


Tabular Data

Much data is stored in tables:
* Cellphone traffic

* |P traffic between source
and destination

* Traditional database tables
Mining this data presents new challenges to database technology.

Need to find appropriate, efficient comparison methods



Tables are massive

Adding extra rows or columns
increases the size by thousands
or millions of readings

The objects of interest are
subtables of the data

eg Compare cellphone traffic of
SF with LA

These subtables are also massive!



How to compare subtables?

* |, difference of values

Sum of squares differences: (X (a, - b))?)'/2
* L, difference of values

Sum of absolute differences: X.|a - b, |
* More generally, L, difference

(Zi |3 - by P)'7P 0<p=<2

Letting p take fractional values may give interesting

similarity results



Prior Works

[AFS93], [IKMO0O0] have studied mining |-dimensional time
series under L,

Efficient mining methods have been studied with k-means,
CLARANS [NH94], BIRCH [ZRL96], DBSCAN [EKSX96]
CURE [GRS98] etc.

These have focused on minimising the number of comparison
operations.

Here, our focus is on reducing the cost of each comparison —
an orthogonal goal to prior work. We extend to L, and
other L, distances.



Our results

* We consider Lp distance for non-integral p
These often given better results than the traditional L, L,

* We give methods for computing approximations of L
distances for massive multidimensional data
These are proven to be accurate and much faster than
previous methods

* We demonstrate the applicability of these methods on real
network data

Approximate comparisons can be used to speed up any
method that uses comparisons



Sketches for L, distance

We want to find (Z, |a,- b;|P)!P =] |a-b] |,
for tabular data a and b.

Main Ildea: for subtables of interest a and b we wiill find
a much smaller sketch so that the Lp distance can be
found approximately by comparing the two sketches.

[IKMOO] gave sketches for L,. Here we extend this for
all (fractional p) between 0 and 2.



Main Tool: Stable Distributions

Let X be a random variable distributed with a stable
distribution. Stable distributions have the property that

a X+ X, + a3+ ... a X, ~ ||(a, 2 a3 ..., a) || X
if X, ... X are stable with stability paramater p
The Gaussian distribution is stable with parameter 2

Stable distributions exist and can be simulated for all
parameters 0 < p < 2.

So, let X = x, | ... x, , be a matrix of values drawn from a
stable distribution with parameter p...



Creating Sketches

Xi | oo X N = (S5 --- Sm) [ asketch, s]
X\ Xonr
() ) (t,, ... t_) [ asketch, t]

Then median(|s, - t,|,|s, - t,]|, ..., |s., - t..|)/median(X)
is an estimator for || a-b | |p

Can guarantee the accuracy of this process: will be within a
factor of 1+¢€ with probability 0 if m = O(l/e? log 1/9)



Efficient Computation

Computing sketches in this way can be time consuming — it
relies on a lot of matrix multiplications (one for each entry

in the sketch vector)
Computing multiple sketches of data size N can be sped up:

* For a fixed subtable size, M, we can find sketches of all
subtables using Fourier transform to do the multiplications

in total time O(N log M)

* A sketch for a subtable can be found by summing sketches
for subtables that cover the area



Properties of Sketches

* Sketches can be very small
The length of the sketch vector does not depend on the size
of the subtable that it represents.

* The accuracy is guaranteed

Other methods — coefficients of Fourier Transform, Cosine
Transform, Wavelet Transform etc. work only for L,.

They do not extend to other |, distances.

* Can be manipulated arithmetically
The sketch of the sum of two subtables is the sum of their
sketches.



Experimental Setting

* We took approx 600Mb of call data for a couple of
weeks from the AT&T Network

* We also used synthetic data to test finding a known
clustering

* Used k-means as the clustering method



Measurements

We define a variety of measurements to test using sketches:
Cumulative accuracy — how accurate in the long run
Average accuracy — how accurate is each comparison

Pairwise comparison — correctly identifying the closest
subtable out of two

Confusion matrix agreement — compares two clusterings
based on the confusion matrix between them

Quality of clustering — how tight is one clustering
compared to another



L, Tests

We took 20,000 pair of subtables, and compared them using L,
sketches. The sketch size was less than |Kb.
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* Sketches are very fast and accurate (can be improved further
by increasing sketch size)

* For large enough subtables (>64k) the time saving “buys
back” the preprocessing cost of sketch computation



Clustering with k-means
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k-means with Lp distances

Varied p from 0.25 to 2.0, and used k = 20 means
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* Using sketches still results in much faster computation

* There is no significant loss of quality from using sketches — in
fact, sometimes better!



Varying p

We fixed a known clustering within some synthetic data, and
considered the confusion matrix.

The traditional L, and L, methods ﬁfura’:?‘ with Known Clustering
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p = 0.5 seems a good value. This dampens the effect of outlier
points



Case Study: US Call Data

One day's data clustered under p=2.0, p=1.0, p=0.25
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Case study: US Call data

We looked at the call data for the whole US for a single day

* p = 2 shows peak activity across the country from 8am -
Spm local time, and activity continues in similar patterns till
midnight

* p = | shows key areas have similar call patterns throughout
the day

* p = 0.25 brings out a very few locations that have highly
similar calling patterns



Conclusions

* The spectrum of Lp distances give different and interesting
resultsforall ) 0 < p<2,notjustp = | and p = 2.

* p < | seems especially interesting, supressing outliers.

* Sketches give an efficient and accurate way of finding Lp
distances for arbitrary p

* Sketches are proven accurate and shown to be useful in
practice

* Can be used in any application that compares vector,
tabular or higher dimensional data



