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]
Data Stream Computations

m Streams of updates must be processed in single pass
— |P traffic measurements, stock feeds, sensor readings

m Need to mine holistic aggregates
— Medians (quantiles), frequent items

m Recent updates more important than older data
— Weight updates based on a function of age

m Need to keep small summaries, give accurate answers
— Much work on sketches, summaries without decay
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Exponential Decay

m Give items a weight that depends exponentially on age
— Age a has weight exp(-A a), for parameter A
m Given a stream of timestamps t, easy to compute
decayed count
— Track current decayed count C, last update t
- Given t, C« C*exp(-Mt —1) + 1
L 1
— Generalizes to exponentially decayed sum

m We study more complex (holistic) aggregates, show that
there are fast, small solutions for these as well.
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Aggregates of Interest

m Streaming model: Given stream of (x;, w;, t.) tuples
— X; Is an item, w;, its weight, t; its timestamp
- E.g. IP flow, weight in bytes, start time
- Total weight at time tis D(t) = 2 w; exp(A(t —t;))

m  ¢-Heavy Hitters (under exponential decay)
- Find items x so that 2., _ , w; exp(A(t-t))) > (o) D(t)

m  ¢-Quantiles (under exponential decay
- Find g so that (¢ - €)D < ¥, , W; exp(A(t-t) < (¢ + €)D

m A=0 = no decay
— Same as standard approximate heavy hitters/quantiles
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Decayed Heavy Hitters

Algorithm 1.1: HeavyHitterUpdate(x;, w;, t;, \)

Input: item z;, timestamp t;, weight w;, decay factor A
Output: Current estimate of item weight
if 3j.item[j] = x;;
then j — item~1(x;)
else j «— arg ming(countl[k]);
item[j] < x;;
count[j] « count[j] + w; exp(At;)
return (count[j] x exp(—=\t;))

m We extend the “SpaceSaving” algorithm of [MAAOQ5]
- Keep k = 1/¢ items and counters
— If next item is stored, update its count with + w; exp(A t)
— Else, overwrite the stored item with smallest count
— On output, scale stored counts by exp(-A 1)
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]
SpaceSaving Analysis

m Smallest counter value, min, is at most eD-exp(t)
— Counters sum to N = D(t) exp(t) by induction
— 1/e counters, so avg is eN: smallest cannot be bigger
m True count of an uncounted item is between 0 and min
— Proof by induction, true initially, min increases monotonically
— Hence, the count of any item stored is off by at most eN
m Any item x whose true count > ¢N is stored
— By contradiction: x was evicted in past, with count < min,
— Every count is an overestimate, using above observation
— So est. count of x > eN > min > min,, and would not be evicted

So: Find all items with count > €N, error in counts < eN
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]
Heavy Hitters Result

m Algorithm finds e-approximate exponentially decayed
heavy hitters in space O(1/¢), update time O(log 1/¢).

— Time cost: keep a standard heap to allow find minimum

— Index items with efficient dynamic tree structure
(deterministic) or hash table (randomized)

m Space and time costs asymptotically the same as the
non-decayed version.
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]
Decayed Quantiles

m Q-digest [SBAS05] summarizes
distribution over fixed domain U

m [racks nodes and counts in
binary tree over domain

m Ensures that non-leaf nodes -
have small counts (< e N /log U)

m Ensures that counts of parents + two children > € N/log U

(4]

m Guarantees any quantile can be found with €N error
m Space used is bounded by O(log U/e)
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Extended Q-digest

m Replace counters by exponentially decayed counts

m Observe that for the Q-digest:
— updates can be arbitrary fractional values

— multiplying all counts by v gives a summary of input
multiplied by vy

m Hence: sum of all counts is D(t), no count > eD/log U etc.

m Careful analysis shows that we can estimate the rank of
any item using the stored counts

— Error arises from counts of ancestor nodes from leaf to root
— Total error is bounded by € D(t), as required
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Quantiles Result

m Can find e-approximate decayed quantiles in space
O(1/e log U)
m Time per update O(log log U), queries take O(log U/e)

— Updates are fast based on a ‘lazy’ update procedure:
Don’t decay all counts every update, only those affected
by the update

m Space and time independent of A.
— Same space as non-decayed version
— Slightly slower because of count maintenance
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Experimental Evaluation
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m Implemented g-digest in C, experimented on 5 million
World Cup requests and 5 million IP flow records

m Space cost: almost identical to non-decayed space
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Experimental Throughput
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m [hroughput: about 70-80% as fast as undecayed version
m Processing about 800K updates per second
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Conclusions

m Quantiles and frequent items under exponential decay
— Cost is very close to that for no decay
— Adapt existing algorithms to handle decayed counts
— Extend analysis to show correctness and throughput

m Other decay functions:
— Polynomial decay, logarithmic decay, sliding window
— Harder, even for simple sums and counts [CS03]
— New algorithms for aggregates given in [CKTO08], in PODS
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