Data Summarization

and

Distributed Computation

000000000000000000 0
00000000 |:> O

Graham Cormode

University of Warwick
G.Cormode@Warwick.ac.uk



Agenda for the talk

m My (patchy) history with PODC:

2011
B E &K Graham Cormode, Ke Yi:
Tracking distributed aggregates over time-based sliding windows. PODC 2011:213-214
2007
B(31] E & ®R « Graham Cormode, Srikanta Tirthapura, Bojian Xu:
Time-decaying sketches for sensor data aggregation. PODC 2007: 215-224

m This talk: recent examples of distributed summaries

— Learning graphical models from distributed streams

— Deterministic distributed summaries for high-dimensional regression



Computational scalability and “big” data

m Industrial distributed computing means scale up the computation

m Many great technical ideas:

Use many cheap commodity devices
Accept and tolerate failure

Move code to data, not vice-versa
MapReduce: BSP for programmers

Break problem into many small pieces
Add layers of abstraction to build massive DBMSs and warehouses
Decide which constraints to drop: noSQL, BASE systems

m Scaling up comes with its disadvantages:

Expensive (hardware, equipment, energy), still not always fast

m This talk is not about this approach!
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Downsizing data

m Asecond approach to computational scalability: [ &

scale down the data!

A compact representation of a large data set

Capable of being analyzed on a single machine  § / =
What we finally want is small: human readable analysis / decisions
Necessarily gives up some accuracy: approximate answers

Often randomized (small constant probability of error)

Much relevant work: samples, histograms, wavelet transforms

m Complementary to the first approach: not a case of either-or

m Some drawbacks:

Not a general purpose approach: need to fit the problem

— Some computations don’t allow any useful summary
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1. Distributed Streaming Machine Learning

Machine Learning Model

//

Observation
Streams

m Data continuously generated across distributed sites
m  Maintain a model of data that enables predictions
m  Communication-efficient algorithms are needed!
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Continuous Distributed Model

Track f(S,,...,S,)

local stream(s)
seen at each site

k sites

S OQQQQQQQQQO
= =k
m Site-site communication only changes things by factor 2
m Goal: Coordinator continuously tracks (global) function of streams
— Achieve communication poly(k, 1/€, log n)
— Also bound space used by each site, time to process each update
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Challenges

®m Monitoring is Continuous...

— Real-time tracking, rather than one-shot query/response
m ..Distributed...

— Each remote site only observes part of the global stream(s)

— Communication constraints: must minimize monitoring burden
m ..Streaming...

— Each site sees a high-speed local data stream and can be resource
(CPU/memory) constrained

m ...Holistic...
— Challenge is to monitor the complete global data distribution
— Simple aggregates (e.g., aggregate traffic) are easier
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Graphical Model: Bayesian Network

m Succinct representation of a joint
distribution of random variables

m Represented as a Directed Acyclic Graph

— Node = arandom variable

— Directed edge = @ @

conditional dependency
m Node independent of its non-

descendants given its parents
e.g. (WetGrass Il Cloudy) | (Sprinkler, Rain) @
m Widely-used model in Machine Learning

for Fault diagnosis, Cybersecurity Weather Bayesian Network

https://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html
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Conditional Probability Distribution (CPD)

Parameters of the Bayesian network can be viewed as a set of
tables, one table per variable
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Goal: Learn Bayesian Network Parameters

The Maximum Likelihood Estimator (MLE) uses
empirical conditional probabilities

@ 0 Pr[W, S, R] B Freq(W,S,R)

Pr(W |[S,R] = =
Wi | Pr[S, R] Freq(S,R)

@ Joint Counter Parent Counter
H P(W=T) | P(W=F)
e T |

T
T F 0.9 0.1
F T 0.9 0.1
F F 0.0 1.0

Counter Table of WetGrass

CPD of WetGrass
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Distributed Bayesian Network Learning
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Naive Solution: Exact Counting (Exact MLE)

m Each arriving event at a site sends a message to a coordinator

— Updates counters corresponding to all the value combinations
from the event

m Total communication is proportional to the number of events

— Can we reduce this?

m Observation: we can tolerate some error in counts
— Small changes in large enough counts won’t affect probabilities
— Some error already from variation in what order events happen
m Replace exact counters with approximate counters

— A foundational distributed question: how to count approximately?



[ ]
Distributed Approximate Counting

[Huang, Yi, Zhang PODS’12]

m We have k sites, each site runs the same algorithm:

— For each increment of a site’s counter:
m Report the new count n’. with probability p N
— Estimaten,asn’.—1+1/pifn’. >0, else estimate as 0 w
m Estimator is unbiased, and has variance less than 1/p?
m Global count n estimated by sum of the estimates n,
m How to set p to give an overall guarantee of accuracy?

— Ideally, set p to V(k log 1/8)/en to get en error with probability 1-6
— Work with a coarse approximation of n up to a factor of 2

m Start with p=1 but decrease it when needed
— Coordinator broadcasts to halve p when estimate of n doubles

— Communication cost is proportional to O(k log(n) + Vk/¢ )
13
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Challenge in Using Approximate Counters

How to set the approximation parameters for learning Bayes nets?

1. Reguirement: maintain an accurate model
(i.e. give accurate estimates of probabilities)

P
e ¢ < — < e€
P(x)

where:

€ is the global error budget,

X is the given any instance vector,

P(x) is the joint probability using approximate algorithm,
P(x) is the joint probability using exact counting (MLE)

2. Objective: minimize the communication cost of model maintenance

We have freedom to find different schemes to meet these requirements
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e —Approximation to the MLE

m Expressing joint probability in terms of the counters:

b _ mn  CXipar(X;)) 5 _ rn  AXipar(Xy))
PO = ety PO = e~ aror)

where:
m A is the approximate counter
m C is the exact counter
m par(X;) are the parents of variable X;
m Define local approximation factors as:
— a;: approximation error of counter A(X;, par(X;))
— [;: approximation error of parent counter A(par(X;))
m To achieve an e-approximation to the MLE we need:

e <lie;(QAxa) (1£B)) <ef
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Algorithm choices

We proposed three algorithms [C, Tirthapura, Yu ICDE 2018]:

m Baseline algorithm: divide error budgets uniformly across all
counters, a,, B. X €/n

m Uniform algorithm: analyze total error of estimate via variance,
rather than separately, so a;, B; < €/Vn

m Non-uniform algorithm: calibrate error based on cardinality of
attributes (J,) and parents (K,), by applying optimization problem
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Algorithms Result Summary

. Approx. Factor of Communication
Algorithm
Counters Cost (messages)
Exact MLE None (exact counting) 0 (mn)
Baseline 0(e/n) 0(n?-logm/ €)
Uniform 0(e/\n) 0 (n*>-logm/ €)
JA3 L3 kl/3
Non-uniform 0 <e - = a‘ >, 0 <e - lB > at most Uniform

€: error budget, n: number of variables, m: total number of observations
J;: cardinality of variable X;, K;: cardinality of X;’s parents
a is a polynomial function of J; and K; , £ is a polynomial function of K;



Empirical Accuracy
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Communication Cost (training time)
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Conclusions

m Communication-Efficient Algorithms to maintaining a
provably good approximation for a Bayesian Network

m Non-Uniform approach is the best, and adapts to the
structure of the Bayesian network

m Experiments show reduced communication and similar
prediction errors as the exact model

m Algorithms can be extended to perform classification and
other ML tasks
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2. Distributed Data Summarization

Ialll

A very simple distributed model:
each participant sends summary
of their input once to aggregator
e (Can extend to hierarchies

21
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Distributed Linear Algebra

m Linear algebra computations are key to much of machine learning
m We seek efficient scalable linear algebra approximate solutions

m We find deterministic distributed algorithms for L -regression
[C Dickens Woodruff ICML 2018]

l/-./f’.

22
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Ordinary Least Squares Regression

R™ >4 and target vector b € R

m Regression: Inputis A €
— OLS formulation: find x = argmin ||[Ax — b ||,
— Takes time O(nd?) centralized to solve via normal equations

m Can be approximated via reducing dependency on n by
compressing into columns of length roughly d /e? (JLT)

— Can be performed distributed with some restrictions

m L, (Euclidean) space is well understood, what about other L ?

23
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Main Tool for Lp: Well Conditioned Basis

4

m A well-conditioned basis is akin to an ‘L, orthonormal basis
m Uisan (a,B,p) wcb for the col(A) if in entrywise p-norm:
— [Ull, €«
— |lzllg = BllUz]|, when g = 1/(1 + p) (dual norm)

1,1

_ Canfind @, 8 at most a small poly(d) ~ dv*2
m U can be found in 0(nd? + nd®logn)

24
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Leverage scores

m L, leverage scores defined via row norms of orthonormal basis
- Measure distance from the mean of the points
- In[0,1] and measure contribution to direction
— More unique points have higher leverage
— Approximate the shape of the data

L,-leverage scores: erthonermar
- well-conditioned basis

25
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L, leverage scores

m For U a well-conditioned basis, leverage scores are given by
row norms

m Can we find rows of high leverage without seeing the full
matrix?

> > |
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L, leverage scores

m |dea: find local leverage scores in U and communicate only the
most important rows to central coordinator

m [ocal scores found by computing a well-conditioned basis on a
subset of the input

> >
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L, leverage scores - theory

m Key result shows that globally important rows remain
important (up to some poly(d) rescaling)

Locally Globally

unimportant unimportant

X X

m Sum of the leverage rows is ||U ||} < poly(d) so there can’t
be too many rows with high leverage score

30
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Application: L -regression

m Weseek x = argmin,||Ax — b ||«
m Summarise A to find A’, and restrict b to these indices as b’

m Now find X = argmin,||[A'x — b'||, (“sketch and solve”)
B Argue correctness via well-conditioned basis

m Obtain additive ¢||b||,, error after scaling the parameters

31
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Empirical Evaluation

WCB? Threshold m Study two datasets: 5
million row sample of
h
Ort 2 d/m US Census Data and

SPC3 {1 d1.5/m 50000 rows Of
YearPredictionMSD

|dentity No 2/m
Uniform NO None m Storage parameter b
Sampling (number of rows

sent) is varied
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Experimental Summary

m Constructed a summary in sublinear space
B Census: close to 0.01 error with ~2% of the data

m The summarization step is fast, and yields a compact summary
B Less than 1 second to summarize data of 0.5M rows

m Faster total time than to use centralized exact solver
m Conditioning is robust across different measures and datasets
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Thoughts on Distributed Data Summarization

m Data summarization leads to interesting technical questions
— With (hopefully) interesting theory and practical implications
m Aim is often for protocols where distribution comes ‘for free’
— i.e. Summaries have a simple algebra, can be ‘added’
— Sometimes it’s helpful to avoid explicit synchronization
m Recent applications lean towards machine learning
— “Everybody else is doing it, so why can’t we?”
— ML gives challenging problems with plausible motivations
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Final Summary

m There are two approaches in response to growing data sizes
— Scale the computation up; scale the data down
m Summarization can be a useful tool in distributed protocols
— Allow each entity to work with local data and minimize coordination
m Many open problems in this broad area
— Machine learning/linear algebra a rich source of problems
m Continuing interest in applying and developing new theory
— Alwavs looking for new collaborators/students/postdocs
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