Distributed Summaries

Graham Cormode
graham@research.att.com

Pankaj Agarwal (Duke)
Zengfeng Huang (HKUST)
Jeff Philips (Utah)
Zhewei Wei (HKUST)
Ke Yi (HKUST)
Summaries

Summaries allow approximate computations:

- Euclidean distance (Johnson-Lindenstrauss lemma)
- Vector Inner-product, Matrix product (sketches)
- Distinct items (Flajolet-Martin onwards)
- Frequent Items (Misra-Gries onwards)
- Compressed sensing
- Subset-sums (samples)
Approximation and Parallel Computation

♦ Why use approximate when data storage is cheap?
 – Parallelize computation: partition and summarize data
 ■ Consider holistic aggregates, e.g. count-distinct
 – Faster computation (only send summaries, not full data)
 ■ Less marshalling, load balancing needed
 – Implicit in some tools (Sawzall)
Mergability

- Ideally, summaries are algebraic: associative, commutative
 - Allows arbitrary computation trees
 (see also synopsis diffusion [Nath+04], MUD model)
 - Distribution “just works”, whatever the architecture

- Summaries should have bounded size
 - Ideally, independent of base data size
 - Or sublinear in base data (logarithmic, square root)
 - Should **not** depend on number of merges
 - Rule out “trivial” solution of keeping union of input
Models of Summary Construction

♦ Offline computation: e.g. sort data, take percentiles
♦ Streaming: summary merged with one new item each step
♦ One-way merge: each summary merges into at most one
 – Single level hierarchy merge structure
 – Caterpillar graph of merges
♦ Equal-size merges: can only merge summaries of same arity
♦ Full mergeability: allow arbitrary merging schemes
 – Our main interest
Merging: sketches

♦ Example: most sketches (random projections) fully mergeable
♦ Count-Min sketch of vector \(x[1..U] \):
 - Creates a small summary as an array of \(w \times d \) in size
 - Use \(d \) hash functions \(h \) to map vector entries to \([1..w]\)
 - Estimate \(x[i] = \min_j \text{CM}[h_j(i), j] \)
♦ Trivially mergeable: \(\text{CM}(x + y) = \text{CM}(x) + \text{CM}(y) \)

Array: \(\text{CM}[i,j] \)
Merging: sketches

- **Consequence** of sketch mergability:
 - Full mergability of quantiles, heavy hitters, F0, F2, dot product...
 - Easy, widely implemented, used in practice

- **Limitations** of sketch mergeability:
 - Probabilistic guarantees
 - May require discrete domain (ints, not reals or strings)
 - Some bounds are logarithmic in domain size
Summaries for heavy hitters

- **Misra-Gries (MG) algorithm** finds up to k items that occur more than $1/k$ fraction of the time in a stream.
- Keep k different candidates in hand. For each item in stream:
 - If item is monitored, increase its counter.
 - Else, if $< k$ items monitored, add new item with count 1.
 - Else, decrease all counts by 1.
Streaming MG analysis

- \(N \) = total weight of input
- \(M \) = sum of counters in data structure
- Error in any estimated count at most \(\frac{(N-M)}{(k+1)} \)
 - Estimated count a lower bound on true count
 - Each decrement spread over \((k+1) \) items: 1 new one and \(k \) in MG
 - Equivalent to deleting \((k+1) \) distinct items from stream
 - At most \(\frac{(N-M)}{(k+1)} \) decrement operations
 - Hence, can have “deleted” \(\frac{(N-M)}{(k+1)} \) copies of any item
Merging two MG Summaries

♦ Merging alg:
 – Merge the counter sets in the obvious way
 – Take the \((k+1)\)th largest counter \(= C_{k+1}\), and subtract from all
 – Delete non-positive counters
 – Sum of remaining counters is \(M_{12}\)

♦ This alg gives full mergeability:
 – Merge subtracts at least \((k+1)C_{k+1}\) from counter sums
 – So \((k+1)C_{k+1} \leq (M_1 + M_2 - M_{12})\)
 – By induction, error is
 \[
 ((N_1 - M_1) + (N_2 - M_2) + (M_1 + M_2 - M_{12}))/\!(k+1) = ((N_1 + N_2) - M_{12})/(k+1)
 \]
Quantiles

- Quantiles / order statistics generalize the median:
 - Exact answer: $CDF^{-1}(\phi)$ for $0 < \phi < 1$
 - Approximate version: tolerate answer in $CDF^{-1}(\phi - \varepsilon) \ldots CDF^{-1}(\phi + \varepsilon)$

- **Hoeffding bound**: sample of size $O(1/\varepsilon^2 \log 1/\delta)$ suffices

- **Easy result**: one-way mergeability in $O(1/\varepsilon \log (\varepsilon n))$
 - Assume a streaming summary (e.g. Greenwald-Khanna)
 - Extract an approximate CDF F from the summary
 - Generate corresponding distribution f over n items
 - Feed f to summary, error is bounded
 - **Limitation**: repeatedly extracting/inserting causes error to grow

Mergeable Summaries
Equal-weight merging quantiles

♦ A classic result (Munro-Paterson ’78):
 – **Input**: two summaries of equal size k
 – **Base case**: fill summary with k input items
 – Merge, sort summaries to get size $2k$
 – Take every other element

♦ **Deterministic bound**:
 – Error grows proportional to height of merge tree
 – Implies $O(1/\varepsilon \log^2 n)$ sized summaries (for n known upfront)

♦ **Randomized twist**:
 – Randomly pick whether to take odd or even elements
Equal-size merge analysis

♦ Analyze error in range count for any interval after \(m \) merges
♦ Absolute error introduced by \(i \)'th level merge is \(2^{i-1} \)
♦ **Unbiased**: expected error is 0 (50-50 +\(2^{i-1} \) / -\(2^{i-1} \))
♦ Apply Chernoff bound to sum of errors
♦ Summary size = \(O(\frac{1}{\epsilon} \log^{1/2} \frac{1}{\delta}) \) gives \(\epsilon N \) error w/prob 1-\(\delta \)
 – **Neat**: naïve sampling bound requires \(O(\frac{1}{\epsilon^2} \log \frac{1}{\delta}) \)
 – Tightens randomized result of [Suri Toth Zhou 04]
Fully mergeable quantiles

- Use equal-size merging in a standard logarithmic trick:

- Merge two summaries as binary addition

- Fully mergeable quantiles, in $O(1/\varepsilon \log (\varepsilon n) \log^{1/2} 1/\delta)$
 - $n = \text{number of items summarized, not known a priori}$

- But can we do better?
Hybrid summary

☀ **Observation**: when summary has high weight, low order blocks don’t contribute much
 – Can’t ignore them entirely, might merge with many small sets

☀ **Hybrid structure**:
 – Keep top $O(\log 1/\varepsilon)$ levels as before
 – Also keep a “buffer” sample of (few) items
 – Merge/keep equal-size summaries, and sample rest into buffer

☀ **Analysis rather delicate**:
 – Points go into/out of buffer, but always moving “up”
 – Gives constant probability of accuracy in $O(1/\varepsilon \log^{1.5}(1/\varepsilon))$
Other Fully Mergeable Summaries

- Samples on distinct (aggregated) keys
- ε-approximations in constant VC-dimension v in $O(\varepsilon^{-2v/(v+1)})$
- ε-kernels in d-dimensional space in $O(\varepsilon^{(1-d)/2})$
 - For “fat” pointsets: bounded ratio between extents in any direction
- Equal-weight merging for k-median implicit from streaming
 - Implies $O(poly\ n)$ fully-mergeable summary via logarithmic trick
Open Problems

- Weight-based sampling over non-aggregated data
- Fully mergeable ε-kernels without assumptions
- More complex functions, e.g. cascaded aggregates
- Lower bounds for mergeable summaries
- Implementation studies (e.g. in Hadoop)