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Parameterized Streaming Algorithms

We increasingly have to deal with huge graphs...

E

L ] L]
®
L4
ik ™ o i laaia
] o i mg ® et Bk y o
= i akota ew
i 1 e . Veghington Montana Minnesota /' Brunswick
Portjanc o
yr & . . . % L} Minnegpalls o - - G
e e L ] 8, South 9 Wisconsin L. OUaWa~ Maine % Scotia
Y o - - Oregon Dakota Michigan ‘oronto,
. S e . . Wyoming Milwaukee @ New York .
ser o L] - » 1t ek lowa  Chiesoo@ B30 Vermont
- ht 5 o Ay Nebraska gomors © Pennsylvania N NevyHampshire:
b L ] L] o - vl
o ™) . . Jenver ineoln *Kansas Ilinois jngiana OMie o Massachusetts,
. F % ° ° City LN Tide Rhode Island.
o8 L L] Colorado @' 5o West -
» @ . .l . "f:“_s_is Missouri Virginia Connecticut
I - y i Kenbichy, Virglnid New Jersey.
L L
Albuguerque Te North
e s 4 R . [uaue Oklahoma. (oo - Tennessee Carolina Mawlill:rl‘;wau
L) . s ®e Arizona N Alanta
. ° - e w ew iy South
L * e el Mexico Dallas Mississippi = Ca?ﬂlina District of
. L] . Ioent( ez a Alabama Columbia
. . N . Mooile. | Georgia
& @ R
™ - ™ Louisiana
b ] X e le e North
.
»* LY Atlantic:
—s . o *°® ‘Ocean
o o _* 99 . °
e N guitel
° «® ) e T 8 g X SERIY TRl pe B gt e e, e T

Facebook graph Brain graph Web Graph Google Maps in USA

e 10° nodes e 102 nodes e 232 nodes e 108 intersection nodes

* It is inconvenient or impossible to store the whole input for random access

* “Solved” problems become hard under different models of data access
* E.g. External memory, MapReduce, Streaming...



Parameterized Streaming Algorithms

* The paradigm of streaming algorithms is one attempt to deal with Big Data

* The streaming model (for graphs) is as follows:
* The vertex set V = {1,2, ...,n}is fixed, and known in advance
* The edges arrive one-by-one (in arbitrary order)

* For each edge arrival, we need to make a (fast) decision what information to store

* Cannot (do not want to) store all the edges
1

4 3

* We allow unbounded computation at end of the stream

* Which graph problems can we solve efficiently in this model?
* Naive algorithm for any graph problem uses O (n?) bits by storing whole adjacency matrix



Parameterized Streaming Algorithms

Recall that the naive algorithm for any graph problem uses 0 (n?) bits

Bad News : Many graph problems have a lower bound of (.(n?) space in streaming model
* E.g. Does the given graph have any triangle?

Typically use communication complexity to show lower bounds for streaming algorithms

INDEX problem: Alice has string X € {0,1}", Bob has index i € [N], want to find ith bit of X
* Lower bound of (L(N) if Alice can send only one message to Bob, even with randomization

Communication complexity reductions: show that a streaming algorithm would solve INDEX

“ One-way communication from - Bo

Alice to Bob

A
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Parameterized Streaming Algorithms

» Sketch of a simple INDEX reduction for triangle detection:

* Alice adds edges between Y and Z according to her string X
* Then she sends her data structure to Bob

* Bob has anindex I € N corresponding to some (j,£) € |r] X |r]
* Bob adds a new vertex s and the edges (s,y;) and (s, z,)

let N = r?

The resulting graph has a triangle iff the edge (y;, z,) is present, i.e., It bit of Xis 1



Parameterized Streaming Algorithms

 Bad News : Many graph problems require (.(n“) space in streaming model
* How can we cope with this (space) intractability?

Fine-grained understanding
via parameterized analysis

* Feigenbaum et al. [ICALP ‘04]: Finding (size of) a min \VC needs Q(n?) spac

* But how much space does k-VC need?
* We design a streaming algorithm in O (k - log n) bits (with 2% passes over the input)
* Essentially, the standard branching FPT algorithm in streaming model...
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* Streaming algorithm for k-VC with O (k - logn) bits and 2" passes

e Consider all 2% binary strings from {0,1}*, one in each pass

e The binary search tree has 2% leaves G-x1
* Each pass corresponds to a root — leaf path in the tree ‘%Wz <
* ( for left branch, and 1 for right branch
G-x1-X3 G-x1-y2 G-y1-X3

* Algorithm only stores current binary string and corresponding VC
 Storageis O(k - log n) bits
e Optimal if you also want to output a VC!

Streaming implementation of FPT algorithm via iterative compression:

(k - 2%)-pass streaming algorithm for k-VC which uses O (k - logn) bits

Reducing the number of passes: Chitnis et al. [SODA ‘15] designed

a 1-pass streaming algorithm for k-VC using O (k? - logn) bits
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Towards a general theory of (space) parameterized streaming algorithms.....

BrutePS: 0(n?)

LinPS: f (k) - n-logn

EPS: Fixed-Parameter Streaming

SubPS: Sublinear dependence on input n

LinPS: Linear dependence on input n
BrutePS: Naively storing the whole graph

EPS: £ (k) - logn

k-Vertex-Cover
K-MaxMatching

1.5-approx. for
MaxMatching
on trees

k-Path, k-FVS,
k-Treewidth

Goal: Develop algorithms and lower bounds to

categorize graph problems in this hierarchy

k-Girth, k-Clique,
k-Dominating-Se

We study all problems, not just NP-hard ones!



Parameterized Streaming Algorithms

Towards a general theory of (space) parameterized streaming algorithms.....

BrutePS: 0(n?)

FPS: Fixed-Parameter Streaming Algorithms
SubPS: Sublinear dependence on input n
LinPS: Linear dependence on input n
BrutePS: Naively storing the whole graph

LinPS: f (k) - n-logn

EPS: f (k) - logn Picture is a bit more complicated:

Any entry in this landscape is really a 6-tuple

[Problem, Parameter, Approximation Ratio, Type of Stream,
Type of Algorithm, ]

|

Deterministic or Randomized Insertion-only or Insertion-deletion
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Tight problems for the class LinPS via simple upper bounds

k-Path: If |[E| = k - n then there is a k-path
k-FVS: If there is a fvs of size k then |[E| < k- n
k-Treewidth: If treewidth is < k then |E| < k -n

BrutePS: 0(n?)

LinPS: f (k) - n-logn

SubPS: (k) - n'~¢-logn

Store all edges till we see (k - n) edges

Hence this needs O(k - n - log n) bits

These problems need (A(n - log n) space
(for constant k)
Hence, they are not in SubPS

k-Path, k-FVS,
k-Treewidth

Rules out any algorithm using space

f(k) - o(n-logn) for any function f
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Q(n - log n) bit lower bound for k-Path with k = 6

* Hardness reduction: “Small” space streaming algorithm for 6-Path
= 1- way communication protocol for PERMUTATION of “smal

e PERMUTATION problem:
Alice has a permutation §: [N] — [N] encoded as a bit-string of length N - logn.
Bob has an index I € [N - log N] and wants to find It" bit of &

* Sun and Woodruff [APPROX ‘15]: need (N - log N) bits one-way communication
Y Z

III

cost

* Alice adds edges between Y and Z according to the permutation 6
* Foreachi € [N] she adds an edge from y; to z5(;

v @
* Bob’sindex I € [N - log N] maps to £t"-bit of §(j) for some j, £ e
* Bob adds a new vertex s, and the edge s — y; — o

* LetS, = {zs¢) £t bit of §(r) is one }
* Bob adds new vertex t, and edges from t to each vertex of S, v ®

The resulting graph has a 6-path iff edge zs.;) € Sy is present, i.e., It bit of X is 1



Parameterized Streaming Algorithms

Tight problems for the class BrutePS

BrutePS: 0(n?)

How do we show a problem does not

belong to the smaller class LinPS?

LinPS: f (k) - n-logn

SubPS: f (k) -n'~€ -logn
 Show Q(n?) bits lower bound for constant k

e Rules out any algorithm using space f (k) - o(n?)
* Next slide gives proof for 3-Girth...

Note that k-Girth is polynomial time

solvable, but hard in terms of space!

k-Girth, k-Clique,
k-Dominating-Se
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Q(n?) bits lower bound for checking if girth of a graph is < 3

INDEX problem requires (L(N) bits of one-way communication from Alice to Bob
Alice has a string X € {0,1}".
Bob has an index I € [N] and wants to find I*" bit of X

e Same set up as previously:
 Let N = r? and fix a bijection ¢: [N] = [r] X [r]
* Alice adds edges between Y and Z according to string X

* Then she sends her data structure to Bob

* Bob’sindex I € N corresponds to some (j,¢) € [r] X |r]
* Bob adds a new vertex s and the edges (s, y;) and (s, z;)

e Lower bound of Q(N) translates to (n?) for 3-girth on graphs with n vertices

The resulting graph has a triangle iff the edge (v}, zp) is present, i.e., I™" bitof Xis 1



Goal: Develop algorithms and lower bounds to categorize graph problems in this hierarchy

Looking forward...

* The story so far ....

* Can simulate parameterized techniques (branching, iterative compression,
bidimensionality, etc.) in the streaming model

* Developed new lower bounds using communication complexity
* Beyond “standard” graph problems? Game theory, machine learning, etc .....
* Connections with kernelization?

* Implement and evaluate these new parameterized streaming algorithms?
* Code for some of the k-VC algorithms available at http://projects.csail.mit.edu/dnd/

Streaming Two-way flow of ideas Parameterized

(Space) M (tlme)

algorithms algorithms



http://projects.csail.mit.edu/dnd/
http://projects.csail.mit.edu/dnd/
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Lower bounds inspired by Kernel lower bounds

Connections with Kernelization — a different (but related) data-compression model

Kernelization versus streaming
* Polytime computation versus unbounded computation
* Full access of the input versus limited access to input

AND-compression: No poly kernel unless NPS coNP/poly
New definition of AND-compatible, inspired by AND-compression

A problem IT is AND-compatible if 3 constant k €N such that
* V n €N thereis agraph Gygs on n vertices such that I1(Gygs, k) is YES instance

* ¥V n €N thereisagraph Gy on n vertices such that I1(Gpp, k) is YES instance
V t N we have that I1(G; W G, W -+ W G, k) = A TI(G;, k) where ¥ denotes vertex disjoint union

Many natural graph problems are AND-compatible: k-coloring, k-treewidth, k-girth
Our result: If a problem Il is AND-compatible then it does not admit a streaming
algorithm using space f (k) - o(n), for any function f.

* Unconditional, unlike kernel lower bounds
Similar definition and result for OR-compatible
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Lower bounds inspired by Kernel lower bounds

A problem II is AND-compatible if 3 constant k €N such that
* V¥V n €N thereisagraph Gygs on n vertices such that I1(Gygg, k) is YES instance

* ¥V n €N thereisagraph Gy on n vertices such that I1(Gy, k) is YES instance
« VteNwehavethatl(G; WG, W W Gy, k) = ANTI(G;, k) where W denotes vertex disjoint union

* Qur result: If a problem II is AND-compatible then it does not admit a streaming
algorithm using space f (k) - o(n), for any function f.
* Consider t graphs G4, G, ..., G each having n vertices
* Let G bedisjointunion Gy W G, W -+ W Gy
* By pigeonhole principle, any (correct) algorithm for G must use = t bits
* Otherwise two subsets I, ] of [t] collide. Leti* € I \ ]
* Select G; = Gyggforeachi € (JUJ)\i" and G;+ = Gpo
* This violates correctness of the algorithm
* Hence, we have that f(k) -o(nt) >t
* Contradiction since k,n are constants and we can take t as large as we want




