
Towards a Theory of

Parameterized
Streaming
Algorithms

Graham Cormode
Rajesh Chitnis

We increasingly have to deal with huge graphs…

Parameterized Streaming Algorithms

Facebook graph
• 109 nodes

Brain graph
• 109 nodes

Web Graph
• 232 nodes

Google Maps in USA
• 108 intersection nodes

• It is inconvenient or impossible to store the whole input for random access

• “Solved” problems become hard under different models of data access

• E.g. External memory, MapReduce, Streaming…

• The paradigm of streaming algorithms is one attempt to deal with Big Data

• The streaming model (for graphs) is as follows:
• The vertex set 𝑉 = {1,2, … , 𝑛} is fixed, and known in advance
• The edges arrive one-by-one (in arbitrary order)
• For each edge arrival, we need to make a (fast) decision what information to store
• Cannot (do not want to) store all the edges

Parameterized Streaming Algorithms

• We allow unbounded computation at end of the stream

• Which graph problems can we solve efficiently in this model?
• Naïve algorithm for any graph problem uses 𝑂 𝑛2 bits by storing whole adjacency matrix

1

5

4

2

3

• Recall that the naïve algorithm for any graph problem uses 𝑂 𝑛2 bits

• Bad News : Many graph problems have a lower bound of Ω(𝑛2) space in streaming model

• E.g. Does the given graph have any triangle?

• Typically use communication complexity to show lower bounds for streaming algorithms

• INDEX problem: Alice has string 𝑋 ∈ 0,1 𝑁, Bob has index 𝑖 ∈ 𝑁 , want to find 𝑖th bit of X
• Lower bound of Ω(𝑁) if Alice can send only one message to Bob, even with randomization

• Communication complexity reductions: show that a streaming algorithm would solve INDEX

Parameterized Streaming Algorithms

10010110

One-way communication from
Alice to Bob

𝑖 = 5

Parameterized Streaming Algorithms
• Sketch of a simple INDEX reduction for triangle detection:

• Alice adds edges between 𝑌 and 𝑍 according to her string 𝑋
• Then she sends her data structure to Bob

• Bob has an index 𝐼 ∈ 𝑁 corresponding to some 𝑗, ℓ ∈ 𝑟 × 𝑟
• Bob adds a new vertex 𝑠 and the edges (𝑠, 𝑦𝑗) and (𝑠, 𝑧ℓ)

6

𝑦1

𝑦𝑟

𝑦𝑗

𝑧1

𝑧ℓ

𝑧𝑟

Y Z

Let 𝑁 = 𝑟2

𝑠

The resulting graph has a triangle iff the edge (𝑦𝑗 , 𝑧ℓ) is present, i.e., 𝐼𝑡ℎ bit of X is 1

• Bad News : Many graph problems require Ω(𝑛2) space in streaming model

• How can we cope with this (space) intractability?

Parameterized Streaming Algorithms

BIG

Time

BIG

Data

• Feigenbaum et al. [ICALP ‘04]: Finding (size of) a min VC needs Ω(𝑛2) space

• But how much space does 𝑘-VC need?

• We design a streaming algorithm in 𝑂(𝑘 ⋅ log 𝑛) bits (with 2𝑘 passes over the input)

• Essentially, the standard branching FPT algorithm in streaming model…

Fine-grained understanding
via parameterized analysis

• Streaming algorithm for 𝑘-VC with 𝑂(𝑘 ⋅ log 𝑛) bits and 2𝑘 passes

Parameterized Streaming Algorithms

𝒆 = 𝒙𝟏𝒚𝟏

𝒆 = 𝒙𝟑𝒚𝟑 𝒆 = 𝒙𝟐𝒚𝟐
𝒙𝟑

𝒙𝟏

𝒙𝟐

𝒚𝟏

𝒚𝟐 𝒚𝟑

𝑮

𝑮-𝒚𝟏 𝑮-𝒙𝟏

𝑮-𝒚𝟏-𝒙𝟑

𝑮-𝒙𝟏-𝒚𝟐

• Consider all 2𝑘 binary strings from 0,1 𝑘, one in each pass

• The binary search tree has 2𝑘 leaves
• Each pass corresponds to a root → leaf path in the tree

• 0 for left branch, and 1 for right branch

• Algorithm only stores current binary string and corresponding VC
• Storage is 𝑂(𝑘 ⋅ log 𝑛) bits

• Optimal if you also want to output a VC!

Streaming implementation of FPT algorithm via iterative compression:
(𝑘 ⋅ 2𝑘)-pass streaming algorithm for 𝑘-VC which uses 𝑂(𝑘 ⋅ log 𝑛) bits

𝑮-𝒚𝟏-𝒚𝟑

𝑮-𝒙𝟏-𝒙𝟐

𝑘

Reducing the number of passes: Chitnis et al. [SODA ‘15] designed
a 1-pass streaming algorithm for 𝑘-VC using 𝑂(𝑘2 ⋅ log 𝑛) bits

Towards a general theory of (space) parameterized streaming algorithms…..

Parameterized Streaming Algorithms

FPS: 𝑓 𝑘 ⋅ log 𝑛

LinPS: 𝑓 𝑘 ⋅ 𝑛 ⋅ log 𝑛

SubPS: 𝑓 𝑘 ⋅ 𝑛1−𝜖 ⋅ log 𝑛

BrutePS: 𝑂(𝑛2)

• FPS: Fixed-Parameter Streaming

• SubPS: Sublinear dependence on input 𝑛

• LinPS: Linear dependence on input 𝑛

• BrutePS: Naïvely storing the whole graph

Goal: Develop algorithms and lower bounds to
categorize graph problems in this hierarchy

𝒌-Vertex-Cover
K-MaxMatching

𝒌-Path, 𝒌-FVS,
𝒌-Treewidth

𝒌-Girth, 𝒌-Clique,
𝒌-Dominating-Set

1.5-approx. for
MaxMatching

on trees

We study all problems, not just NP-hard ones!

Picture is a bit more complicated:
Any entry in this landscape is really a 6-tuple

[Problem, Parameter, Approximation Ratio, Type of Stream,
Type of Algorithm, # of passes]

Parameterized Streaming Algorithms

FPS: 𝑓 𝑘 ⋅ log 𝑛

LinPS: 𝑓 𝑘 ⋅ 𝑛 ⋅ log 𝑛

SubPS: 𝑓 𝑘 ⋅ 𝑛1−𝜖 ⋅ log 𝑛

BrutePS: 𝑂(𝑛2) • FPS: Fixed-Parameter Streaming Algorithms

• SubPS: Sublinear dependence on input 𝑛

• LinPS: Linear dependence on input 𝑛

• BrutePS: Naïvely storing the whole graph

Insertion-only or Insertion-deletion Deterministic or Randomized

Towards a general theory of (space) parameterized streaming algorithms…..

Tight problems for the class LinPS via simple upper bounds

Parameterized Streaming Algorithms

FPS: 𝑓 𝑘 ⋅ log 𝑛

LinPS: 𝑓 𝑘 ⋅ 𝑛 ⋅ log 𝑛

SubPS: 𝑓 𝑘 ⋅ 𝑛1−𝜖 ⋅ log 𝑛

BrutePS: 𝑂(𝑛2)

Store all edges till we see (𝑘 ⋅ 𝑛) edges
Hence this needs 𝑂(𝑘 ⋅ 𝑛 ⋅ log 𝑛) bits

𝒌-Path, 𝒌-FVS,
𝒌-Treewidth

These problems need Ω(𝑛 ⋅ log 𝑛) space
(for constant 𝑘)
Hence, they are not in SubPS

𝑘-Path: If 𝐸 ≥ 𝑘 ⋅ 𝑛 then there is a 𝑘-path
𝑘-FVS: If there is a fvs of size 𝑘 then 𝐸 ≤ 𝑘 ⋅ 𝑛
𝑘-Treewidth: If treewidth is ≤ 𝑘 then 𝐸 ≤ 𝑘 ⋅ 𝑛

Rules out any algorithm using space
𝑓 𝑘 ⋅ 𝑜(𝑛 ⋅ log 𝑛) for any function 𝑓

• Hardness reduction: “Small” space streaming algorithm for 6-Path
 ⇒ 1- way communication protocol for PERMUTATION of “small” cost

• PERMUTATION problem:
Alice has a permutation 𝛿: 𝑁 → 𝑁 encoded as a bit-string of length 𝑁 ⋅ log 𝑛 .
Bob has an index 𝐼 ∈ 𝑁 ⋅ log 𝑁 and wants to find 𝐼𝑡ℎ bit of 𝛿

• Sun and Woodruff [APPROX ‘15]: need Ω(𝑁 ⋅ log 𝑁) bits one-way communication

Parameterized Streaming Algorithms
𝛀(𝐧 ⋅ 𝒍𝒐𝒈 𝒏) bit lower bound for 𝒌-Path with 𝒌 = 𝟔

• Alice adds edges between 𝑌 and 𝑍 according to the permutation 𝛿

• For each 𝑖 ∈ [𝑁] she adds an edge from 𝑦𝑖 to 𝑧𝛿 𝑖

• Bob’s index 𝐼 ∈ [𝑁 ⋅ log 𝑁] maps to ℓ𝑡ℎ-bit of 𝛿(𝑗) for some 𝑗, ℓ

• Bob adds a new vertex 𝑠, and the edge 𝑠 − 𝑦𝑗

• Let 𝑆ℓ = {𝑧𝛿(𝑟) ∶ ℓ𝑡ℎ-bit of 𝛿(𝑟) is one }

• Bob adds new vertex 𝑡, and edges from 𝑡 to each vertex of 𝑆ℓ

𝑦1

𝑦𝑁

𝑦𝑗

𝑧𝛿(1)

𝑧𝛿(2)

𝑧𝛿(𝑁)

Y Z

𝑠

The resulting graph has a 6-path iff edge 𝑧𝛿(𝑗) ∈ 𝑆ℓ is present, i.e., 𝐼𝑡ℎ bit of X is 1

𝑦2

𝑧𝛿(𝑗)

𝑡

Tight problems for the class BrutePS

Parameterized Streaming Algorithms

FPS: 𝑓 𝑘 ⋅ log 𝑛

LinPS: 𝑓 𝑘 ⋅ 𝑛 ⋅ log 𝑛

SubPS: 𝑓 𝑘 ⋅ 𝑛1−𝜖 ⋅ log 𝑛

BrutePS: 𝑂(𝑛2)

How do we show a problem does not
belong to the smaller class LinPS?

• Show Ω(𝑛2) bits lower bound for constant 𝑘
• Rules out any algorithm using space 𝑓 𝑘 ⋅ 𝑜(𝑛2)
• Next slide gives proof for 3-Girth…

Note that 𝑘-Girth is polynomial time
solvable, but hard in terms of space!

𝒌-Girth, 𝒌-Clique,
𝒌-Dominating-Set

INDEX problem requires Ω(𝑁) bits of one-way communication from Alice to Bob
Alice has a string 𝑋 ∈ 0,1 𝑁.
Bob has an index 𝐼 ∈ 𝑁 and wants to find 𝐼𝑡ℎ bit of X

Parameterized Streaming Algorithms
𝛀(𝐧𝟐) bits lower bound for checking if girth of a graph is ≤ 𝟑

• Same set up as previously:
• Let 𝑁 = 𝑟2 and fix a bijection 𝜙: 𝑁 → 𝑟 × [𝑟]

• Alice adds edges between 𝑌 and 𝑍 according to string 𝑋
• Then she sends her data structure to Bob

• Bob’s index 𝐼 ∈ 𝑁 corresponds to some 𝑗, ℓ ∈ 𝑟 × 𝑟
• Bob adds a new vertex 𝑠 and the edges (𝑠, 𝑦𝑗) and (𝑠, 𝑧ℓ)

• Lower bound of Ω(𝑁) translates to Ω(𝑛2) for 3-girth on graphs with 𝑛 vertices

𝑦1

𝑦𝑟

𝑦𝑗

𝑧1

𝑧ℓ

𝑧𝑟

Y Z
𝑠

The resulting graph has a triangle iff the edge (𝑦𝑗 , 𝑧ℓ) is present, i.e., 𝐼𝑡ℎ bit of X is 1

Parameterized Streaming Algorithms
Goal: Develop algorithms and lower bounds to categorize graph problems in this hierarchy

• The story so far ….

• Can simulate parameterized techniques (branching, iterative compression,
bidimensionality, etc.) in the streaming model

• Developed new lower bounds using communication complexity

• Beyond “standard” graph problems? Game theory, machine learning, etc …..

• Connections with kernelization?

• Implement and evaluate these new parameterized streaming algorithms?
• Code for some of the 𝑘-VC algorithms available at http://projects.csail.mit.edu/dnd/

Streaming
(space)

algorithms

Parameterized
(time)

algorithms

Two-way flow of ideas

Looking forward…

http://projects.csail.mit.edu/dnd/
http://projects.csail.mit.edu/dnd/

Parameterized Streaming Algorithms
𝐋𝐨𝐰𝐞𝐫 𝐛𝐨𝐮𝐧𝐝𝐬 𝐢𝐧𝐬𝐩𝐢𝐫𝐞𝐝 𝐛𝐲 𝐊𝐞𝐫𝐧𝐞𝐥 𝐥𝐨𝐰𝐞𝐫 𝐛𝐨𝐮𝐧𝐝𝐬

• Connections with Kernelization – a different (but related) data-compression model
• Kernelization versus streaming

• Polytime computation versus unbounded computation
• Full access of the input versus limited access to input

• AND-compression: No poly kernel unless NP⊆ coNP/poly
• New definition of AND-compatible, inspired by AND-compression

A problem Π is AND-compatible if ∃ constant 𝑘 ∈ℕ such that
• ∀ 𝑛 ∈ℕ there is a graph 𝐺𝑌𝐸𝑆 on 𝑛 vertices such that Π 𝐺𝑌𝐸𝑆, 𝑘 is YES instance
• ∀ 𝑛 ∈ℕ there is a graph 𝐺𝑁𝑂 on 𝑛 vertices such that Π 𝐺𝑁𝑂, 𝑘 is YES instance

• ∀ 𝑡 ∈ℕ we have that Π 𝐺1 ⊎ 𝐺2 ⊎ ⋯ ⊎ 𝐺𝑡 , 𝑘 = ⋀ Π(𝐺𝑖 , 𝑘) where ⊎ denotes vertex disjoint union

• Many natural graph problems are AND-compatible: 𝑘-coloring, 𝑘-treewidth, 𝑘-girth
• Our result: If a problem Π is AND-compatible then it does not admit a streaming

algorithm using space 𝑓 𝑘 ⋅ 𝑜(𝑛), for any function 𝑓.
• Unconditional, unlike kernel lower bounds

• Similar definition and result for OR-compatible

Parameterized Streaming Algorithms
𝐋𝐨𝐰𝐞𝐫 𝐛𝐨𝐮𝐧𝐝𝐬 𝐢𝐧𝐬𝐩𝐢𝐫𝐞𝐝 𝐛𝐲 𝐊𝐞𝐫𝐧𝐞𝐥 𝐥𝐨𝐰𝐞𝐫 𝐛𝐨𝐮𝐧𝐝𝐬

A problem Π is AND-compatible if ∃ constant 𝑘 ∈ℕ such that
• ∀ 𝑛 ∈ℕ there is a graph 𝐺𝑌𝐸𝑆 on 𝑛 vertices such that Π 𝐺𝑌𝐸𝑆, 𝑘 is YES instance
• ∀ 𝑛 ∈ℕ there is a graph 𝐺𝑁𝑂 on 𝑛 vertices such that Π 𝐺𝑁𝑂, 𝑘 is YES instance

• ∀ 𝑡 ∈ℕ we have that Π 𝐺1 ⊎ 𝐺2 ⊎ ⋯ ⊎ 𝐺𝑡, 𝑘 = ⋀ Π(𝐺𝑖 , 𝑘) where ⊎ denotes vertex disjoint union

• Our result: If a problem Π is AND-compatible then it does not admit a streaming
algorithm using space 𝑓 𝑘 ⋅ 𝑜(𝑛), for any function 𝑓.

• Consider 𝑡 graphs 𝐺1, 𝐺2, … , 𝐺𝑡 each having 𝑛 vertices
• Let 𝐺 be disjoint union 𝐺1 ⊎ 𝐺2 ⊎ ⋯ ⊎ 𝐺𝑡
• By pigeonhole principle, any (correct) algorithm for 𝐺 must use ≥ 𝑡 bits

• Otherwise two subsets 𝐼, 𝐽 of 𝑡 collide. Let 𝑖∗ ∈ 𝐼 ∖ 𝐽
• Select 𝐺𝑖 = 𝐺𝑌𝐸𝑆 for each 𝑖 ∈ 𝐼 ∪ 𝐽 ∖ 𝑖∗ and 𝐺𝑖∗ = 𝐺𝑁𝑂
• This violates correctness of the algorithm

• Hence, we have that 𝑓 𝑘 ⋅ 𝑜 𝑛𝑡 ≥ 𝑡
• Contradiction since 𝑘, 𝑛 are constants and we can take 𝑡 as large as we want

