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The Federated Computation model

● Privacy-preserving computations distributed over collections of users at web scale

○ Can be thought of as “A privacy-preserving MapReduce”

● Data stays on client devices, only sufficient statistics are shared: data minimization, purpose limitation

● Additional privacy comes from (local or central) differential privacy and secure multiparty computation

● Federated Computation has been widely adopted in practice (Google, Apple, Meta, etc.)
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Federated Learning and Federated Analytics
● Federated Learning is the most well-known case of federated computation

○ Many users work together to train an ML model privately

● Federated Analytics captures a broader range of other computations
○ Gathering statistics and metrics,  informing decisions

● Collectively, Federated Computation is built on a growing set of primitives
○ Performing fundamental tasks (sums, counts and more) with various privacy guarantees
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Federated Analytics to support Federated Learning
Most focus on Federated Learning (FL) has been on the core training procedure

● Typically, via collection of gradients from batches of clients over multiple epochs

A complete end-to-end learning solution has many additional steps: 

● Feature selection

● Feature normalization

● Model calibration and evaluation 

● Model maintenance / checking

These steps share the same privacy concerns as the core FL training
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Post-training statistics

Given a (binary) classifier that has been trained, we want to evaluate:

● ROC AUC (Area Under Curve): a measure of quality of the classifier

● Calibration curves: function to accurately measure the confidence of a prediction

● Other metrics: precision, recall, accuracy, normalized entropy (NE) …  

In the federated setting, each client has an example with a ground truth label (positive or negative)

We want to calculate these measures under appropriate privacy guarantees
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From score functions to score histograms

A classifier is described by a score function s(x) that maps examples x to [0, 1]

Many classifier metrics are based on example scores and ground truth labels

Score histograms approximate this: how many (positive, negative) examples are there for a range of scores?

We can build score histograms in different federated computing models: 

● Secure Aggregation: server only sees the sum of the inputs

● Local DP: each client message achieves differential privacy locally

● Distributed DP: clients each add small noise to produce an overall DP guarantee
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Federated Score Histogram construction

Divide scores into B equal sized bins: 

● Round 1: Compute (approximate) quantiles on the client score functions to define bin boundaries

Compute (empirical) frequency in each bin

● Round 2: Share bin boundaries, and collect histogram of positive and negative examples

0.0       0.05        0.09      0.17      0.23        0.28       0.44       0.57       0.81      0.89          1.0

0              0               1              0             0               0              0               0              0             0

7



Area Under Curve

Given the score function, we predict x is positive if s(x) > T, else negative

Different choices of T give false positive (FP) / false negative (FN) tradeoffs

Receiver Operator Characteristic curve: plot FPR against TPR as T varies;

Area Under Curve (AUC) measures the tradeoff, between 0.5 and 1.0

Basic calculation: sort examples by score, numerically integrate (quadrature)

Alternate interpretation of AUC: 

AUC is the probability a positive example is ranked above a negative one

● Compute the number of correctly ordered pairs, divided by the number of all pairs

T=0

T=1
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Federated Area Under Curve

Computing statistics about pairs of examples is hard in federated model when examples are distributed

We can use score histograms to approximate the AUC: 

● Multiply the number of negative examples in a bin by the number of positive examples in lower bins

● The uncertainty is bounded by the number of positive and negative examples in the same bin

● We can bound the error based on the size of each bin, and the privacy noise added to each bin

We prove bounds on these errors in the full paper
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Experimental Results on AUC

We evaluated our methods on synthetic data from recent Kaggle “tabular” challenges 

We compared the accuracy of AUC estimation against the exact value, via:

● Naive score histogram (divide score range into uniform buckets)

● Quantile score histogram (use sum of approximate ranks)

● Compare against pessimistic upper bound on uncertainty

Compare secure aggregation (no noise), distributed DP (moderate noise) and local DP (significant noise)
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Secure Aggregation AUC Results

● Error quickly becomes negligible (10-3 with 20 buckets, 10-4 with 60 buckets) for no noise (left)

● For distributed DP noise (centre), error plateaus at around 0.002

● 10-20 buckets achieves < 0.005 error for LDP noise (right)
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Concluding Remarks

Histograms are a powerful tool in federated computation

● Well-studied by the privacy community in different models

● Provide accurate solutions for a wide range of private data analysis problems

Federated computation still has much potential for more work in the data management community

● Federated learning has mostly concentrated on the training step, what about other tasks? 

● Federated analytics combines data summarization with privacy/security: often a good match!
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