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We increasingly have to deal with huge graphs… 

Parameterized Streaming Algorithms 

Facebook graph 
•  109 nodes  

 

Brain graph 
•  109 nodes  

 

Web Graph 
•  232 nodes  

 

Google Maps in USA 
•  108 intersection nodes  

 
• It is inconvenient or impossible to store the whole input for random access 

• “Solved” problems become hard under different models of data access  

• E.g. External memory, MapReduce, Streaming… 



• The paradigm of streaming algorithms is one attempt to deal with Big Data 

• The streaming model (for graphs) is as follows: 
• The vertex set 𝑉 = {1,2, … , 𝑛} is fixed, and known in advance 
• The edges arrive one-by-one (in arbitrary order) 
• For each edge arrival, we need to make a (fast) decision what information to store 
• Cannot (do not want to) store all the edges  

Parameterized Streaming Algorithms 

• We allow unbounded computation at end of the stream 

• Which graph problems can we solve efficiently in this model? 
• Naïve algorithm for any graph problem uses 𝑂 𝑛2  bits by storing whole adjacency matrix 
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• Recall that the naïve algorithm for any graph problem uses 𝑂 𝑛2  bits 

• Bad News : Many graph problems have a lower bound of Ω(𝑛2) space in streaming model 

• E.g. Does the given graph have any triangle? 

• Typically use communication complexity to show lower bounds for streaming algorithms 

• INDEX problem: Alice has string 𝑋 ∈ 0,1 𝑁, Bob has index 𝑖 ∈ 𝑁 , want to find 𝑖th bit of X 
• Lower bound of Ω(𝑁) if Alice can send only one message to Bob, even with randomization 

• Communication complexity reductions: show that a streaming algorithm would solve INDEX 
 

Parameterized Streaming Algorithms 
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One-way communication from  
Alice to Bob 

𝑖 = 5 



Parameterized Streaming Algorithms 
• Sketch of a simple INDEX reduction for triangle detection: 

• Alice adds edges between 𝑌 and 𝑍 according to her string 𝑋 
• Then she sends her data structure to Bob 

• Bob has an index 𝐼 ∈ 𝑁 corresponding to some 𝑗, ℓ ∈ 𝑟 × 𝑟  
• Bob adds a new vertex 𝑠 and the edges (𝑠, 𝑦𝑗) and (𝑠, 𝑧ℓ) 
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The resulting graph has a triangle iff the edge (𝑦𝑗 , 𝑧ℓ) is present, i.e., 𝐼𝑡ℎ  bit of X is 1 



• Bad News : Many graph problems require Ω(𝑛2) space in streaming model 

• How can we cope with this (space) intractability? 

Parameterized Streaming Algorithms 
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• Feigenbaum et al. [ICALP ‘04]: Finding (size of) a min VC needs Ω(𝑛2) space 

• But how much space does 𝑘-VC need? 

• We design a streaming algorithm in 𝑂(𝑘 ⋅ log 𝑛) bits (with 2𝑘 passes over the input) 

• Essentially, the standard branching FPT algorithm in streaming model… 

Fine-grained understanding  
via parameterized analysis 



• Streaming algorithm for 𝑘-VC  with 𝑂(𝑘 ⋅ log 𝑛) bits and 2𝑘 passes 
 

Parameterized Streaming Algorithms 

𝒆 = 𝒙𝟏𝒚𝟏 

𝒆 = 𝒙𝟑𝒚𝟑 𝒆 = 𝒙𝟐𝒚𝟐 
𝒙𝟑 

𝒙𝟏 

𝒙𝟐 

𝒚𝟏 

𝒚𝟐 𝒚𝟑 

𝑮 

𝑮-𝒚𝟏 𝑮-𝒙𝟏 

𝑮-𝒚𝟏-𝒙𝟑 

 
𝑮-𝒙𝟏-𝒚𝟐 

• Consider all 2𝑘 binary strings from 0,1 𝑘, one in each pass 

• The binary search tree has 2𝑘 leaves 
• Each pass corresponds to a root → leaf path in the tree 

• 0 for left branch, and 1 for right branch 

• Algorithm only stores current binary string and corresponding VC  
• Storage is 𝑂(𝑘 ⋅ log 𝑛) bits 

• Optimal if you also want to output a VC! 
 

Streaming implementation of FPT algorithm via iterative compression: 
(𝑘 ⋅ 2𝑘)-pass streaming algorithm for 𝑘-VC which uses 𝑂(𝑘 ⋅ log 𝑛) bits 

𝑮-𝒚𝟏-𝒚𝟑 

 
𝑮-𝒙𝟏-𝒙𝟐 

 

𝑘 

Reducing the number of passes: Chitnis et al. [SODA ‘15] designed 
a 1-pass streaming algorithm for 𝑘-VC using 𝑂(𝑘2 ⋅ log 𝑛) bits 



Towards a general theory of (space) parameterized streaming algorithms….. 
 

Parameterized Streaming Algorithms 

FPS: 𝑓 𝑘 ⋅ log 𝑛 

LinPS: 𝑓 𝑘 ⋅ 𝑛 ⋅ log 𝑛 

SubPS: 𝑓 𝑘 ⋅ 𝑛1−𝜖 ⋅ log 𝑛 

BrutePS: 𝑂(𝑛2)  

• FPS: Fixed-Parameter Streaming  

• SubPS: Sublinear dependence on input 𝑛 

• LinPS: Linear dependence on input 𝑛 

• BrutePS: Naïvely storing the whole graph 
 

Goal: Develop algorithms and lower bounds to 
categorize graph problems in this hierarchy 

𝒌-Vertex-Cover 
K-MaxMatching 

𝒌-Path, 𝒌-FVS, 
𝒌-Treewidth 

𝒌-Girth, 𝒌-Clique,  
𝒌-Dominating-Set 

1.5-approx. for  
MaxMatching  

on trees 

We study all problems, not just NP-hard ones! 



Picture is a bit more complicated:  
Any entry in this landscape is really a 6-tuple 

[Problem, Parameter, Approximation Ratio, Type of Stream, 
Type of Algorithm, # of passes] 

 

Parameterized Streaming Algorithms 

FPS: 𝑓 𝑘 ⋅ log 𝑛 

LinPS: 𝑓 𝑘 ⋅ 𝑛 ⋅ log 𝑛 

SubPS: 𝑓 𝑘 ⋅ 𝑛1−𝜖 ⋅ log 𝑛 

BrutePS: 𝑂(𝑛2)  • FPS: Fixed-Parameter Streaming Algorithms 

• SubPS: Sublinear dependence on input 𝑛 

• LinPS: Linear dependence on input 𝑛 

• BrutePS: Naïvely storing the whole graph 
 

Insertion-only or Insertion-deletion Deterministic or Randomized 

Towards a general theory of (space) parameterized streaming algorithms….. 
 



Tight problems for the class LinPS via simple upper bounds 
 

Parameterized Streaming Algorithms 

FPS: 𝑓 𝑘 ⋅ log 𝑛  

LinPS: 𝑓 𝑘 ⋅ 𝑛 ⋅ log 𝑛 

SubPS: 𝑓 𝑘 ⋅ 𝑛1−𝜖 ⋅ log 𝑛 

BrutePS: 𝑂(𝑛2)  

Store all edges till we see (𝑘 ⋅  𝑛) edges  
Hence this needs 𝑂(𝑘 ⋅ 𝑛 ⋅ log 𝑛) bits 

𝒌-Path, 𝒌-FVS, 
𝒌-Treewidth 

These problems need Ω(𝑛 ⋅ log 𝑛) space 
(for constant 𝑘) 
Hence, they are not in SubPS  

𝑘-Path: If 𝐸 ≥ 𝑘 ⋅ 𝑛 then there is a 𝑘-path 
𝑘-FVS: If there is a fvs of size 𝑘 then 𝐸 ≤ 𝑘 ⋅ 𝑛 
𝑘-Treewidth: If treewidth is ≤ 𝑘 then 𝐸 ≤ 𝑘 ⋅ 𝑛 

Rules out any algorithm using space 
𝑓 𝑘 ⋅ 𝑜(𝑛 ⋅ log 𝑛) for any function 𝑓 



• Hardness reduction: “Small” space streaming algorithm for 6-Path  
 ⇒ 1- way communication protocol for PERMUTATION of “small” cost 

• PERMUTATION problem:  
Alice has a permutation 𝛿: 𝑁 → 𝑁  encoded as a bit-string of length 𝑁 ⋅ log 𝑛 .  
Bob has an index 𝐼 ∈ 𝑁 ⋅ log 𝑁  and wants to find 𝐼𝑡ℎ bit of 𝛿  

• Sun and Woodruff [APPROX ‘15]: need Ω(𝑁 ⋅ log 𝑁) bits one-way communication 
 

Parameterized Streaming Algorithms 
𝛀(𝐧 ⋅ 𝒍𝒐𝒈 𝒏) bit lower bound for 𝒌-Path with 𝒌 = 𝟔 

• Alice adds edges between 𝑌 and 𝑍 according to the permutation 𝛿 

• For each 𝑖 ∈ [𝑁] she adds an edge from 𝑦𝑖  to 𝑧𝛿 𝑖  

• Bob’s index 𝐼 ∈ [𝑁 ⋅ log 𝑁] maps to ℓ𝑡ℎ-bit of 𝛿(𝑗) for some 𝑗, ℓ 

• Bob adds a new vertex 𝑠, and the edge 𝑠 − 𝑦𝑗 

• Let 𝑆ℓ = {𝑧𝛿(𝑟) ∶ ℓ𝑡ℎ-bit of 𝛿(𝑟) is one } 

• Bob adds new vertex 𝑡, and edges from 𝑡 to each vertex of 𝑆ℓ 
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The resulting graph has a 6-path iff edge 𝑧𝛿(𝑗) ∈ 𝑆ℓ is present, i.e., 𝐼𝑡ℎ  bit of X is 1 
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Tight problems for the class BrutePS 
 

Parameterized Streaming Algorithms 

FPS: 𝑓 𝑘 ⋅ log 𝑛  

LinPS: 𝑓 𝑘 ⋅ 𝑛 ⋅ log 𝑛 

SubPS: 𝑓 𝑘 ⋅ 𝑛1−𝜖 ⋅ log 𝑛 

BrutePS: 𝑂(𝑛2)  

How do we show a problem does not 
belong to the smaller class LinPS? 

• Show Ω(𝑛2) bits lower bound for constant 𝑘 
• Rules out any algorithm using space 𝑓 𝑘 ⋅ 𝑜(𝑛2) 
• Next slide gives proof for 3-Girth… 

  

Note that 𝑘-Girth is polynomial time 
solvable, but hard in terms of space! 

𝒌-Girth, 𝒌-Clique,  
𝒌-Dominating-Set 



INDEX problem requires Ω(𝑁) bits of one-way communication from Alice to Bob 
Alice has a string 𝑋 ∈ 0,1 𝑁.  
Bob has an index 𝐼 ∈ 𝑁  and wants to find 𝐼𝑡ℎ bit of X 

Parameterized Streaming Algorithms 
𝛀(𝐧𝟐) bits lower bound for checking if girth of a graph is ≤ 𝟑 

• Same set up as previously: 
• Let 𝑁 = 𝑟2 and fix a bijection 𝜙: 𝑁 → 𝑟 × [𝑟] 

• Alice adds edges between 𝑌 and 𝑍 according to string 𝑋 
• Then she sends her data structure to Bob 

• Bob’s index 𝐼 ∈ 𝑁 corresponds to some 𝑗, ℓ ∈ 𝑟 × 𝑟  
• Bob adds a new vertex 𝑠 and the edges (𝑠, 𝑦𝑗) and (𝑠, 𝑧ℓ) 

• Lower bound of Ω(𝑁) translates to Ω(𝑛2) for 3-girth on graphs with 𝑛 vertices 
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The resulting graph has a triangle iff the edge (𝑦𝑗 , 𝑧ℓ) is present, i.e., 𝐼𝑡ℎ  bit of X is 1 



Parameterized Streaming Algorithms 
Goal: Develop algorithms and lower bounds to categorize graph problems in this hierarchy 

• The story so far …. 

• Can simulate parameterized techniques (branching, iterative compression, 
bidimensionality, etc.) in the streaming model 

• Developed new lower bounds using communication complexity  

• Beyond “standard” graph problems? Game theory, machine learning, etc ….. 

• Connections with kernelization? 

• Implement and evaluate these new parameterized streaming algorithms? 
• Code for some of the 𝑘-VC algorithms available at http://projects.csail.mit.edu/dnd/ 

Streaming  
(space) 

algorithms 

Parameterized 
(time) 

algorithms 

Two-way flow of ideas 

Looking forward… 

http://projects.csail.mit.edu/dnd/
http://projects.csail.mit.edu/dnd/


Parameterized Streaming Algorithms 
𝐋𝐨𝐰𝐞𝐫 𝐛𝐨𝐮𝐧𝐝𝐬 𝐢𝐧𝐬𝐩𝐢𝐫𝐞𝐝 𝐛𝐲 𝐊𝐞𝐫𝐧𝐞𝐥 𝐥𝐨𝐰𝐞𝐫 𝐛𝐨𝐮𝐧𝐝𝐬 

• Connections with Kernelization – a different (but related) data-compression model 
• Kernelization versus streaming 

• Polytime computation versus unbounded computation 
• Full access of the input versus limited access to input 

• AND-compression: No poly kernel unless NP⊆ coNP/poly  
• New definition of AND-compatible, inspired by AND-compression 

A problem Π is AND-compatible if ∃ constant 𝑘 ∈ℕ such that 
• ∀ 𝑛 ∈ℕ there is a graph 𝐺𝑌𝐸𝑆 on 𝑛 vertices such that Π 𝐺𝑌𝐸𝑆, 𝑘  is YES instance 
• ∀ 𝑛 ∈ℕ there is a graph 𝐺𝑁𝑂 on 𝑛 vertices such that Π 𝐺𝑁𝑂, 𝑘  is YES instance 

• ∀ 𝑡 ∈ℕ we have that Π 𝐺1 ⊎ 𝐺2 ⊎ ⋯ ⊎ 𝐺𝑡 , 𝑘 = ⋀ Π(𝐺𝑖 , 𝑘) where ⊎ denotes vertex disjoint union 

• Many natural graph problems are AND-compatible: 𝑘-coloring, 𝑘-treewidth, 𝑘-girth 
• Our result: If a problem Π is AND-compatible then it does not admit a streaming 

algorithm using space 𝑓 𝑘 ⋅ 𝑜(𝑛), for any function 𝑓. 
• Unconditional, unlike kernel lower bounds 

• Similar definition and result for OR-compatible 



Parameterized Streaming Algorithms 
𝐋𝐨𝐰𝐞𝐫 𝐛𝐨𝐮𝐧𝐝𝐬 𝐢𝐧𝐬𝐩𝐢𝐫𝐞𝐝 𝐛𝐲 𝐊𝐞𝐫𝐧𝐞𝐥 𝐥𝐨𝐰𝐞𝐫 𝐛𝐨𝐮𝐧𝐝𝐬 

A problem Π is AND-compatible if ∃ constant 𝑘 ∈ℕ such that 
• ∀ 𝑛 ∈ℕ there is a graph 𝐺𝑌𝐸𝑆 on 𝑛 vertices such that Π 𝐺𝑌𝐸𝑆, 𝑘  is YES instance 
• ∀ 𝑛 ∈ℕ there is a graph 𝐺𝑁𝑂 on 𝑛 vertices such that Π 𝐺𝑁𝑂, 𝑘  is YES instance 

• ∀ 𝑡 ∈ℕ we have that Π 𝐺1 ⊎ 𝐺2 ⊎ ⋯ ⊎ 𝐺𝑡, 𝑘 = ⋀ Π(𝐺𝑖 , 𝑘) where ⊎ denotes vertex disjoint union 

• Our result: If a problem Π is AND-compatible then it does not admit a streaming 
algorithm using space 𝑓 𝑘 ⋅ 𝑜(𝑛), for any function 𝑓. 

• Consider 𝑡 graphs 𝐺1, 𝐺2, … , 𝐺𝑡 each having 𝑛 vertices 
• Let 𝐺 be disjoint union 𝐺1 ⊎ 𝐺2 ⊎ ⋯ ⊎ 𝐺𝑡 
• By pigeonhole principle, any (correct) algorithm for 𝐺 must use ≥ 𝑡 bits 

• Otherwise two subsets 𝐼, 𝐽 of 𝑡  collide. Let 𝑖∗ ∈ 𝐼 ∖ 𝐽 
• Select 𝐺𝑖 = 𝐺𝑌𝐸𝑆 for each 𝑖 ∈ 𝐼 ∪ 𝐽 ∖ 𝑖∗  and 𝐺𝑖∗ = 𝐺𝑁𝑂  
• This violates correctness of the algorithm 

• Hence, we have that 𝑓 𝑘 ⋅ 𝑜 𝑛𝑡 ≥ 𝑡 
• Contradiction since 𝑘, 𝑛 are constants and we can take 𝑡 as large as we want 


