDom(S) = Σi min j {a[i,j]}

• Let X1, X2 be subsets of {1...n/2}.  
Set a[i,j]=1 ⇔ i ∈ Xj

• Then MinDom(S) = |X1 ∩ X2|

• Requires Ω(n) space to approximate, even 
allowing probability, several passes etc. 



Extensions
• Other reasonable definitions of dominances –

eg Median Dominance, Relative Dominance 
between two streams, also require linear 
space

• Are there other natural quantities which are 
computable over streams of multiple signals?

• What quantities are good indicators for 
actionable events? 


