# Federated Calibration and Evaluation of Binary Classifiers

Graham Cormode Igor Markov Meta

### The Federated Computation model

- Privacy-preserving computations distributed over collections of users at web scale
  - Can be thought of as "A privacy-preserving MapReduce"
- Data stays on client devices, only sufficient statistics are shared: data minimization, purpose limitation
- Additional privacy comes from (local or central) differential privacy and secure multiparty computation
- Federated Computation has been widely adopted in practice (Google, Apple, Meta, etc.)



# Federated Learning and Federated Analytics

- Federated Learning is the most well-known case of federated computation
  - $\circ \qquad {\sf Many\,users\,work\,together\,to\,train\,an\,{\sf ML\,model\,privately}}$
- Federated Analytics captures a broader range of other computations
  - Gathering statistics and metrics, informing decisions
- Collectively, Federated Computation is built on a growing set of primitives
  - Performing fundamental tasks (sums, counts and more) with various privacy guarantees



# Federated Analytics to support Federated Learning

Most focus on Federated Learning (FL) has been on the core training procedure

• Typically, via collection of gradients from batches of clients over multiple epochs

A complete end-to-end learning solution has many additional steps:

- Feature selection
- Feature normalization
- Model calibration and evaluation
- Model maintenance / checking

These steps share the same privacy concerns as the core FL training

### **Post-training statistics**

Given a (binary) classifier that has been trained, we want to evaluate:

- ROC AUC (Area Under Curve): a measure of quality of the classifier
- Calibration curves: function to accurately measure the confidence of a prediction
- Other metrics: precision, recall, accuracy, normalized entropy (NE) ...

In the federated setting, each client has an example with a ground truth label (positive or negative)

We want to calculate these measures under appropriate privacy guarantees

### From score functions to score histograms

A classifier is described by a score function s(x) that maps examples x to [0, 1]

Many classifier metrics are based on example scores and ground truth labels



We can build score histograms in different federated computing models:

- Secure Aggregation: server only sees the sum of the inputs
- Local DP: each client message achieves differential privacy locally
- Distributed DP: clients each add small noise to produce an overall DP guarantee



positive score function

Score

negative score function

Frequency

0

### Federated Score Histogram construction

Divide scores into **B** equal sized bins:

• Round 1: Compute (approximate) quantiles on the client score functions to define bin boundaries

Compute (empirical) frequency in each bin

• Round 2: Share bin boundaries, and collect **histogram** of positive and negative examples

|   | 0   | 0    | 1    |     | 0  |     | 0  |    | 0  |    | 0  |    | 0  |    | 0  |     | 0  |  |     |
|---|-----|------|------|-----|----|-----|----|----|----|----|----|----|----|----|----|-----|----|--|-----|
| ( | 0.0 | 0.05 | 0.09 | 0.1 | 17 | 0.2 | 23 | 0. | 28 | 0. | 44 | 0. | 57 | 0. | 81 | 0.8 | 89 |  | 1.0 |

#### Area Under Curve

Given the score function, we predict x is positive if s(x) > T, else negative

Different choices of T give false positive (FP) / false negative (FN) tradeoffs

**Receiver Operator Characteristic** curve: plot FPR against TPR as **T** varies; Area Under Curve (AUC) measures the tradeoff, between 0.5 and 1.0

Basic calculation: sort examples by score, numerically integrate (quadrature)

#### Alternate interpretation of AUC:

AUC is the probability a positive example is ranked above a negative one

- TPR e) T=1 FPR
- Compute the number of correctly ordered pairs, divided by the number of all pairs

#### **Federated Area Under Curve**

Computing statistics about pairs of examples is hard in federated model when examples are distributed

We can use score histograms to approximate the AUC:

- Multiply the number of negative examples in a bin by the number of positive examples in lower bins
- The uncertainty is bounded by the number of positive and negative examples in the same bin
- We can bound the error based on the size of each bin, and the privacy noise added to each bin

We prove bounds on these errors in the full paper

# **Experimental Results on AUC**

We evaluated our methods on synthetic data from recent Kaggle "tabular" challenges

We compared the accuracy of AUC estimation against the exact value, via:

- Naive score histogram (divide score range into uniform buckets)
- Quantile score histogram (use sum of approximate ranks)
- Compare against pessimistic upper bound on uncertainty

Compare secure aggregation (no noise), distributed DP (moderate noise) and local DP (significant noise)

#### Secure Aggregation AUC Results



- Error quickly becomes negligible (10<sup>-3</sup> with 20 buckets, 10<sup>-4</sup> with 60 buckets) for no noise (left)
- For distributed DP noise (centre), error plateaus at around 0.002
- 10-20 buckets achieves < 0.005 error for LDP noise (right)

# **Concluding Remarks**

Histograms are a powerful tool in federated computation

- Well-studied by the privacy community in different models
- Provide accurate solutions for a wide range of private data analysis problems

Federated computation still has much potential for more work in the data management community

- Federated learning has mostly concentrated on the training step, what about other tasks?
- Federated analytics combines data summarization with privacy/security: often a good match!