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Private Data Release

¢ Many problems require collection of aggregate data
— Simple count queries for statistics

— Frequency parameters of analytic models

¢ The model of Differential Privacy (DP)
gives a rigorous statistical definition

— Requires each output to have a similar probability as inputs vary
¢ Our aim is to design mechanisms that have nice properties

— A mechanism defines the output distribution, given the input
— We seek accurate, usable outputs, from small groups
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Mechanism Design

¢ We want to construct optimal mechanisms for data release
— Target function: each user has a bit; release the sum of bits
— Input range = output range = {0, 1, ... n}
¢ Model a mechanism as a matrix of conditional probabilities Prf[i|j]
¢ DP introduces constraints on the matrix entries:
a Pr[i|j] £ Pr[il|j+1]
— Neighboring entries should differ by a factor of at most0<a <1
¢ We want to penalize outputs that are far from the truth:
Define loss function L, = 2;; w; Pr[i|j] |i—j|P for weights (prior) w,
— We will focus on the core case of p=0, and uniform prior
— L, loss function is then just the sum of weights off-diagonal

— Equivalently, maximize trace of the probability matrix
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Unconstrained Mechanism: GM

¢ Optimizing for L, loss function yields a highly structured result:
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¢ Here x=1/(1+a), y=(1-a)/(1+a), L,=20//(1+0) i ‘ |1,
¢ This is the truncated geometric mechanism GM [Ghosh et al. 09]:
¢ Add symmetric geometric noise with parameter o to true answer

¢ Truncate to range {0...n}
¢ We prove this is the unique such optimal mechanism for L,

¢ Butit has some issues! FHE UNIVERSITY OF
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Limitations of GM
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¢ GM tends to place a lot of weight on {0, n} when o is large
— But GM’s L, score is the optimal value: 2o / (1+a)
— The issue is even worse if optimizing for L, or L, objective functions!
— We seek more structured mechanisms that have similar score
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Mechanism Properties

We give 7 constraints to impose more structure on mechanisms:
¢ Row Honesty RH: YV i,j : Pr[i|i] = PrJi|j] (true value is most likely)
¢ Row Monotonicity RM: prob. decreases from Pr|i|i] along row
— Row Monotonicity implies Row Honesty
¢ Column Honesty CH and Column Monotonicity CM, symmetrically
¢ Fairness F: Y i, j: Prli|i] = Pr[j|j] (same probability of truthfulness)
— Fairness and row honesty implies column honesty
¢ Weak honesty WH: Prl[i|i] = 1/(n+1) (at least uniformly truthful)
— Achievable by the trivial uniform mechanism UM Pr[i|j] = 1/(n+1)
¢ Symmetry: Vi, j: Pr[i]j] = Pr[n-i| n-j]
— Symmetry is achievable with no loss of objective function
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Finding Optimal Mechanisms

¢ Goal: find optimal mechanisms for a given set of properties
¢ Can solve with optimization techniques
— Obijective function is linear in the variables Pr{[i|j]
— Properties can all be specified as linear constraints on Pr[i|j]s
— DP property is a linear constraint on Prli|j]s
¢ So can specify any desired set of combinations and solve an LP
— Always feasible: just uniform guessing (UM) meets all constraints
¢ Patterns emerge: of 127 possibilities, only few distinct outcomes
— Aim to understand the structure of optimal mechanisms
— We seek explicit constructions
m More efficient and amenable to analysis than solving LPs
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Explicit Fair Mechanism EM

¢ We construct a new ‘explicit fair mechanism’ (uniform diagonal):
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¢ Each column is a permutation of the same set of values
¢ Has all our properties: column & row monotonicity, symmetry
¢ This is (one) optimal fair mechanism:

¢ Entries in middle column are all as small as DP will allow

¢ Hence y cannot be bigger
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Summary of mechanisms

¢ Based on relations between properties, we can conclude:

Fair
Mechanism

Geometric
Mechanism

¢ Fair Mechanism (EM) and

Geometric Mechanism (GM)
have explicit forms
¢ Two Weak Mechanism
variants (WM) found by
solving LPs
Property GM UM EM WM
Symmetry (S) Y Y Y Y
Row Monotone (RM) Y Y Y Y
Column Monotone (CM) | — Y Y Y
Fairness (F) N Y Y N
Weak Honesty (WH) — Y Y Y
Lo e | et 214
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Comparing Mechanisms

¢ Heatmaps comparing mechanisms for o = 0.9, n=4
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¢ Heatmaps look very different but their L, scores are close:

L, score 0.764 0.776 0.774 THE UNIVERSITY OF
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Normalized |, Score

L, score behaviour

¢ L, score varies as a function of n and a
— WM converges on GM for n > 2o/ (1-0.)

o= 0667 o= 0.909

5 10 15 20 25 30 35 o 5 1o 15 20 25 30 35
input{group) size input{group) size

11

1010

—
=
=
w

Normalized !, Score
-
=]
=]
=]

=
w
o
[T

0,500
0

o= 0,99

——————————————————————————————

5 10 15 20 25 30 35
input{group) size

THE UNIVERSITY OF

WARWICK



Performance on real data

¢ Using UCI Adult data set of demographic data
— Construct small groups in the data, target different binary attributes
— Compute Root-Mean-Squared Error of per-group outputs
— EM and WM generally preferable for wide range of o values

0.65 = TArget; at least 16 years of education o 0es ! Target: gender = fermale . 06s i Target: income over $50K
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Summary

¢ Carefully crafted mechanisms for data release can fix
anomalies/unexpected behavior for small groups

¢ Many more natural questions for small groups

— Interpret constraints as regularization

— Find closed form solutions for other objective functions (L,, L,)
¢ More general data release problems:

— Structured data: other statistics, graphs, movement patterns
— Unstructured data: text, images, video?
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