Towards a Theory of Parameterized Streaming Algorithms

Graham Cormode
Rajesh Chitnis

THE UNIVERSITY OF WARWICK
We increasingly have to deal with huge graphs...

Facebook graph
• 10^9 nodes

Brain graph
• 10^9 nodes

Web Graph
• 2^{32} nodes

Google Maps in USA
• 10^8 intersection nodes

• It is inconvenient or impossible to store the whole input for random access

• “Solved” problems become hard under different models of data access
 • E.g. External memory, MapReduce, Streaming...
Parameterized **Streaming Algorithms**

- The paradigm of **streaming algorithms** is one attempt to deal with Big Data
- The **streaming model** (for graphs) is as follows:
 - The vertex set $V = \{1, 2, \ldots, n\}$ is *fixed*, and known in advance
 - The edges *arrive* one-by-one (in arbitrary order)
 - For each edge arrival, we need to make a *(fast)* decision what information to store
 - Cannot (do not want to) store all the edges

![Graph Example](image)

- We allow *unbounded computation* at end of the stream
- Which graph problems can we solve *efficiently* in this model?
 - Naïve algorithm for *any* graph problem uses $O(n^2)$ bits by storing whole adjacency matrix
Recall that the naïve algorithm for any graph problem uses $O(n^2)$ bits.

Bad News: Many graph problems have a lower bound of $\Omega(n^2)$ space in streaming model.

- E.g. Does the given graph have any triangle?

Typically use communication complexity to show lower bounds for streaming algorithms.

INDEX problem: Alice has string $X \in \{0,1\}^N$, Bob has index $i \in [N]$, want to find ith bit of X.

- Lower bound of $\Omega(N)$ if Alice can send only one message to Bob, even with randomization.

Communication complexity reductions: show that a streaming algorithm would solve INDEX.
Parameterized Streaming Algorithms

- Sketch of a simple INDEX reduction for triangle detection:
- Alice adds edges between Y and Z according to her string X
 - Then she sends her data structure to Bob
- Bob has an index $I \in N$ corresponding to some $(j, \ell) \in [r] \times [r]$
 - Bob adds a new vertex s and the edges (s, y_j) and (s, z_ℓ)

Let $N = r^2$

The resulting graph has a triangle iff the edge (y_j, z_ℓ) is present, i.e., I^{th} bit of X is 1
Parameterized Streaming Algorithms

• **Bad News**: Many graph problems require $\Omega(n^2)$ space in streaming model
• How can we cope with this (space) intractability?

Feigenbaum et al. [ICALP ‘04]: Finding (size of) a min VC needs $\Omega(n^2)$ space

• But how much space does k-VC need?
 • We design a streaming algorithm in $O(k \cdot \log n)$ bits (with 2^k passes over the input)
 • Essentially, the standard branching FPT algorithm in streaming model...
Parameterized Streaming Algorithms

• Streaming algorithm for k-VC with $O(k \cdot \log n)$ bits and 2^k passes
• Consider all 2^k binary strings from $\{0,1\}^k$, one in each pass
• The binary search tree has 2^k leaves
 • Each pass corresponds to a root \rightarrow leaf path in the tree
 • 0 for left branch, and 1 for right branch
• Algorithm only stores current binary string and corresponding VC
 • Storage is $O(k \cdot \log n)$ bits
 • Optimal if you also want to output a VC!

Streaming implementation of FPT algorithm via iterative compression:
($k \cdot 2^k$)-pass streaming algorithm for k-VC which uses $O(k \cdot \log n)$ bits

Reducing the number of passes: Chitnis et al. [SODA ‘15] designed a 1-pass streaming algorithm for k-VC using $O(k^2 \cdot \log n)$ bits
Parameterized Streaming Algorithms

Towards a general theory of (space) parameterized streaming algorithms.....

- **FPS**: Fixed-Parameter Streaming
- **SubPS**: Sublinear dependence on input n
- **LinPS**: Linear dependence on input n
- **BrutePS**: Naïvely storing the whole graph

Goal: Develop algorithms and lower bounds to categorize graph problems in this hierarchy

We study all problems, not just NP-hard ones!
Parameterized Streaming Algorithms

Towards a general theory of (space) parameterized streaming algorithms...

- **FPS**: Fixed-Parameter Streaming Algorithms
- **SubPS**: Sublinear dependence on input n
- **LinPS**: Linear dependence on input n
- **BrutePS**: Naïvely storing the whole graph

Picture is a bit more complicated:
Any entry in this landscape is really a 6-tuple

\[
\text{[Problem, Parameter, Approximation Ratio, Type of Stream, Type of Algorithm, # of passes]}\]

Deterministic or Randomized

Insertion-only or Insertion-deletion

\[
\text{BrutePS: } O(n^2) \\
\text{LinPS: } f(k) \cdot n \cdot \log n \\
\text{SubPS: } f(k) \cdot n^{1-\epsilon} \cdot \log n \\
\text{FPS: } f(k) \cdot \log n
\]
Parameterized Streaming Algorithms

Tight problems for the class LinPS via simple upper bounds

BrutePS: $O(n^2)$

LinPS: $f(k) \cdot n \cdot \log n$

SubPS: $f(k) \cdot n^{1-\epsilon} \cdot \log n$

FPS: $f(k) \cdot \log n$

k-Path: If $|E| \geq k \cdot n$ then there is a k-path

k-FVS: If there is a fvs of size k then $|E| \leq k \cdot n$

k-Treewidth: If treewidth is $\leq k$ then $|E| \leq k \cdot n$

Store all edges till we see $(k \cdot n)$ edges
Hence this needs $O(k \cdot n \cdot \log n)$ bits

These problems need $\Omega(n \cdot \log n)$ space (for constant k)
Hence, they are not in SubPS

Rules out any algorithm using space $f(k) \cdot o(n \cdot \log n)$ for any function f
• **Hardness reduction:** “Small” space streaming algorithm for 6-Path
 ⇒ 1-way communication protocol for PERMUTATION of “small” cost

• **PERMUTATION problem:**
 Alice has a permutation \(\delta : [N] \to [N] \) encoded as a bit-string of length \(N \cdot \log n \).
 Bob has an index \(I \in [N \cdot \log N] \) and wants to find \(I^{th} \) bit of \(\delta \)
 • Sun and Woodruff [APPROX ’15]: need \(\Omega(N \cdot \log N) \) bits one-way communication

• Alice adds edges between \(Y \) and \(Z \) according to the permutation \(\delta \)
 • For each \(i \in [N] \) she adds an edge from \(y_i \) to \(z_{\delta(i)} \)

• Bob’s index \(I \in [N \cdot \log N] \) maps to \(\ell^{th} \)-bit of \(\delta(j) \) for some \(j, \ell \)
 • Bob adds a new vertex \(s \), and the edge \(s - y_j \)
 • Let \(S_\ell = \{ z_{\delta(r)} : \ell^{th}-\text{bit of } \delta(r) \text{ is one } \} \)
 • Bob adds new vertex \(t \), and edges from \(t \) to each vertex of \(S_\ell \)

The resulting graph has a 6-path iff edge \(z_{\delta(j)} \in S_\ell \) is present, i.e., \(I^{th} \) bit of \(X \) is 1
Parameterized Streaming Algorithms

Tight problems for the class **BrutePS**

- **BrutePS**: $O(n^2)$
- **LinPS**: $f(k) \cdot n \cdot \log n$
- **SubPS**: $f(k) \cdot n^{1-\epsilon} \cdot \log n$
- **FPS**: $f(k) \cdot \log n$

How do we show a problem does not belong to the smaller class **LinPS**?

- Show $\Omega(n^2)$ bits lower bound for constant k
- Rules out any algorithm using space $f(k) \cdot o(n^2)$
- Next slide gives proof for 3-Girth...

Note that k-Girth is polynomial **time** solvable, but hard in terms of **space**!
INDEX problem requires $\Omega(\mathcal{N})$ bits of one-way communication from Alice to Bob

Alice has a string $X \in \{0, 1\}^\mathcal{N}$.

Bob has an index $I \in [\mathcal{N}]$ and wants to find I^{th} bit of X

- Same set up as previously:
 - Let $N = r^2$ and fix a bijection $\phi: [\mathcal{N}] \rightarrow [r] \times [r]$
 - Alice adds edges between Y and Z according to string X
 - Then she sends her data structure to Bob
 - Bob’s index $I \in \mathcal{N}$ corresponds to some $(j, \ell) \in [r] \times [r]$
 - Bob adds a new vertex s and the edges (s, y_j) and (s, z_ℓ)
- Lower bound of $\Omega(\mathcal{N})$ translates to $\Omega(n^2)$ for 3-girth on graphs with n vertices

The resulting graph has a triangle iff the edge (y_j, z_ℓ) is present, i.e., I^{th} bit of X is 1
Parameterized Streaming Algorithms

Goal: Develop algorithms and lower bounds to categorize graph problems in this hierarchy

Looking forward...

- The story so far
 - Can simulate parameterized techniques (branching, iterative compression, bidimensionality, etc.) in the streaming model
 - Developed new lower bounds using communication complexity
- Beyond “standard” graph problems? Game theory, machine learning, etc
- Connections with kernelization?
- Implement and evaluate these new parameterized streaming algorithms?

- Streaming (space) algorithms
- Parameterized (time) algorithms

Two-way flow of ideas
Parameterized Streaming Algorithms

Lower bounds inspired by Kernel lower bounds

- **Connections** with Kernelization – a different (but related) data-compression model
- **Kernelization** versus streaming
 - Polyt ime computation versus unbounded computation
 - Full access of the input versus limited access to input
- **AND-compression**: No poly kernel unless \(\text{NP} \subseteq \text{coNP/poly} \)
- New definition of AND-compatible, inspired by AND-compression

A problem \(\Pi \) is AND-compatible if \(\exists \) constant \(k \in \mathbb{N} \) such that
- \(\forall n \in \mathbb{N} \) there is a graph \(G_{YES} \) on \(n \) vertices such that \(\Pi(G_{YES}, k) \) is YES instance
- \(\forall n \in \mathbb{N} \) there is a graph \(G_{NO} \) on \(n \) vertices such that \(\Pi(G_{NO}, k) \) is YES instance
- \(\forall t \in \mathbb{N} \) we have that \(\Pi(G_1 \cup G_2 \cup \cdots \cup G_t, k) = \land \Pi(G_i, k) \) where \(\cup \) denotes vertex disjoint union

- Many natural graph problems are AND-compatible: \(k \)-coloring, \(k \)-treewidth, \(k \)-girth
- **Our result**: If a problem \(\Pi \) is AND-compatible then it does not admit a streaming algorithm using space \(f(k) \cdot o(n) \), for any function \(f \).
 - Unconditional, unlike kernel lower bounds
- **Similar** definition and result for OR-compatible
Parameterized Streaming Algorithms
Lower bounds inspired by Kernel lower bounds

A problem Π is AND-compatible if \exists constant $k \in \mathbb{N}$ such that
- $\forall n \in \mathbb{N}$ there is a graph G_{YES} on n vertices such that $\Pi(G_{YES}, k)$ is YES instance
- $\forall n \in \mathbb{N}$ there is a graph G_{NO} on n vertices such that $\Pi(G_{NO}, k)$ is YES instance
- $\forall t \in \mathbb{N}$ we have that $\Pi(G_1 \cup G_2 \cup \cdots \cup G_t, k) = \land \Pi(G_i, k)$ where \cup denotes vertex disjoint union

- **Our result:** If a problem Π is AND-compatible then it does not admit a streaming algorithm using space $f(k) \cdot o(n)$, for any function f.
- Consider t graphs G_1, G_2, \ldots, G_t each having n vertices
- Let G be disjoint union $G_1 \cup G_2 \cup \cdots \cup G_t$
- By pigeonhole principle, any (correct) algorithm for G must use $\geq t$ bits
 - Otherwise two subsets I, J of $[t]$ collide. Let $i^* \in I \setminus J$
 - Select $G_i = G_{YES}$ for each $i \in (I \cup J) \setminus i^*$ and $G_{i^*} = G_{NO}$
 - This violates correctness of the algorithm
- Hence, we have that $f(k) \cdot o(nt) \geq t$
 - Contradiction since k, n are constants and we can take t as large as we want