Distributed Summaries

Graham Cormode

graham@research.att.com

Pankaj Agarwal (Duke)
Zengfeng Huang (HKUST)
Jeff Philips (Utah)
Zheiwei Wei (HKUST)
Ke Yi (HKUST)

Summaries

- Summaries allow approximate computations:
- Euclidean distance (Johnson-Lindenstrauss lemma)
- Vector Inner-product, Matrix product (sketches)
- Distinct items (Flajolet-Martin onwards)
- Frequent Items (Misra-Gries onwards)
- Compressed sensing
- Subset-sums (samples)

Approximation and Parallel Computation

- Why use approximate when data storage is cheap?
- Parallelize computation: partition and summarize data
- Consider holistic aggregates, e.g. count-distinct
- Faster computation (only send summaries, not full data)
- Less marshalling, load balancing needed
- Implicit in some tools (Sawzall)

Mergability

- Ideally, summaries are algebraic: associative, commutative
- Allows arbitrary computation trees (see also synopsis diffusion [Nath+04], MUD model)
- Distribution "just works", whatever the architecture

- Summaries should have bounded size
- Ideally, independent of base data size
- Or sublinear in base data (logarithmic, square root)
- Should not depend on number of merges
- Rule out "trivial" solution of keeping union of input

Models of Summary Construction

- Offline computation: e.g. sort data, take percentiles
- Streaming: summary merged with one new item each step
- One-way merge: each summary merges into at most one
- Single level hierarchy merge structure
- Caterpillar graph of merges

- Equal-size merges: can only merge summaries of same arity
- Full mergeability: allow arbitrary merging schemes
- Our main interest

Merging: sketches

- Example: most sketches (random projections) fully mergeable
- Count-Min sketch of vector x[1..U]:
- Creates a small summary as an array of $w \times d$ in size
- Use d hash functions h to map vector entries to [1..w]
- Estimate $x[i]=\min _{j} C M\left[h_{j}(i), j\right]$
- Trivially mergeable: $C M(x+y)=C M(x)+C M(y)$

Merging: sketches

- Consequence of sketch mergability:
- Full mergability of quantiles, heavy hitters, FO, F2, dot product...
- Easy, widely implemented, used in practice
- Limitations of sketch mergeability:
- Probabilistic guarantees
- May require discrete domain (ints, not reals or strings)
- Some bounds are logarithmic in domain size

Summaries for heavy hitters

- Misra-Gries (MG) algorithm finds up to k items that occur more than $1 / k$ fraction of the time in a stream
- Keep k different candidates in hand. For each item in stream:
- If item is monitored, increase its counter
- Else, if < k items monitored, add new item with count 1
- Else, decrease all counts by 1

Streaming MG analysis

- $N=$ total weight of input
- M = sum of counters in data structure
- Error in any estimated count at most (N-M)/(k+1)
- Estimated count a lower bound on true count
- Each decrement spread over ($k+1$) items: 1 new one and k in MG
- Equivalent to deleting $(k+1)$ distinct items from stream
- At most ($\mathrm{N}-\mathrm{M}$)/($k+1$) decrement operations
- Hence, can have "deleted" $(N-M) /(k+1)$ copies of any item

Merging two MG Summaries

- Merging alg:
- Merge the counter sets in the obvious way
- Take the ($k+1$)th largest counter $=C_{k+1}$, and subtract from all
- Delete non-positive counters
- Sum of remaining counters is M_{12}
- This alg gives full mergeability:
- Merge subtracts at least $(k+1) C_{k+1}$ from counter sums
- So $(k+1) C_{k+1} \leq\left(M_{1}+M_{2}-M_{12}\right)$
- By induction, error is

$$
\left(\left(N_{1}-M_{1}\right)+\left(N_{2}-M_{2}\right)+\left(M_{1}+M_{2}-M_{12}\right)\right) /(k+1)=\left(\left(N_{1}+N_{2}\right)-M_{12}\right) /(k+1)
$$

Quantiles

- Quantiles / order statistics generalize the median:
- Exact answer: $\operatorname{CDF}^{-1}(\phi)$ for $0<\phi<1$
- Approximate version: tolerate answer in $\mathrm{CDF}^{-1}(\phi-\varepsilon) \ldots \mathrm{CDF}^{-1}(\phi+\varepsilon)$
- Hoeffding bound: sample of size $O\left(1 / \varepsilon^{2} \log 1 / \delta\right)$ suffices
- Easy result: one-way mergeability in $O(1 / \varepsilon \log (\varepsilon n))$
- Assume a streaming summary (e.g. Greenwald-Khanna)
- Extract an approximate CDF F from the summary
- Generate corresponding distribution f over n items
- Feed f to summary, error is bounded
- Limitation: repeatedly extracting/inserting causes error to grow

Equal-weight merging quantiles

- A classic result (Munro-Paterson '78):
- Input: two summaries of equal size k
- Base case: fill summary with k input items
- Merge, sort summaries to get size $2 k$
- Take every other element
- Deterministic bound:
- Error grows proportional to height of merge tree
- Implies $O\left(1 / \varepsilon \log ^{2} n\right.$) sized summaries (for n known upfront)
- Randomized twist:
- Randomly pick whether to take odd or even elements

Equal-size merge analysis

- Analyze error in range count for any interval after m merges
- Absolute error introduced by i'th level merge is 2^{i-1}
- Unbiased: expected error is $0\left(50-50+2^{i-1} /-2^{i-1}\right)$
- Apply Chernoff bound to sum of errors
- Summary size $=O\left(1 / \varepsilon \log ^{1 / 2} 1 / \delta\right)$ gives εN error w/prob 1- δ
- Neat: naïve sampling bound requires $O\left(1 / \varepsilon^{2} \log 1 / \delta\right)$
- Tightens randomized result of [Suri Toth Zhou 04]

Fully mergeable quantiles

- Use equal-size merging in a standard logarithmic trick:

- Merge two summaries as binary addition
- Fully mergeable quantiles, in $O\left(1 / \varepsilon \log (\varepsilon n) \log ^{1 / 2} 1 / \delta\right)$
- $n=$ number of items summarized, not known a priori
- But can we do better?

Hybrid summary

- Observation: when summary has high weight, low order blocks don't contribute much
- Can't ignore them entirely, might merge with many small sets
- Hybrid structure:

- Also keep a "buffer" sample of (few) items
- Merge/keep equal-size summaries, and sample rest into buffer
- Analysis rather delicate:
- Points go into/out of buffer, but always moving "up"
- Gives constant probability of accuracy in $O\left(1 / \varepsilon \log ^{1.5}(1 / \varepsilon)\right)$

Other Fully Mergeable Summaries

- Samples on distinct (aggregated) keys
- ε-approximations in constant VC-dimension v in $\mathrm{O}\left(\varepsilon^{-2 v /(v+1)}\right)$
- ε-kernels in d-dimensional space in $O\left(\varepsilon^{(1-d) / 2}\right)$
- For "fat" pointsets: bounded ratio between extents in any direction
- Equal-weight merging for k-median implicit from streaming
- Implies O(poly n) fully-mergeable summary via logarithmic trick

Open Problems

- Weight-based sampling over non-aggregated data
- Fully mergeable ε-kernels without assumptions
- More complex functions, e.g. cascaded aggregates
- Lower bounds for mergeable summaries
- Implementation studies (e.g. in Hadoop)

