Towards a Theory of Parameterized Streaming Algorithms

Graham Cormode Rajesh Chitnis

We increasingly have to deal with huge graphs...

Web Graph 2^{32} nodes Google Maps in USA 10^8 intersection nodes

- It is inconvenient or impossible to store the whole input for random access
- "Solved" problems become hard under different models of data access
 - E.g. External memory, MapReduce, Streaming...

 10^9 nodes

- The paradigm of streaming algorithms is one attempt to deal with Big Data
- The streaming model (for graphs) is as follows:
 - The vertex set $V = \{1, 2, ..., n\}$ is fixed, and known in advance
 - The edges arrive one-by-one (in arbitrary order)
 - For each edge arrival, we need to make a (fast) decision what information to store
 - Cannot (do not want to) store all the edges

- We allow unbounded computation at end of the stream
- Which graph problems can we solve efficiently in this model?
 - Naïve algorithm for any graph problem uses $O(n^2)$ bits by storing whole adjacency matrix

- Recall that the naïve algorithm for any graph problem uses $O(n^2)$ bits
- **Bad News** : Many graph problems have a lower bound of $\Omega(n^2)$ space in streaming model • E.g. Does the given graph have any triangle?
- Typically use communication complexity to show lower bounds for streaming algorithms
- INDEX problem: Alice has string $X \in \{0,1\}^N$, Bob has index $i \in [N]$, want to find *i*th bit of X
 - Lower bound of $\Omega(N)$ if Alice can send only one message to Bob, even with randomization
- Communication complexity reductions: show that a streaming algorithm would solve INDEX

Alice to Bob

- Sketch of a simple INDEX reduction for triangle detection:
- Alice adds edges between Y and Z according to her string X
 - Then she sends her data structure to Bob
- Bob has an index $I \in N$ corresponding to some $(j, \ell) \in [r] \times [r]$
 - Bob adds a new vertex s and the edges (s, y_j) and (s, z_ℓ)

Let
$$N = r^2$$

 $y_1 \bullet z_1$
 $y_1 \bullet z_1$
 $y_1 \bullet z_1$
 $y_1 \bullet z_1$
 $y_1 \bullet z_1$

The resulting graph has a triangle iff the edge (y_j, z_ℓ) is present, i.e., I^{th} bit of X is 1

- Bad News : Many graph problems require $\Omega(n^2)$ space in streaming model
- How can we cope with this (space) intractability?

- Feigenbaum et al. [ICALP '04]: Finding (size of) a min VC needs $\Omega(n^2)$ space
- But how much space does k-VC need?
 - We design a streaming algorithm in $O(k \cdot \log n)$ bits (with 2^k passes over the input)
 - Essentially, the standard branching FPT algorithm in streaming model...

Towards a general theory of (space) parameterized streaming algorithms.....

- <u>FPS</u>: Fixed-Parameter Streaming
- <u>SubPS</u>: Sublinear dependence on input *n*
- <u>LinPS</u>: Linear dependence on input *n*
- <u>BrutePS</u>: Naïvely storing the whole graph

<u>Goal:</u> Develop algorithms and lower bounds to categorize graph problems in this hierarchy

We study all problems, not just NP-hard ones!

Towards a general theory of (space) parameterized streaming algorithms.....

- <u>FPS</u>: Fixed-Parameter Streaming Algorithms
- <u>SubPS</u>: Sublinear dependence on input *n*
- <u>LinPS</u>: Linear dependence on input *n*
- **<u>BrutePS</u>**: Naïvely storing the whole graph

Picture is a bit more complicated: Any entry in this landscape is really a 6-tuple

[Problem, Parameter, Approximation Ratio, Type of Stream, Type of Algorithm, # of passes]

Deterministic or Randomized Inse

Insertion-only or Insertion-deletion

Tight problems for the class LinPS via simple upper bounds

k-Path: If $|E| \ge k \cdot n$ then there is a *k*-path *k*-FVS: If there is a fvs of size *k* then $|E| \le k \cdot n$ *k*-Treewidth: If treewidth is $\le k$ then $|E| \le k \cdot n$

Store all edges till we see $(k \cdot n)$ edges Hence this needs $O(k \cdot n \cdot \log n)$ bits

These problems need $\Omega(n \cdot \log n)$ space (for constant k) Hence, they are not in SubPS

Rules out any algorithm using space $f(k) \cdot o(n \cdot \log n)$ for any function f

 $\Omega(\mathbf{n} \cdot log n)$ bit lower bound for k-Path with k = 6

- Hardness reduction: "Small" space streaming algorithm for 6-Path ⇒ 1- way communication protocol for PERMUTATION of "small" cost
- PERMUTATION problem:

Alice has a permutation $\delta: [N] \to [N]$ encoded as a bit-string of length $N \cdot \log n$. Bob has an index $I \in [N \cdot \log N]$ and wants to find I^{th} bit of δ

• Sun and Woodruff [APPROX '15]: need $\Omega(N \cdot \log N)$ bits one-way communication

 $Z_{\delta(1)}$

 $Z_{\delta(2)}$

 $Z_{\delta(j)}$

 $Z_{\delta(N)}$

 y_i

 y_N

.....

- Alice adds edges between Y and Z according to the permutation δ
 - For each $i \in [N]$ she adds an edge from y_i to $z_{\delta(i)}$
- Bob's index $I \in [N \cdot \log N]$ maps to ℓ^{th} -bit of $\delta(j)$ for some j, ℓ
 - Bob adds a new vertex s, and the edge $s y_i$
 - Let $S_{\ell} = \{z_{\delta(r)} : \ell^{th} \text{-bit of } \delta(r) \text{ is one } \}$
 - Bob adds new vertex t, and edges from t to each vertex of S_{ℓ}

The resulting graph has a 6-path iff edge $z_{\delta(j)} \in S_{\ell}$ is present, i.e., I^{th} bit of X is 1

How do we show a problem does not belong to the smaller class LinPS?

- Show $\Omega(n^2)$ bits lower bound for constant k
- Rules out any algorithm using space $f(k) \cdot o(n^2)$
- Next slide gives proof for 3-Girth...

Note that *k*-Girth is polynomial *time* solvable, but hard in terms of *space*!

 $\Omega(n^2)$ bits lower bound for checking if girth of a graph is ≤ 3

INDEX problem requires $\Omega(N)$ bits of one-way communication from Alice to Bob Alice has a string $X \in \{0,1\}^N$. Bob has an index $I \in [N]$ and wants to find I^{th} bit of X

- Same set up as previously:
 - Let $N = r^2$ and fix a bijection $\phi: [N] \to [r] \times [r]$
- Alice adds edges between Y and Z according to string X
 - Then she sends her data structure to Bob
- Bob's index $I \in N$ corresponds to some $(j, \ell) \in [r] \times [r]$
 - Bob adds a new vertex s and the edges (s, y_j) and (s, z_ℓ)
- Lower bound of $\Omega(N)$ translates to $\Omega(n^2)$ for 3-girth on graphs with n vertices

The resulting graph has a triangle iff the edge (y_j, z_ℓ) is present, i.e., I^{th} bit of X is 1

Goal: Develop algorithms and lower bounds to categorize graph problems in this hierarchy

Looking forward...

- The story so far
 - Can simulate parameterized techniques (branching, iterative compression, bidimensionality, etc.) in the streaming model
 - Developed new lower bounds using communication complexity
- Beyond "standard" graph problems? Game theory, machine learning, etc
- Connections with kernelization?
- Implement and evaluate these new parameterized streaming algorithms?
 - Code for some of the k-VC algorithms available at http://projects.csail.mit.edu/dnd/

Lower bounds inspired by Kernel lower bounds

- Connections with Kernelization a different (but related) data-compression model
- Kernelization versus streaming
 - Polytime computation versus unbounded computation
 - Full access of the input versus limited access to input
- AND-compression: No poly kernel unless NP⊆ coNP/poly
- New definition of AND-compatible, inspired by AND-compression

A problem Π is AND-compatible if \exists constant $k \in \mathbb{N}$ such that

- $\forall n \in \mathbb{N}$ there is a graph G_{YES} on n vertices such that $\Pi(G_{YES}, k)$ is YES instance
- $\forall n \in \mathbb{N}$ there is a graph G_{NO} on n vertices such that $\Pi(G_{NO}, k)$ is YES instance
- $\forall t \in \mathbb{N}$ we have that $\Pi(G_1 \uplus G_2 \uplus \cdots \uplus G_t, k) = \wedge \Pi(G_i, k)$ where \uplus denotes vertex disjoint union
- Many natural graph problems are AND-compatible: k-coloring, k-treewidth, k-girth
- <u>Our result</u>: If a problem Π is AND-compatible then it does not admit a streaming algorithm using space $f(k) \cdot o(n)$, for any function f.
 - Unconditional, unlike kernel lower bounds
- Similar definition and result for OR-compatible

Lower bounds inspired by Kernel lower bounds

A problem Π is AND-compatible if \exists constant $k \in \mathbb{N}$ such that

- $\forall n \in \mathbb{N}$ there is a graph G_{YES} on n vertices such that $\Pi(G_{YES}, k)$ is YES instance
- $\forall n \in \mathbb{N}$ there is a graph G_{NO} on n vertices such that $\Pi(G_{NO}, k)$ is YES instance
- $\forall t \in \mathbb{N}$ we have that $\Pi(G_1 \uplus G_2 \uplus \cdots \uplus G_t, k) = \Lambda \Pi(G_i, k)$ where \uplus denotes vertex disjoint union
- <u>Our result</u>: If a problem Π is AND-compatible then it does not admit a streaming algorithm using space $f(k) \cdot o(n)$, for any function f.
- Consider t graphs G_1, G_2, \dots, G_t each having n vertices
- Let *G* be disjoint union $G_1 \uplus G_2 \uplus \cdots \uplus G_t$
- By pigeonhole principle, any (correct) algorithm for G must use $\geq t$ bits
 - Otherwise two subsets I, J of [t] collide. Let $i^* \in I \setminus J$
 - Select $G_i = G_{YES}$ for each $i \in (I \cup J) \setminus i^*$ and $G_{i^*} = G_{NO}$
 - This violates correctness of the algorithm
- Hence, we have that $f(k) \cdot o(nt) \ge t$
 - Contradiction since k, n are constants and we can take t as large as we want