Marginal Release under Local Differential Privacy

Graham Cormode

g.cormode@warwick.ac.uk

Tejas Kulkarni (Warwick)

Divesh Srivastava (AT&T)

THE UNIVERSITY OF WARWICK

Randomized response: privacy with a coin toss

Perhaps the simplest possible formal privacy algorithm [Warner 65]:

- Scenario. Each user has a single private bit of information
 - Encoding e.g. political/sexual/religious preference, illness, etc.
- Algorithm. Toss a (biased) coin, and
 - With probability p > ½, report the true answer
 - With probability 1-p, lie
- Aggregation. Collect responses from a large number N of users
 - Can 'unbias' the estimate (if we know p) of the population fraction
 - The error in the estimate is proportional to $1/\sqrt{N}$
- Analysis. Gives differential privacy with parameter $\varepsilon = \ln (p/(1-p))$
 - Works well in theory, but would anyone ever use this?

THE UNIVERSITY OF

Privacy in practice

- The model where users apply differential privacy locally and then aggregate is known as "Local Differential Privacy" (LDP)
 - The alternative is to give data to a third party to aggregate
- Randomized response is at the core of most (all) LDP algorithms
 - Represent each user's data as binary information and apply
- Local differential privacy is widely deployed
 - In Google Chrome browser, to collect browsing statistics
 - In Apple iOS and MacOS, to collect typing statistics
 - This yields deployments of over 100 million users
- Advert: tutorial on LDP at SIGMOD on Wednesday

Going beyond I bit of data

1 bit can tell you a lot, but can we do more?

- This work: materializing marginal distributions
 - Each user has d bits of data (encoding sensitive data)
 - We are interested in the distribution of combinations of attributes

	Gender	Obese	High BP	Smoke	Disease
Alice	1	0	0	1	0
Bob	0	1	0	1	1
Zayn	0	0	1	0	0

Gender/Obese	0	1	Disease/Smoke	0	1
0	0.28	0.22	0	0.55	0.15
<mark>د 1</mark>	0.29	0.21	1	0.10	0.20

Building blocks of our algorithm

- We can Randomized Reponse to each entry of each marginal
 - To give an overall guarantee of privacy, need to change p
 - The more bits released by a user, the closer p gets to ½ (noise)
- Need to design algorithms that minimize information per user
- Accuracy improvement: users randomly sample what to report
 - If we release n bits of information per user, the error is n/\sqrt{N}
 - If we sample 1 out of n bits, the error is $\sqrt{(n/N)}$
 - Quadratically better to sample than to share!

What to materialize?

Different approaches based on how information is revealed

- 1. We could reveal information about all marginals of size k
 - There are (d choose k) such marginals, of size 2^k each
- 2. Or we could reveal information about the full distribution
 - There are 2^d entries in the d-dimensional distribution
 - Then aggregate results here (obtaining additional error)
- Still using randomized response on each entry
 - Approach 1 (marginals): error proportional to $2^{3k/2} d^{k/2}/\sqrt{N}$
 - Approach 2 (full): error proportional to $2^{(d+k)/2}/\sqrt{N}$
- If k is small (say, 2), and d is large (say 10s), Approach 1 is better

UNIVERSITY

But there's another approach to try...

6

Hadamard transform

Instead of materializing the data, we can transform it

- Via Hadamard transform (the discrete Fourier transform for the binary hypercube) $\begin{bmatrix} \mathbf{H}^{*} & \mathbf{H}^{*} \\ \mathbf{H}^{*} & -\mathbf{H}^{*} \end{bmatrix} =$
 - Simple and fast to apply
- Property 1: only (d choose k) coefficients are needed to build any k-way marginal
 - Reduces the amount of information to release
- Property 2: Hadamard transform is a linear transform
 - Can estimate global coefficients by sampling and averaging
- Yields error proportional to (2d)^{k/2}/VN
 - Better than both previous methods (in theory)

1 1 1 -1 1 1 1 -1 1 -1 -1 -1 -1 1 -1 -1 -1-1 1-1 -1-1-1 1

UNIVERSIT

1 1 1 -1 1 1 1

Empirical behaviour

- Compare three methods: Hadamard based (Inp_HT), marginal materialization (Marg_PS), Expectation maximization (Inp_EM)
- Measure sum of absolute error in materializing 2-way marginals
- N = 0.5M individuals, vary privacy parameter ε from 0.4 to 1.4

Application – building a Bayesian model

- Aim: build the tree with highest mutual information (MI)
- Plot shows MI on the ground truth data for evaluation purposes

Applications – χ -squared test

- Anonymized, binarized NYC taxi data
- Compute χ-squared statistic to test correlation
- Want to be same side of the line as the non-private value!

THE UNIVERSITY OF WARVICK