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Agenda for the talk

 My (patchy) history with PODC: 

 This talk: recent examples of distributed summaries 

– Learning graphical models from distributed streams

– Deterministic distributed summaries for high-dimensional regression
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Computational scalability and “big” data

 Industrial distributed computing means scale up the computation

 Many great technical ideas:

– Use many cheap commodity devices

– Accept and tolerate failure

– Move code to data, not vice-versa

– MapReduce: BSP for programmers

– Break problem into many small pieces

– Add layers of abstraction to build massive DBMSs and warehouses

– Decide which constraints to drop: noSQL, BASE systems

 Scaling up comes with its disadvantages:

– Expensive (hardware, equipment, energy), still not always fast

 This talk is not about this approach!
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Downsizing data

 A second approach to computational scalability: 

scale down the data!

– A compact representation of a large data set

– Capable of being analyzed on a single machine

– What we finally want is small: human readable analysis / decisions

– Necessarily gives up some accuracy: approximate answers

– Often randomized (small constant probability of error)

– Much relevant work: samples, histograms, wavelet transforms

 Complementary to the first approach: not a case of either-or

 Some drawbacks:

– Not a general purpose approach: need to fit the problem

– Some computations don’t allow any useful summary
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1. Distributed Streaming Machine Learning

Network

Machine Learning Model

Observation

Streams

 Data continuously generated across distributed sites

 Maintain a model of data that enables predictions

 Communication-efficient algorithms are needed!
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Continuous Distributed Model

 Site-site communication only changes things by factor 2

 Goal: Coordinator continuously tracks (global) function of streams

– Achieve communication poly(k, 1/ε, log n)

– Also bound space used by each site, time to process each update

Coordinator

k sites

local stream(s) 

seen at each site

S1 Sk

Track f(S1,…,Sk)
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Challenges

 Monitoring is Continuous…

– Real-time tracking, rather than one-shot query/response

 …Distributed…

– Each remote site only observes part of the global stream(s)

– Communication constraints: must minimize monitoring burden

 …Streaming…

– Each site sees a high-speed local data stream and can be resource 

(CPU/memory) constrained

 …Holistic…

– Challenge is to monitor the complete global data distribution

– Simple aggregates (e.g., aggregate traffic) are easier



Graphical Model: Bayesian Network

 Succinct representation of a joint 

distribution of random variables

 Represented as a Directed Acyclic Graph

– Node = a random variable

– Directed edge = 

conditional dependency

 Node independent of its non-

descendants given its parents 

e.g. (WetGrass ⫫ Cloudy) | (Sprinkler, Rain)

 Widely-used model in Machine Learning 

for Fault diagnosis, Cybersecurity
Weather Bayesian Network

Cloudy

Sprinkler Rain

WetGrass

https://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html



Conditional Probability Distribution (CPD)

Parameters of the Bayesian network can be viewed as a set of 

tables, one table per variable



Goal: Learn Bayesian Network Parameters

S R P(W=T) P(W=F)

T T
99/100

= 0.99
0.01

T F 0.9 0.1

F T 0.9 0.1

F F 0.0 1.0

S R W=T W=F Total

T T 99 1 100

T F 9 1 10

F T 45 5 50

F F 0 10 10

Sprinkler Rain

WetGrass

�� �  �, �] =  
Pr [�, �, �]

Pr [�, �]
=  

����(�, �, �)

����(�, �)

Counter Table of WetGrass
CPD of WetGrass

Joint Counter Parent Counter

The Maximum Likelihood Estimator (MLE) uses 

empirical conditional probabilities



Distributed Bayesian Network Learning

Parameters changing with new stream instance



Naïve Solution: Exact Counting (Exact MLE)

 Each arriving event at a site sends a message to a coordinator

– Updates counters corresponding to all the value combinations 

from the event

 Total communication is proportional to the number of events

– Can we reduce this? 

 Observation: we can tolerate some error in counts

– Small changes in large enough counts won’t affect probabilities

– Some error already from variation in what order events happen

 Replace exact counters with approximate counters

– A foundational distributed question: how to count approximately?



Distributed Approximate Counting

 We have k sites, each site runs the same algorithm:

– For each increment of a site’s counter:

 Report the new count n’i with probability p

– Estimate ni as n’i – 1 + 1/p if n’i > 0, else estimate as 0

 Estimator is unbiased, and has variance less than 1/p2

 Global count n estimated by sum of the estimates ni

 How to set p to give an overall guarantee of accuracy?

– Ideally, set p to √(k log 1/δ)/εn to get εn error with probability 1-δ

– Work with a coarse approximation of n up to a factor of 2

 Start with p=1 but decrease it when needed

– Coordinator broadcasts to halve p when estimate of n doubles

– Communication cost is proportional to O(k log(n) + √k/ε )
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Challenge in Using Approximate Counters

How to set the approximation parameters for learning Bayes nets?

1. Requirement: maintain an accurate model 

(i.e. give accurate estimates of probabilities)

��� ≤  
��(�)

�� �
≤ ��

where: 

� is the global error budget, 

� is the given any instance vector, 

��(�) is the joint probability using approximate algorithm, 

�� � is the joint probability using exact counting (MLE)

2. Objective: minimize the communication cost of model maintenance

We have freedom to find different schemes to meet these requirements



� −Approximation to the MLE

 Expressing joint probability in terms of the counters:

�� � = ∏
�(��,� !(��))

�(� !(��))

"
#$% �� � = ∏

&(��,� !(��))

&(� !(��))

"
#$%

where:  

 ' is the approximate counter

 ( is the exact counter

 )*� +, are the parents of variable +,

 Define local approximation factors as: 

– -,: approximation error of counter '(+, , )*�(+,))

– .,: approximation error of parent counter '()*�(+,))

 To achieve an �-approximation to the MLE we need:

��� ≤ ∏ (1 ± -,) ⋅ (1 ± .,)2
,$3  ≤ ��



Algorithm choices

We proposed three algorithms [C, Tirthapura, Yu ICDE 2018]:

 Baseline algorithm: divide error budgets uniformly across all 

counters, αi, βi ∝ ε/n

 Uniform algorithm: analyze total error of estimate via variance, 

rather than separately, so αi, βi ∝ ε/√n

 Non-uniform algorithm: calibrate error based on cardinality of 

attributes (Ji) and parents (Ki), by applying optimization problem
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Algorithms Result Summary

Algorithm
Approx. Factor of 

Counters

Communication 

Cost (messages)

Exact MLE None (exact counting) 5(67)

Baseline 5(�/7) 5 79 ⋅ log 6 / �

Uniform 5(�/ 7) 5 73.> ⋅ log 6 / �

Non-uniform 5 � ⋅  
?�

@/A
B�

@/A

C
, 5 � ⋅  

B�
@/A

D
at most Uniform

�: error budget, 7: number of variables, 6: total number of observations

E,: cardinality of variable +,, F,: cardinality of +,’s parents

- is a polynomial function of E, and F, , . is a polynomial function of F,



Empirical Accuracy

error to ground truth vs. training instances

(number of sites: 30, error budget: 0.1)

real world Bayesian networks Alarm (small), Hepar II (medium)



Communication Cost (training time)

training time vs. number of sites 

(500K training instances, error budget: 0.1)

time cost (communication bound) on AWS cluster



Conclusions

 Communication-Efficient Algorithms to maintaining a 

provably good approximation for a Bayesian Network

 Non-Uniform approach is the best, and adapts to the 

structure of the Bayesian network 

 Experiments show reduced communication and similar 

prediction errors as the exact model

 Algorithms can be extended to perform classification and 

other ML tasks
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2. Distributed Data Summarization

'

A very simple distributed model: 

each participant sends summary 

of their input once to aggregator

• Can extend to hierarchies



Distributed Linear Algebra

 Linear algebra computations are key to much of machine learning

 We seek efficient scalable linear algebra approximate solutions

 We find deterministic distributed algorithms for Lp-regression 

[C Dickens Woodruff ICML 2018]
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Ordinary Least Squares Regression

 Regression: Input is ' ∈  ℝ2 ×J and target vector K ∈ ℝ2

– OLS formulation: find L = argmin ‖'L − K ‖9

– Takes time 5 7R9 centralized to solve via normal equations

 Can be approximated via reducing dependency on 7 by 

compressing into columns of length roughly R/�9 (JLT)

– Can be performed distributed with some restrictions

 L2 (Euclidean) space is well understood, what about other Lp?
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 A well-conditioned basis is akin to an ‘Lp orthonormal basis’

 S is an (-, ., )) wcb for the TUV ' if in entrywise )-norm:

— ‖S‖� ≤ -

— W X ≤ . SW � when � = 1/(1 + )) (dual norm)

— Can find -, . at most a small )UVZ R ≈ R
@

\
±

@

]

 S can be found in 5(7R9 + 7R> log 7)
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Main Tool for Lp: Well Conditioned Basis



 L2 leverage scores defined via row norms of orthonormal basis

– Measure distance from the mean of the points

– In [0,1] and measure contribution to direction

– More unique points have higher leverage

– Approximate the shape of the data
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Leverage scores

Lp-leverage scores: orthonormal

 well-conditioned basis
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Lp leverage scores

 For S a well-conditioned basis, leverage scores are given by 

row norms

 Can we find rows of high leverage without seeing the full 

matrix?

S' '

S_
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Lp leverage scores

 Idea: find local leverage scores in S_ and communicate only the 

most important rows to central coordinator

 Local scores found by computing a well-conditioned basis on a 

subset of the input

S' '

S_



 Key result shows that globally important rows remain 

important (up to some )UVZ R rescaling) 

 Sum of the leverage rows is ‖S ‖�
�

≤  poly(R) so there can’t 

be too many rows with high leverage score
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Lp leverage scores - theory

Locally 
unimportant

Globally 
unimportant

X X



 We seek L = argminb‖'L − K ‖c

 Summarise ' to find '′, and restrict K to these indices as Ke

 Now find Lf =  argminb 'eL − Ke
c (“sketch and solve”)

 Argue correctness via well-conditioned basis 

 Obtain additive ε K � error after scaling the parameters
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Application: Lp-regression



 Study two datasets: 5 
million row sample of 
US Census Data and 
50000 rows of 
YearPredictionMSD

 Storage parameter K
(number of rows 
sent) is varied

Method WCB? Threshold

Orth ℓ9 R/6

SPC3 ℓ3 R3.>/6

Identity No 2/6

Uniform 
Sampling

No None

Empirical Evaluation



Identity isn’t ideal

1
−

− f/f
*

No consistent error behaviour for 

Identity method
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Significant and growing 

difference in regression time

Sampling takes 
longer to query



 Constructed a summary in sublinear space 

 Census: close to 0.01 error with ~2% of the data

 The summarization step is fast, and yields a compact summary

 Less than 1 second to summarize data of 0.5M rows

 Faster total time than to use centralized exact solver

 Conditioning is robust across different measures and datasets
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Experimental Summary



Thoughts on Distributed Data Summarization

 Data summarization leads to interesting technical questions 

– With (hopefully) interesting theory and practical implications

 Aim is often for protocols where distribution comes ‘for free’

– i.e. Summaries have a simple algebra, can be ‘added’ 

– Sometimes it’s helpful to avoid explicit synchronization

 Recent applications lean towards machine learning

– “Everybody else is doing it, so why can’t we?”

– ML gives challenging problems with plausible motivations
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 There are two approaches in response to growing data sizes

– Scale the computation up; scale the data down

 Summarization can be a useful tool in distributed protocols

– Allow each entity to work with local data and minimize coordination

 Many open problems in this broad area

– Machine learning/linear algebra a rich source of problems

 Continuing interest in applying and developing new theory

– Always looking for new collaborators/students/postdocs

Final Summary
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