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Perhaps the simplest possible formal privacy algorithm [Warner 65]: 

 Scenario. Each user has a single private bit of information 

– Encoding e.g. political/sexual/religious preference, illness, etc. 

 Algorithm. Toss a (biased) coin, and 

– With probability p > ½, report the true answer 

– With probability 1-p, lie 

 Aggregation. Collect responses from a large number N of users 

– Can ‘unbias’ the estimate (if we know p) of the population fraction 

– The error in the estimate is proportional to 1/√N 

 Analysis. Gives differential privacy with parameter ε = ln (p/(1-p)) 

– Works well in theory, but would anyone ever use this?  

Randomized response: privacy with a coin toss 
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Privacy in practice 

 The model where users apply differential privacy locally and 
then aggregate is known as “Local Differential Privacy” (LDP) 

– The alternative is to give data to a third party to aggregate 

 Randomized response is at the core of most (all) LDP algorithms 

– Represent each user’s data as binary information and apply 

 Local differential privacy is widely deployed 

– In Google Chrome browser, to collect browsing statistics 

– In Apple iOS and MacOS, to collect typing statistics 

– This yields deployments of over 100 million users 

 Advert: tutorial on LDP at SIGMOD on Wednesday 
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Going beyond 1 bit of data 

1 bit can tell you a lot, but can we do more?  

 This work: materializing marginal distributions 

– Each user has d bits of data (encoding sensitive data) 

– We are interested in the distribution of combinations of attributes 
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Gender Obese High BP Smoke Disease 

Alice 1 0 0 1 0 

Bob 0 1 0 1 1 

… 

Zayn 0 0 1 0 0 

Disease/Smoke 0 1 

0 0.55 0.15 

1 0.10 0.20 

Gender/Obese 0 1 

0 0.28 0.22 

1 0.29 0.21 



Building blocks of our algorithm 

 We can Randomized Reponse to each entry of each marginal 

– To give an overall guarantee of privacy, need to change p 

– The more bits released by a user, the closer p gets to ½ (noise) 

 Need to design algorithms that minimize information per user 

 Accuracy improvement: users randomly sample what to report 

– If we release n bits of information per user, the error is n/√N 

– If we sample 1 out of n bits, the error is √(n/N) 

– Quadratically better to sample than to share! 
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What to materialize? 

Different approaches based on how information is revealed 

1. We could reveal information about all marginals of size k 

– There are (d choose k) such marginals, of size 2k each 

2. Or we could reveal information about the full distribution  

– There are 2d entries in the d-dimensional distribution 

– Then aggregate results here (obtaining additional error) 

 Still using randomized response on each entry 

– Approach 1 (marginals): error proportional to 23k/2 dk/2/√N 

– Approach 2 (full): error proportional to 2(d+k)/2/√N 

 If k is small (say, 2), and d is large (say 10s), Approach 1 is better 

– But there’s another approach to try… 

6 



Hadamard transform 

Instead of materializing the data, we can transform it 

 Via Hadamard transform (the discrete  
Fourier transform for the binary hypercube) 

– Simple and fast to apply 

 Property 1: only (d choose k) coefficients  
are needed to build any k-way marginal 

– Reduces the amount of information to release 

 Property 2: Hadamard transform is a linear transform 

– Can estimate global coefficients by sampling and averaging 

 Yields error proportional to (2d)k/2/√N 

– Better than both previous methods (in theory) 
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Empirical behaviour 

 Compare three methods: Hadamard based (Inp_HT), marginal 
materialization (Marg_PS), Expectation maximization (Inp_EM) 

 Measure sum of absolute error in materializing 2-way marginals 

 N = 0.5M individuals, vary privacy parameter ε from 0.4 to 1.4 
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Application – building a Bayesian model 

 Aim: build the tree with highest mutual information (MI) 

 Plot shows MI on the ground truth data for evaluation purposes 

 

9 



Applications – χ-squared test 

 Anonymized, binarized NYC taxi data 

 Compute χ-squared statistic to test correlation 

 Want to be same side of the line as the non-private value! 
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