
Exponentially Decayed Aggregates
on Data Streams

Graham Cormode

Flip Korn
AT&T Labs - Research

{graham,flip}@research.att.com

Srikanta Tirthapura
Iowa State

snt@iastate.edu

Exponentially Decayed Aggregates on Data Streams — Cormode, Korn, Tirthapura2

Data Stream Computations

� Streams of updates must be processed in single pass

– IP traffic measurements, stock feeds, sensor readings

� Need to mine holistic aggregates

– Medians (quantiles), frequent items

� Recent updates more important than older data

– Weight updates based on a function of age

� Need to keep small summaries, give accurate answers

– Much work on sketches, summaries without decay

Exponentially Decayed Aggregates on Data Streams — Cormode, Korn, Tirthapura3

Exponential Decay

� Give items a weight that depends exponentially on age

– Age a has weight exp(-λ a), for parameter λ

� Given a stream of timestamps ti, easy to compute
decayed count

– Track current decayed count C, last update t

– Given ti, C ← C * exp(-λ(ti – t)) + 1
t ← ti

– Generalizes to exponentially decayed sum

� We study more complex (holistic) aggregates, show that

there are fast, small solutions for these as well.

Exponentially Decayed Aggregates on Data Streams — Cormode, Korn, Tirthapura4

Aggregates of Interest

� Streaming model: Given stream of 〈xi, wi, ti〉 tuples

– xi is an item, wi its weight, ti its timestamp

– E.g. IP flow, weight in bytes, start time

– Total weight at time t is D(t) = ∑i wi exp(λ(t – ti)))

� φ-Heavy Hitters (under exponential decay)

– Find items x so that ∑xi = x wi exp(λ(t-ti))) > (φ±ε) D(t)

� φ-Quantiles (under exponential decay

– Find q so that (φ - ε)D ≤ ∑xi≤ q wi exp(λ(t-ti)) ≤ (φ + ε)D

� λ=0 ⇒ no decay

– Same as standard approximate heavy hitters/quantiles

Exponentially Decayed Aggregates on Data Streams — Cormode, Korn, Tirthapura5

Decayed Heavy Hitters

� We extend the “SpaceSaving” algorithm of [MAA05]

– Keep k = 1/ε items and counters

– If next item is stored, update its count with + wi exp(λ ti)

– Else, overwrite the stored item with smallest count

– On output, scale stored counts by exp(-λ t)

Exponentially Decayed Aggregates on Data Streams — Cormode, Korn, Tirthapura6

SpaceSaving Analysis

� Smallest counter value, min, is at most εD⋅exp(t)

– Counters sum to N = D(t) exp(t) by induction

– 1/ε counters, so avg is εN: smallest cannot be bigger

� True count of an uncounted item is between 0 and min

– Proof by induction, true initially, min increases monotonically

– Hence, the count of any item stored is off by at most εN

� Any item x whose true count > εN is stored

– By contradiction: x was evicted in past, with count ≤ mint

– Every count is an overestimate, using above observation

– So est. count of x > εN ≥ min ≥ mint, and would not be evicted

So: Find all items with count > εN, error in counts ≤ εN

Exponentially Decayed Aggregates on Data Streams — Cormode, Korn, Tirthapura7

Heavy Hitters Result

� Algorithm finds ε-approximate exponentially decayed
heavy hitters in space O(1/ε), update time O(log 1/ε).

– Time cost: keep a standard heap to allow find minimum

– Index items with efficient dynamic tree structure

(deterministic) or hash table (randomized)

� Space and time costs asymptotically the same as the

non-decayed version.

Exponentially Decayed Aggregates on Data Streams — Cormode, Korn, Tirthapura8

Decayed Quantiles

� Q-digest [SBAS05] summarizes
distribution over fixed domain U

� Tracks nodes and counts in
binary tree over domain

� Ensures that non-leaf nodes

have small counts (≤ ε N / log U)

� Ensures that counts of parents + two children > ε N/log U

� Guarantees any quantile can be found with εN error

� Space used is bounded by O(log U/ε)

Exponentially Decayed Aggregates on Data Streams — Cormode, Korn, Tirthapura9

Extended Q-digest

� Replace counters by exponentially decayed counts

� Observe that for the Q-digest:

– updates can be arbitrary fractional values

– multiplying all counts by γ gives a summary of input

multiplied by γ

� Hence: sum of all counts is D(t), no count > εD/log U etc.

� Careful analysis shows that we can estimate the rank of

any item using the stored counts

– Error arises from counts of ancestor nodes from leaf to root

– Total error is bounded by ε D(t), as required

Exponentially Decayed Aggregates on Data Streams — Cormode, Korn, Tirthapura10

Quantiles Result

� Can find ε-approximate decayed quantiles in space
O(1/ε log U)

� Time per update O(log log U), queries take O(log U/ε)

– Updates are fast based on a ‘lazy’ update procedure:

Don’t decay all counts every update, only those affected

by the update

� Space and time independent of λ.

– Same space as non-decayed version

– Slightly slower because of count maintenance

Exponentially Decayed Aggregates on Data Streams — Cormode, Korn, Tirthapura11

Experimental Evaluation

� Implemented q-digest in C, experimented on 5 million
World Cup requests and 5 million IP flow records

� Space cost: almost identical to non-decayed space

Exponentially Decayed Aggregates on Data Streams — Cormode, Korn, Tirthapura12

Experimental Throughput

� Throughput: about 70-80% as fast as undecayed version

� Processing about 800K updates per second

Exponentially Decayed Aggregates on Data Streams — Cormode, Korn, Tirthapura13

Conclusions

� Quantiles and frequent items under exponential decay

– Cost is very close to that for no decay

– Adapt existing algorithms to handle decayed counts

– Extend analysis to show correctness and throughput

� Other decay functions:

– Polynomial decay, logarithmic decay, sliding window

– Harder, even for simple sums and counts [CS03]

– New algorithms for aggregates given in [CKT08], in PODS

