Exponentially Decayed Aggregates on Data Streams

Graham Cormode
Flip Korn
AT&T Labs - Research
{graham,flip}@research.att.com

Srikanta Tirthapura
Iowa State
snt@iastate.edu
Data Stream Computations

- Streams of updates must be processed in single pass
 - IP traffic measurements, stock feeds, sensor readings
- Need to mine holistic aggregates
 - Medians (quantiles), frequent items
- Recent updates more important than older data
 - Weight updates based on a function of age
- Need to keep small summaries, give accurate answers
 - Much work on sketches, summaries without decay
Exponential Decay

- Give items a weight that depends exponentially on age
 - Age \(a \) has weight \(\exp(-\lambda a) \), for parameter \(\lambda \)
- Given a stream of timestamps \(t_i \), easy to compute decayed count
 - Track current decayed count \(C \), last update \(t \)
 - Given \(t_i \), \(C \leftarrow C \times \exp(-\lambda(t_i - t)) + 1 \)
 \(t \leftarrow t_i \)
 - Generalizes to exponentially decayed sum
- We study more complex (holistic) aggregates, show that there are fast, small solutions for these as well.
Aggregates of Interest

- **Streaming model**: Given stream of \(\langle x_i, w_i, t_i \rangle \) tuples
 - \(x_i \) is an item, \(w_i \) its weight, \(t_i \) its timestamp
 - E.g. IP flow, weight in bytes, start time
 - Total weight at time \(t \) is \(D(t) = \sum_i w_i \exp(\lambda(t - t_i)) \)

- **\(\phi \)-Heavy Hitters (under exponential decay)**
 - Find items \(x \) so that \(\sum_{x_i = x} w_i \exp(\lambda(t-t_i)) > (\phi \pm \epsilon) D(t) \)

- **\(\phi \)-Quantiles (under exponential decay)**
 - Find \(q \) so that \((\phi - \epsilon)D \leq \sum_{x_i \leq q} w_i \exp(\lambda(t-t_i)) \leq (\phi + \epsilon)D \)

- \(\lambda = 0 \) \(\Rightarrow \) no decay
 - Same as standard approximate heavy hitters/quantiles
Decayed Heavy Hitters

Algorithm 1.1: HeavyHitterUpdate(x_i, w_i, t_i, λ)

Input: item x_i, timestamp t_i, weight w_i, decay factor λ

Output: Current estimate of item weight

if $\exists j$. item[j] = x_i;
 then $j \leftarrow$ item$^{-1}$(x$_i$)
 else $j \leftarrow$ arg min$_k$(count[k]);

item[j] \leftarrow x_i;

count[j] \leftarrow count[j] + w_i exp(λt_i)

return (count[j] * exp($-\lambda t_i$))

- We extend the “SpaceSaving” algorithm of [MAA05]
 - Keep $k = 1/\varepsilon$ items and counters
 - If next item is stored, update its count with $+ w_i \exp(\lambda t_i)$
 - Else, overwrite the stored item with smallest count
 - On output, scale stored counts by $\exp(-\lambda t)$
SpaceSaving Analysis

- Smallest counter value, \min, is at most $\varepsilon D \cdot \exp(t)$
 - Counters sum to $N = D(t) \exp(t)$ by induction
 - $1/\varepsilon$ counters, so avg is εN: smallest cannot be bigger

- True count of an uncounted item is between 0 and \min
 - Proof by induction, true initially, \min increases monotonically
 - Hence, the count of any item stored is off by at most εN

- Any item x whose true count $> \varepsilon N$ is stored
 - By contradiction: x was evicted in past, with $\text{count} \leq \min_t$
 - Every count is an overestimate, using above observation
 - So est. count of $x > \varepsilon N \geq \min \geq \min_t$, and would not be evicted

So: Find all items with count $> \varepsilon N$, error in counts $\leq \varepsilon N$
Heavy Hitters Result

- Algorithm finds ε-approximate exponentially decayed heavy hitters in space $O(1/\varepsilon)$, update time $O(\log 1/\varepsilon)$.
 - Time cost: keep a standard heap to allow find minimum
 - Index items with efficient dynamic tree structure (deterministic) or hash table (randomized)

- Space and time costs asymptotically the same as the non-decayed version.
Decayed Quantiles

- **Q-digest** [SBAS05] summarizes distribution over fixed domain \(U \).
- Tracks nodes and counts in binary tree over domain.
- Ensures that non-leaf nodes have small counts \(\leq \varepsilon \frac{N}{\log U} \).
- Ensures that counts of parents + two children \(> \varepsilon \frac{N}{\log U} \).
- Guarantees any quantile can be found with \(\varepsilon N \) error.
- Space used is bounded by \(O(\log U/\varepsilon) \).
Extended Q-digest

- Replace counters by exponentially decayed counts
- Observe that for the Q-digest:
 - updates can be arbitrary fractional values
 - multiplying all counts by γ gives a summary of input multiplied by γ
- Hence: sum of all counts is $D(t)$, no count $> \frac{\varepsilon D}{\log U}$ etc.
- Careful analysis shows that we can estimate the rank of any item using the stored counts
 - Error arises from counts of ancestor nodes from leaf to root
 - Total error is bounded by $\varepsilon D(t)$, as required
Quantiles Result

- Can find ε-approximate decayed quantiles in space $O(1/\varepsilon \log U)$
- Time per update $O(\log \log U)$, queries take $O(\log U/\varepsilon)$
 - Updates are fast based on a ‘lazy’ update procedure: Don’t decay all counts every update, only those affected by the update

- Space and time independent of λ.
 - Same space as non-decayed version
 - Slightly slower because of count maintenance
Experimental Evaluation

- Implemented q-digest in C, experimented on 5 million World Cup requests and 5 million IP flow records
- **Space cost**: almost identical to non-decayed space
Experimental Throughput

- **Throughput**: about 70-80% as fast as undecayed version
- **Processing**: about 800K updates per second
Conclusions

- Quantiles and frequent items under exponential decay
 - Cost is very close to that for no decay
 - Adapt existing algorithms to handle decayed counts
 - Extend analysis to show correctness and throughput

- Other decay functions:
 - Polynomial decay, logarithmic decay, sliding window
 - Harder, even for simple sums and counts [CS03]
 - New algorithms for aggregates given in [CKT08], in PODS