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Schedule  

 Part 1 (today): Centralized privacy models 

– The Privacy Problem 

– Syntactic Approaches to Privacy (1998 onwards) 

– (Centralized) Differential Privacy (2006 onwards) 

 Part 2 (tomorrow): Local privacy models (2014 onwards) 

– Local Differential Privacy technical foundations 

– Current directions and open problems 

 

 Note: This material can be quite technical and mathematical! 

 Slides available from http://cormode.org/ghent 
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Why Privacy? 

 Data subjects have inherent right and expectation of privacy 

– A lot of new data gives detailed descriptions of people’s behaviour 

 “Privacy” is a complex concept  

– What exactly does “privacy” mean?  When does it apply? 

– Could there exist societies without a concept of privacy? 

 Concretely: at collection “small print” outlines privacy rules 

– Most companies have adopted a privacy policy 

– E.g. Facebook privacy policy facebook.com/policy.php 

 Significant legal framework relating to privacy  

– UN Declaration of Human Rights 

– EU General Data Protection Regulation (GDPR) 

– US: HIPAA, Video Privacy Protection, Data Protection Acts 

https://www.facebook.com/policy.php
https://www.facebook.com/policy.php


The Privacy Problem 

 Goals for privacy in companies and cities: 

– Enable appropriate use of data while protecting customers 

– Keep CTO/minister off front page of the newspapers! 

 Security is binary*: allow access to data iff you have the key 

– Encryption is robust, reliable and widely deployed 

 Privacy comes in many shades:   
reveal some information, disallow unintended uses 

– Hard to control what may be inferred 

– Possible to combine with other data sources to breach privacy 

– Privacy technology is still maturing 
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The data release scenario 
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Why Anonymize? 

 For Data Sharing 

– Give real(istic) data to others to study without compromising 
privacy of individuals in the data 

– Allows third-parties to try new analysis and mining techniques not 
thought of by the data owner 

 For Data Retention and Usage 

– Various requirements prevent companies from retaining 
customer information indefinitely  

– E.g. Google progressively anonymizes IP addresses in search logs 

– Internal sharing across departments (e.g. billing  marketing) 



Dimensions to consider 

 How much privacy do we need? 

 How much utility do we want from the anonymized data? 

 How will data be accessed: as data feed, as data set, via API?  

Who will use the data? 

1. Permanent employees 

    Temporary employees 
(students, contractors) 

2. External organizations 

     Data purchasers 

3. General Public 
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Models of Anonymization 

 Interactive Model (akin to statistical databases) 

– Data owner acts as “gatekeeper” to data 

– Researchers pose queries in some agreed language 

– Gatekeeper gives an (anonymized) answer, or refuses to answer 

 “Send me your code” model 

– Data owner executes code on their system and reports result 

– Cannot be sure that code is not malicious or steganographic 

 Offline, aka “publish and be damned” model 

– Data owner somehow anonymizes data set  

– Publishes the results to the world, and retires 

– The model used in most real data releases 
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Objectives for Anonymization 

 Prevent (high confidence) inference of associations 

– Prevent inference of salary for an individual in “census” 

– Prevent inference of individual’s viewing history in “video” 

– Prevent inference of individual’s search history in “search” 

– All aim to prevent linking sensitive information to an individual 

 Prevent inference of presence of an individual in the data set 

– Satisfying “presence” also satisfies “association” (not vice-versa) 

– Presence in a data set can violate privacy (eg STD clinic patients) 

 Have to consider what knowledge might be known to attacker 

– Background knowledge: facts about the data set (X has salary Y) 

– Domain knowledge: broad properties of data (illness Z rare in men) 
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Utility 

 Anonymization is meaningless if utility of data not considered 

– The empty data set has perfect privacy, but no utility 

– The original data has full utility, but no privacy 

 What is “utility”?  Depends what the application is… 

– For fixed query set, can look at maximum or average error 

– Problem for publishing: want to support unknown applications! 

– Need some way to quantify utility of alternate anonymizations 
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Measures of Utility 

 Define a surrogate measure and try to optimize 

– Often based on the “information loss” of the anonymization 

– Simple example: number of examples deleted from a data set 

 Give a guarantee for all queries in some fixed class 

– Hope the class is representative, so other uses have low distortion 

– Costly: some methods enumerate all queries, or all anonymizations 

 Empirical Evaluation 

– Perform experiments with a reasonable workload on the result 

– Compare to results on original data (e.g. Netflix prize problems) 

 Combinations of multiple methods 

– Optimize for some surrogate, but also evaluate on real queries 
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Definitions of Technical Terms 

 Identifiers–uniquely identify, e.g. Social Security Number (SSN) 

– Step 0: remove all identifiers 

– Was not enough for AOL search data 

 Quasi-Identifiers (QI)—such as DOB, Sex, ZIP Code 

– Enough to partially identify an individual in a dataset 

– DOB+Sex+ZIP unique for 87% of US Residents [Sweeney 02] 

 Sensitive attributes (SA)—the associations we want to hide 

– Salary in the “census” example is considered sensitive 

– Not always well-defined: only some “search” queries sensitive 

– In “video”, association between user and video is sensitive 

– One SA can reveal others: bonus may identify salary… 
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Summary of Anonymization Motivation 

 Anonymization needed for safe data sharing and retention 

– Many legal requirements apply 

 Various privacy definitions possible 

– Primarily, prevent inference of sensitive information 

– Under some assumptions of background knowledge 

 Utility of the anonymized data needs to be carefully studied 

– Different data types imply different classes of query 

 

 Main focus: the publishing model with consideration of utility 
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Case Study: US Census 

 Raw data: information about every US household 

– Who, where; age, gender, racial, income and educational data 

 Why released: determine representation, planning 

 How anonymized: aggregated to geographic areas (Zip code) 

– Broken down by various combinations of dimensions 

– Released in full after 72 years 

– Census 2020 will use differential privacy techniques 

 Attacks: no reports of successful deanonymization so far 

– Attempts by FBI to access raw data have been rebuffed 

 Consequences: greater understanding of US population 

– Affects representation, funding of civil projects 

– Rich source of data for future historians and genealogists 
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Case Study: Netflix Prize 

 Raw data: 100M dated ratings from 480K users to 18K movies 

 Why released: improve predicting ratings of unlabeled examples 

 How anonymized: exact details not described by Netflix 

– All direct customer information removed 

– Only subset of full data; dates modified; some ratings deleted,  

– Movie title and year published in full 

 Attacks: dataset was claimed vulnerable [Narayanan Shmatikov 08] 

– Attack links data to IMDB where same users also rated movies 

– Find matches based on similar ratings or dates in both 

 Consequences: rich source of user data for researchers 

– Unclear how serious the attacks are in practice 
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Case Study: AOL Search Data 

 Raw data: 20M search queries for 650K users from 2006 

 Why released: allow researchers to understand search patterns 

 How anonymized: user identifiers removed 

– All searches from same user linked by an arbitrary identifier 

 Attacks: many successful attacks identified individual users 

– Ego-surfers: people typed in their own names 

– Zip codes and town names identify an area 

– NY Times identified user 4417749 as 62yr old GA widow 

 Consequences: CTO resigned, two researchers fired 

– Well-intentioned effort failed due to inadequate anonymization 

 



Exercises 

 Think of a data set or data source that you are familiar with  

 Is some of the data (potentially) private?  Has the data 
already been anonymized in some way to protect privacy? 

 What are the privacy implications of the raw original data 
being revealed? What could be discovered? 

 In the data, which are the identifying attributes?  Which are 
the quasi-identifiers?  Which are the sensitive attributes? 

 If all sensitive information was erased, what analyses would 
no longer be possible? 
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Working Examples 

 Will study an example data set with few attributes  

 “Census” data recording incomes and demographics 

– Format: (SSN, DOB, Sex, Zip, Salary) 

 “Zip” = postal code, reveals approximate region 

– Similar to UCI adult.data set (can have other attributes) 

 

 Many other kinds of data are relevant to privacy 

– “Video” data recording movies viewed 

 Graph data—graph properties should be retained 

– “Search” data recording web searches 

 Set data—each user has different set of keywords 
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Tabular Data Example 

 Census data recording incomes and demographics 

 

 

 

 

 

 

 

 Releasing SSN  Salary association violates individual’s privacy 

– SSN is an identifier, Salary is a sensitive attribute (SA) 

SSN DOB Sex ZIP Salary 

11-1-111 1/21/76 M 53715 50,000 

22-2-222 4/13/86 F 53715 55,000 

33-3-333 2/28/76 M 53703 60,000 

44-4-444 1/21/76 M 53703 65,000 

55-5-555 4/13/86 F 53706 70,000 

66-6-666 2/28/76 F 53706 75,000 
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Tabular Data Example: De-Identification 

 Census data: remove SSN to create a de-identified table 

 

 

 

 

 

 

 

 Does the de-identified table preserve an individual’s privacy? 

– Depends on what other information an attacker knows 

DOB Sex ZIP Salary 

1/21/76 M 53715 50,000 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 65,000 

4/13/86 F 53706 70,000 

2/28/76 F 53706 75,000 
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Tabular Data Example: Linking Attack 

 De-identified private data + publicly available data 

 

 

 

 

 

 

 

 Cannot uniquely identify either individual’s salary 

– DOB is a quasi-identifier (QI) 

DOB Sex ZIP Salary 

1/21/76 M 53715 50,000 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 65,000 

4/13/86 F 53706 70,000 

2/28/76 F 53706 75,000 

SSN DOB 

11-1-111 1/21/76 

33-3-333 2/28/76 
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Tabular Data Example: Linking Attack 

 De-identified private data + publicly available data 

 

 

 

 

 

 

 

 Uniquely identified one individual’s salary, but not the other’s 

– DOB, Sex are quasi-identifiers (QI) 

DOB Sex ZIP Salary 

1/21/76 M 53715 50,000 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 65,000 

4/13/86 F 53706 70,000 

2/28/76 F 53706 75,000 

SSN DOB Sex 

11-1-111 1/21/76 M 

33-3-333 2/28/76 M 
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Tabular Data Example: Linking Attack 

 De-identified private data + publicly available data 

 

 

 

 

 

 

 

 Uniquely identified both individuals’ salaries 

– [DOB, Sex, ZIP] is unique for lots of US residents [Sweeney 02]  

DOB Sex ZIP Salary 

1/21/76 M 53715 50,000 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 65,000 

4/13/86 F 53706 70,000 

2/28/76 F 53706 75,000 

SSN DOB Sex ZIP 

11-1-111 1/21/76 M 53715 

33-3-333 2/28/76 M 53703 
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Tabular Data Example: Anonymization 

 Anonymization through tuple suppression 

 

 

 

 

 

 

 

 Cannot link to private table even with knowledge of QI values 

– Missing tuples could take any value from the space of all tuples 

– Introduces a lot of uncertainty 

DOB Sex ZIP Salary 

* * * * 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

* * * * 

4/13/86 F 53706 70,000 

2/28/76 F 53706 75,000 

SSN DOB Sex ZIP 

11-1-111 1/21/76 M 53715 
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Tabular Data Example: Anonymization 

 Anonymization through QI attribute generalization 

 

 

 

 

 

 

 

 Cannot uniquely identify tuple with knowledge of QI values 

– More precise form of uncertainty than tuple suppression 

– E.g., ZIP = 537** → ZIP  {53700, …, 53799} 

DOB Sex ZIP Salary 

1/21/76 M 537** 50,000 

4/13/86 F 537** 55,000 

2/28/76 * 537** 60,000 

1/21/76 M 537** 65,000 

4/13/86 F 537** 70,000 

2/28/76 * 537** 75,000 

SSN DOB Sex ZIP 

11-1-111 1/21/76 M 53715 

33-3-333 2/28/76 M 53703 
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Tabular Data Example: Anonymization 

 Anonymization through sensitive attribute (SA) permutation 

 

 

 

 

 

 

 

 Can uniquely identify tuple, but uncertainty about SA value 

– Much more precise form of uncertainty than generalization 

DOB Sex ZIP Salary 

1/21/76 M 53715 55,000 

4/13/86 F 53715 50,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 65,000 

4/13/86 F 53706 75,000 

2/28/76 F 53706 70,000 

SSN DOB Sex ZIP 

11-1-111 1/21/76 M 53715 

33-3-333 2/28/76 M 53703 
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Tabular Data Example: Anonymization 

 Anonymization through sensitive attribute (SA) perturbation 

 

 

 

 

 

 

 

 Can uniquely identify tuple, but get “noisy” SA value 

DOB Sex ZIP Salary 

1/21/76 M 53715 60,000 

4/13/86 F 53715 45,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 55,000 

4/13/86 F 53706 80,000 

2/28/76 F 53706 75,000 

SSN DOB Sex ZIP 

11-1-111 1/21/76 M 53715 

33-3-333 2/28/76 M 53703 
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k-Anonymization [Samarati, Sweeney 98] 

 k-anonymity: Table T satisfies k-anonymity wrt quasi-identifier QI 
iff each tuple in (the multiset) T[QI] appears at least k times 

– Protects against “linking attack” 

 k-anonymization: Table T’ is a k-anonymization of T if T’ is a 
generalization/suppression  of T, and T’ satisfies k-anonymity 

DOB Sex ZIP Salary 

1/21/76 M 53715 50,000 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 65,000 

4/13/86 F 53706 70,000 

2/28/76 F 53706 75,000 

DOB Sex ZIP Salary 

1/21/76 M 537** 50,000 

4/13/86 F 537** 55,000 

2/28/76 * 537** 60,000 

1/21/76 M 537** 65,000 

4/13/86 F 537** 70,000 

2/28/76 * 537** 75,000 

→ 
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k-Anonymization and Uncertainty 

 Intuition: A k-anonymized table T’ represents the set of all 
“possible world” tables Ti s.t. T’ is a k-anonymization of Ti 

– With no background knowledge, all possible worlds are equally 
plausible 

 

 Query Answering 

– Queries should (implicitly) range over all possible worlds 

– Example query: what is the salary of individual (1/21/76, M, 53715)? 
Best guess is 57,500 (weighted average of 50,000 and 65,000) 

– Example query: what is the maximum salary of males in 53706? 
Could be as small as 50,000, or as big as 75,000 
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Computing k-Anonymizations 

 Huge literature: variations depend on search space and algorithm 

– Generalization vs (tuple) suppression 

– Global (e.g., full-domain) vs local (e.g., multidimensional) recoding  

– Hierarchy-based vs partition-based (e.g., numerical attributes) 

 Algorithm Model Properties Complexity 

Samarati 01 G+TS, FD, HB One exact, binary search O(2|QI|) 

Sweeney 02 G+TS, FD, HB Exact, exhaustive O(2|QI|) 

Bayardo+ 05 G+TS, FD, PB Exact, top-down O(2|QI|) 

LeFevre+ 05 G+TS, FD, HB All exact, bottom-up cube O(2|QI|) 

Algorithm Model Properties Complexity 
Meyerson+ 04 S, L NP-hard, O(k log k) approximation O(n2k) 

Aggarwal+ 05a S, L O(k) approximation O(kn2) 

Aggarwal+ 05b G, L, HB O(k) approximation O(kn2) 

LeFevre+ 06 G, MD, PB Constant-factor approximation O(n log n) 
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Incognito [LeFevre+ 05] 

 Every full-domain generalization described by a “domain vector” 

– B0={1/21/76, 2/28/76, 4/13/86}  B1={76-86} 

– S0={M, F}    S1={*} 

– Z0={53715,53710,53706,53703} Z1={5371*,5370*} Z2={537**} 

DOB Sex ZIP Salary 

1/21/76 M 53715 50,000 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 65,000 

4/13/86 F 53706 70,000 

2/28/76 F 53706 75,000 

DOB Sex ZIP Salary 

1/21/76 * 537** 50,000 

4/13/86 * 537** 55,000 

2/28/76 * 537** 60,000 

1/21/76 * 537** 65,000 

4/13/86 * 537** 70,000 

2/28/76 * 537** 75,000 

→ 
B0, S1, Z2 
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Incognito [LeFevre+ 05] 

 Every full-domain generalization described by a “domain vector” 

– B0={1/21/76, 2/28/76, 4/13/86}  B1={76-86} 

– S0={M, F}    S1={*} 

– Z0={53715,53710,53706,53703} Z1={5371*,5370*} Z2={537**} 

DOB Sex ZIP Salary 

1/21/76 M 53715 50,000 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 65,000 

4/13/86 F 53706 70,000 

2/28/76 F 53706 75,000 

DOB Sex ZIP Salary 

1/21/76 * 537** 50,000 

4/13/86 * 537** 55,000 

2/28/76 * 537** 60,000 

1/21/76 * 537** 65,000 

4/13/86 * 537** 70,000 

2/28/76 * 537** 75,000 

→ 

DOB Sex ZIP Salary 

76-86 M 537** 50,000 

76-86 F 537** 55,000 

76-86 M 537** 60,000 

76-86 M 537** 65,000 

76-86 F 537** 70,000 

76-86 F 537** 75,000 

B1, S0, Z2 
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Incognito [LeFevre+ 05] 

 Lattice of domain vectors 

B0 

B1 

S0 

S1 

Z1 

Z2 

Z0 

S0,Z0 

S1,Z0 

S1,Z1 

S0,Z1 

S0,Z2 

S1,Z2 

B0,S0,Z0 

B0,S1,Z0 B0,S0,Z1 B1,S0,Z0 

B1,S0,Z2 B0,S1,Z2 B1,S1,Z1 

B1,S1,Z2 

B1,S1,Z0 B1,S0,Z1 B0,S1,Z1 B0,S0,Z2 
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Incognito [LeFevre+ 05] 

 Lattice of domain vectors 

B0 

B1 

S0 

S1 

Z1 

Z2 

Z0 

S0,Z0 

S1,Z0 

S1,Z1 

S0,Z1 

S0,Z2 

S1,Z2 

B0,S0,Z0 

B0,S1,Z0 B0,S0,Z1 B1,S0,Z0 

B1,S0,Z2 B0,S1,Z2 B1,S1,Z1 

B1,S1,Z2 

B1,S1,Z0 B1,S0,Z1 B0,S1,Z1 B0,S0,Z2 
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Incognito [LeFevre+ 05] 

 Subset Property: If table T is k-anonymous wrt attributes Q, then 
T is k-anonymous wrt any set of attributes that is a subset of Q 

 

 Generalization Property:  If table T2 is a generalization of table T1, 
and T1 is k-anonymous, then T2 is k-anonymous 

 

 Computes all “minimal” full-domain generalizations 

– Set of minimal full-domain generalizations forms an anti-chain 

– Can use any reasonable utility metric to choose “optimal” solution 
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Mondrian [LeFevre+ 06] 

 Computes one “good” multi-dimensional generalization 

– Uses local recoding to explore a larger search space 

– Treats all attributes as ordered, chooses partition boundaries 

 

 Utility metrics considered in the paper 

– Discernability: sum of squares of group sizes 

– Normalized average group size = (total tuples / total groups) / k 

 

 Efficient: greedy O(n log n) heuristic for NP-hard problem 

 

 Quality guarantee: solution is a constant-factor approximation 
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 Uses ideas from spatial kd-tree construction 

– QI tuples = points in a multi-dimensional space 

– Hyper-rectangles with ≥ k points = k-anonymous groups 

– Choose axis-parallel line to partition point-multiset at median 
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Mondrian [LeFevre+ 06] 

DOB Sex ZIP Salary 

1/21/76 M 53715 50,000 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 65,000 

4/13/86 F 53706 70,000 

2/28/76 F 53706 75,000 

DOB 

Sex DOB Sex ZIP Salary 

1/21/76 M 53715 50,000 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 65,000 

4/13/86 F 53706 70,000 

2/28/76 F 53706 75,000 
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 Uses ideas from spatial kd-tree construction 

– QI tuples = points in a multi-dimensional space 

– Hyper-rectangles with ≥ k points = k-anonymous groups 

– Choose axis-parallel line to partition point-multiset at median 
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Mondrian [LeFevre+ 06] 

DOB Sex ZIP Salary 

1/21/76 M 53715 50,000 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 65,000 

4/13/86 F 53706 70,000 

2/28/76 F 53706 75,000 

DOB 

Sex DOB Sex ZIP Salary 

1/21/76 M 53715 50,000 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 65,000 

4/13/86 F 53706 70,000 

2/28/76 F 53706 75,000 
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Homogeneity Attack [Machanavajjhala+ 06] 

 Issue: k-anonymity requires each tuple in (the multiset) T[QI] to 
appear ≥ k times, but does not say anything about the SA values 
– If (almost) all SA values in a QI group are equal, loss of privacy! 

– The problem is with the choice of grouping, not the data 

 

DOB Sex ZIP Salary 

1/21/76 M 53715 50,000 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 50,000 

4/13/86 F 53706 55,000 

2/28/76 F 53706 60,000 

DOB Sex ZIP Salary 

1/21/76 * 537** 50,000 

4/13/86 * 537** 55,000 

2/28/76 * 537** 60,000 

1/21/76 * 537** 50,000 

4/13/86 * 537** 55,000 

2/28/76 * 537** 60,000 

→ 
Not Ok! 
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Homogeneity Attack [Machanavajjhala+ 06] 

 Issue: k-anonymity requires each tuple in (the multiset) T[QI] to 
appear ≥ k times, but does not say anything about the SA values 
– If (almost) all SA values in a QI group are equal, loss of privacy! 

– The problem is with the choice of grouping, not the data 

– For some groupings, no loss of privacy 

 

DOB Sex ZIP Salary 

1/21/76 M 53715 50,000 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 50,000 

4/13/86 F 53706 55,000 

2/28/76 F 53706 60,000 

→ 

DOB Sex ZIP Salary 

76-86 * 53715 50,000 

76-86 * 53715 55,000 

76-86 * 53703 60,000 

76-86 * 53703 50,000 

76-86 * 53706 55,000 

76-86 * 53706 60,000 

Ok! 
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l-Diversity [Machanavajjhala+ 06] 

 l-Diversity Principle: a table is l-diverse if each of its QI groups 
contains at least l “well-represented” values for the SA 
 

 Different definitions of l-diversity based on formalizing the 
intuition of a “well-represented” value 

– Entropy l-diversity: for each QI group g, entropy(g) ≥ log(l) 

– Recursive (c,l)-diversity: for each QI group g with m SA values, and ri 
the i’th highest frequency, r1 < c (rl + rl+1 + … + rm) 

– Folk l-diversity: for each QI group g, no SA value should occur more 
than 1/l fraction of the time = Recursive(1/l, 1)-diversity 
 

 Intuition: Most frequent value does not appear too often 
compared to the less frequent values in a QI group 
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Computing l-Diversity [Machanavajjhala+ 06] 

 Key Observation: entropy l-diversity and recursive(c,l)-diversity 
possess the Subset Property and the Generalization Property 

 

 Algorithm Template: 

– Take an algorithm for k-anonymity and replace the k-anonymity test 
for a generalized table by the l-diversity test 

– Easy to check based on counts of SA values in QI groups 
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t-Closeness [Li+ 07] 

 Limitations of l-diversity 

– Similarity attack: SA values are distinct, but semantically similar 

 

 

 

 

 

 

 t-Closeness Principle: a table has t-closeness if in each of its QI 
groups, the distance between the distribution of  SA values in the 
group and in the whole table is no more than threshold t  

DOB Sex ZIP Salary 

1/21/76 * 537** 50,000 

4/13/86 * 537** 55,000 

2/28/76 * 537** 60,000 

1/21/76 * 537** 50,001 

4/13/86 * 537** 55,001 

2/28/76 * 537** 60,001 

SSN DOB Sex ZIP 

11-1-111 1/21/76 M 53715 



44 44 

Answering Queries on Generalized Tables 

 Observation: Generalization loses a lot of information, resulting 
in inaccurate aggregate analyses 

 

 How many people were born in 1976? 

– Bounds = [1,5],  selectivity estimate = 1, actual value = 4 

DOB Sex ZIP Salary 

1/21/76 M 53715 50,000 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 65,000 

4/13/86 F 53706 70,000 

2/28/76 F 53706 75,000 

DOB Sex ZIP Salary 

76-86 M 537** 50,000 

76-86 F 537** 55,000 

76-86 M 537** 60,000 

76-86 M 537** 65,000 

76-86 F 537** 70,000 

76-86 F 537** 75,000 

→ 
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Answering Queries on Generalized Tables 

 Observation: Generalization loses a lot of information, resulting 
in inaccurate aggregate analyses 

 

 What is the average salary of people born in 1976? 

– Bounds = [50K,75K], actual value = 62.5K 

DOB Sex ZIP Salary 

1/21/76 M 53715 50,000 

4/13/86 F 53715 55,000 

2/28/76 M 53703 60,000 

1/21/76 M 53703 65,000 

4/13/86 F 53706 70,000 

2/28/76 F 53706 75,000 

DOB Sex ZIP Salary 

76-86 M 537** 50,000 

76-86 F 537** 55,000 

76-86 M 537** 60,000 

76-86 M 537** 65,000 

76-86 F 537** 70,000 

76-86 F 537** 75,000 

→ 



Subsequent Attacks and Developments 

 Minimality Attack [Wong+ 07]: 

– Uses knowledge of anonymization algorithm to argue some 
possible worlds are not consistent with output 

 

 deFinetti Attack [Kifer 09]: 

– Uses knowledge from anonymized data to argue some 
associations are more likely than others 

 

 Further development: 

– Due to such attacks, work on “syntactic methods” has slowed 

– Few if any significant deployments have been reported 

– Continued interest in areas such as graph data anonymization 
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More to life than tables… 
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Recommendation Data 
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Social Networks 

49 

Plot from Mark Newman, based on data in  
"The structure of adolescent romantic and sexual networks", American 
Journal of Sociology 110, 44-91 (2004) . 
Males are red, females are blue 



Location and Trajectory Data 
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Web Search Logs 
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Differential Privacy: a new hope 

 Principle: released info reveals little about any individual 

– Even if adversary knows (almost) everything about everyone else! 

 Thus, individuals should be secure about contributing their data 

– What is learnt about them is about the same either way 

 Much work on providing differential privacy (DP) 

– Simple recipe for some data types e.g. numeric answers 

– Simple rules allow us to reason about composition of results 

– More complex algorithms for arbitrary data (many DP mechanisms) 

 Adopted and used by several organizations: 

– US Census, Common Data Project, Facebook (?), Google, Apple… 



Differential Privacy Definition 

The output distribution of a differentially private algorithm 
changes very little whether or not any individual’s data is 
included in the input (so it’s OK to contribute your data) 

A randomized algorithm K satisfies ε-differential privacy if: 
Given any pair of neighboring data sets,  
D and D’, and S in Range(K): 
 
 Pr[K(D) = S]  ≤  eε Pr[K(D’) = S]  
 

Neighboring datasets differ in one individual: we say |D–D’|=1 



Achieving Differential Privacy 

 Suppose we want to output the number of left-handed 
people in our data set 

– Can reduce the description of the data to just the answer, n 

– Want a randomized algorithm K(n) that will output an integer 

– Consider the distribution Pr[K(n) = m] for different m 

 Write exp() = , and Pr[K(n) = n] = pn. Then: 
Pr[K(n) = n-1]   Pr[K(n-1)=n-1] =  pn-1 

 Pr[K(n) = n-2]   Pr[K(n-1) = n-2]  2 Pr[K(n-2)=n-2] = 2 pn-2 

 Pr[K(n) = n-i]  i pn-i 

 Similarly, Pr[K(n) = n+i]  i pn+i 
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Achieving Differential Privacy 

 We have Pr[K(n) = n-i]  i pn-i and Pr[K(n) = n+i]  i pn+i 

 Within these constraints, we want to maximize pn  

– This maximizes the probability of returning “correct” answer 

– Means we turn the inequalities into equalities 

 For simplicity, set pn = p for all n  

– Means the distribution of “shifts” is the same whatever n is 

 Yields: Pr[K(n) = n-i] = i p and Pr[K(n) = n+i] = i p 

– Sum over all shifts i:  
 p + i=1

  2i p = 1 
 p + 2p /(1-)  = 1 
 p(1 -  + 2)/(1-) = 1 
 p = (1-)/(1+) 
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Geometric Mechanism 

 What does this mean? 

– For input n, output distribution is Pr[K(n) = m]= |m-n| . (1-)/(1+) 

 What does this look like? 

 

 

– Symmetric geometric distribution, centered around n 

– We draw from this distribution centered around zero, and add to 
the true answer 

– We get the “true answer plus (symmetric geometric) noise” 

 A first differentially private mechanism for outputting a count 

– We call this “the geometric mechanism” 
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Truncated Geometric Mechanism 

 Some practical concerns:  

– This mechanism could output any value, from - to + 

 Solution: we can “truncate” the output of the mechanism 

– E.g. decide we will never output any value below zero, or above N 

– Any value drawn below zero is “rounded up” to zero 

– Any value drawn above N is “rounded down” to N 

– This does not affect the differential privacy properties 

– Can directly compute the closed-form probability of these outcomes  

 (Truncated) geometric mechanism is unique, optimal mechanism  

– Properties proved in [Ghosh Roughgarden Sundarajaran 08] 
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Laplace Mechanism 

 Sometimes we want to output real values instead of integers 

 The Laplace Mechanism naturally generalizes Geometric 

 

 

– Add noise from a symmetric continuous distribution to true answer 

– Laplace distribution is a symmetric exponential distribution 

– Is DP for same reason as geometric: shifting the distribution 
changes the probability by at most a constant factor 

– PDF: Pr[X = x] = 1/2 exp(-|x|/) 
Variance = 22 
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Sensitivity of Numeric Functions 

 For more complex functions, we need to calibrate the noise 
to the influence an individual can have on the output 

– The (global) sensitivity of a function F is the maximum 
(absolute) change over all possible adjacent inputs 

– S(F) = maxD, D’ : |D-D’|=1  ‖F(D) – F(D’)‖1 

– Intuition: S(F) characterizes the scale of the influence of one 
individual, and hence how much noise we must add 

 S(F) is small for many common functions 

– S(F) = 1 for COUNT 

– S(F) = 2 for HISTOGRAM 

– Bounded for other functions (MEAN, covariance matrix…) 
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Laplace Mechanism with Sensitivity 

 Release F(x) + Lap(S(F)/) to obtain -DP guarantee 

– F(x) = true answer on input x 

– Lap() = noise sampled from Laplace dbn with parameter  

– Exercise: show this meets -differential privacy requirement 

 Intuition on impact of parameters of differential privacy (DP): 

– Larger S(F), more noise (need more noise to mask an individual) 

– Smaller , more noise (more noise increases privacy) 

– Expected magnitude of |Lap()| is (approx)  
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Sequential Composition 

 What happens if we ask multiple questions about same data? 

– We reveal more, so the bound on  differential privacy weakens 

 Suppose we output via K1 and K2 with 1, 2 differential privacy: 
 For any neighbouring D, D’, we have 

 Pr[ K1(D) = S1 ]  exp(1) Pr[K1(D’) = S1], and 

 Pr[ K2(D) = S2 ]  exp(2) Pr[K2(D’) = S2] 

 Pr[ (K1(D) = S1), (K2(D) = S2)] = Pr[K1(D)=S1] Pr[K2(D) = S2] 
    exp(1) Pr[K1(D’) = S1] exp(2) Pr[K2(D’) = S2]  
   = exp(1 + 2) Pr[(K1(D’) = S1), (K2(D’) = S2)] 

– Use the fact that the noise distributions are independent 

 Bottom line: result is 1 + 2 differentially private 

– Can reason about sequential composition by just “adding the ’s” 
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Parallel Composition 

 Sequential composition is pessimistic 

– Assumes outputs are correlated, so privacy budget is diminished 

 If the inputs are disjoint, then result is max(1, 2) private 

 Example:  

– Ask for count of people broken down by handedness, hair color 

 

 

 

 

– Each cell is a disjoint set of individuals 

– So can release each cell with -differential privacy (parallel 
composition) instead of 6 DP (sequential composition) 
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Redhead Blond Brunette 

Left-handed 23 35 56 

Right-handed 215 360 493 



Exponential Mechanism 

 What happens when we want to output non-numeric values? 

 Exponential mechanism is most general approach  

– Captures all possible DP mechanisms 

– But ranges over all possible outputs, may not be efficient 

 Requirements: 

– Input value x 

– Set of possible outputs O 

– Quality function, q, assigns “score” to possible outputs o  O 

 q(x, o) is bigger the “better” o is for x 

– Sensitivity of q = S(q) = maxx,x’,o |q(x,o) – q(x’,o)| 
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Exponential Mechanism 

 Sample output o  O with probability 
 Pr[K(x) = o] = exp( q(x,o)) / (o’O exp(q(x,o’))) 

 Result is (2 S(q))-DP 

– Shown by considering change in numerator and denominator 
under change of x is at most a factor of exp( S(q)) 

 Scalability: need to be able to draw from this distribution 

 Generalizations: 

– O can be continuous,  becomes an integral 

– Can apply a prior distribution over outputs as P(o) 

 We assume a uniform prior for simplicity 
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Exponential Mechanism Example 1: Count 

 Suppose input is a count n, we want to output (noisy) n 

– Outputs O = all integers 

– q(n,o) = -|o-n| 

– S(q) = 1 

– Then Pr[ K(n) = o] = exp(- |o-n|)/(o -|o-n|) = -|o-n|  (1-)/(1-) 

– Simplifies to the Geometric mechanism! 

 Similarly, if O = all reals, applying exponential mechanism results 
in the Laplace Mechanism 

 Illustrates the claim that Exponential Mechanism captures all 
possible DP mechanisms 
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Exponential Mechanism, Example 2: Median 

 Let M(X) = median of set of values in range [0,T] (e.g. median age) 

 Try Laplace Mechanism: S(M) = T 

– There can be datasets X, X’ where M(X) = 0, M(X’) = T, |X-X’|=1 

– Consider X = [0n, 0, Tn], X’ = [0n, T, Tn] 

– Noise from Laplace mechanism outweighs the true answer! 

 Exponential Mechanism: set q(X,o) = -| rankX(o) - |X|/2| 

– Define rankX(o) as the number of elements in X dominated by o 

– Note, rankX(M(X)) = |X|/2 : median has rank half 

– S(q) = 1: adding or removing an individual changes q by at most 1 

– Then Pr[ K(X) = o] = exp( q(X,o))/(o’  O exp( q(X,o’))) 

– Problem: Output set O could be very large, how to make efficient? 
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Exponential Mechanism, Example 2: Median 

 Observation: for many values of o, q(X, o) is the same: 

– Index X in sorted order so x1  x2  x3  …  xn 

– Then for any xi  o < o’  xi+1, rankX(o) = rankX(o’) 

– Hence q(X,o) = q(X,o’) 

 Break possible outputs into ranges: 

– O0 = [0,x1] O1 = [x1, x2] … On = [xn, T] 

– Pick range Oj with probability proportional to |Oj|exp(q(X,Oj)) 

– Pick output o  Oj uniformly from the range 

– Time cost is proportional to number of ranges n (after sorting X) 

 Similar tricks make exponential mechanism practical elsewhere 
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Recap 

 Have developed a number of building blocks for DP: 

– Geometric and Laplace mechanism for numeric functions 

– Exponential mechanism for sampling from arbitrary sets 

 And “cement” to glue things together: 

– Parallel and sequential composition theorems 

 With these blocks and cement, can build a lot 

– Many papers arrive from careful combination of these tools! 

 Useful fact: any post-processing of DP output remains DP 

– (so long as you don’t access the original data again) 

– Helps reason about privacy of data release processes 
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Case Study: Sparse Spatial Data 

 Consider location data of many individuals 

– Some dense areas (towns and cities), some sparse (rural) 

 Applying DP naively simply generates noise 

– lay down a fine grid, signal overwhelmed by noise 

 Instead: compact regions with sufficient number of points 
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Private Spatial decompositions 

 

 

 

 

 

 

 

 Build: adapt existing methods to have differential privacy 

 Release: a private description of data distribution  
(in the form of bounding boxes and noisy counts) 

quadtree kd-tree 
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Building a Private kd-tree 

 Process to build a private kd-tree 

 Input: maximum height h, minimum leaf size L, data set 

 Choose dimension to split 

 Get (private) median in this dimension 

 Create child nodes and add noise to the counts 

 Recurse until we hit some stopping condition, e.g.: 

 Max height is reached 

 (Noisy) count of this node less than L 

 Budget along the root-leaf path has used up 

 The entire PSD satisfies DP by the composition property 
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Building PSDs – privacy budget allocation 

 Data owner specifies a total budget  reflecting the level of 
anonymization desired 

 Budget is split between medians and counts 

– Tradeoff accuracy of division with accuracy of counts 

 Budget is split across levels of the tree 

– Privacy budget used along any root-leaf path should total  

 
 Sequential 

composition 

Parallel composition 
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Privacy budget allocation 

 How to set an i for each level? 

– Compute the number of nodes touched by a ‘typical’ query 

– Minimize variance of such queries 

– Optimization: min i  2
h-i / i

2 s.t. i i =  

– Solved by i  (2(h-i))1/3 : more to leaves 

– Total error (variance) goes as 2h/2 

 Tradeoff between noise error and spatial uncertainty 

– Reducing h drops the noise error 

– But lower h increases the size of leaves, more uncertainty 
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Post-processing of noisy counts 

 Can do additional post-processing of the noisy counts 

– To improve query accuracy and achieve consistency 

 Intuition: we have count estimate for a node and for its children 

– Combine these independent estimates to get better accuracy 

– Make consistent with some true set of leaf counts 

 Formulate as a linear system in n unknowns [Hay et al 10] 

– Avoid explicitly solving the system 

– Expresses optimal estimate for node v in terms of estimates of 
ancestors and noisy counts in subtree of v 

– Use the tree-structure to solve in three passes over the tree 

– Linear time to find optimal, consistent estimates 
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Data Transformations 

 Can think of trees as a ‘data-dependent’ transform of input 

 Can apply other data transformations 

 General idea: 

– Apply transform of data 

– Add noise in the transformed space (based on sensitivity) 

– Publish noisy coefficients, or invert transform (post-processing) 

 Goal: pick a transform that preserves good properties of data 

– And which has low sensitivity, so noise does not corrupt 
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Original 
Data 

Transform 
Coefficients 

Noisy 
Coefficients 

Noise Private 
Data 

Invert 



Wavelet Transform 

 Haar wavelet transform commonly used to approximate data 

– Any 1D range is expressed using 2log n coefficients 

– Each input point affects log n coefficients 

– Is a linear, orthonormal transform 

 Can add noise to wavelet coefficients 

– Treat input as a 1D histogram of counts  

– Bounded sensitivity: each individual affects coefficients by O(1) 

– Can transform noisy coefficients back to get noisy histogram 

 Range queries are answered well in this model 

– Each range query picks up noise (variance) O(log3 n / 2) 

– Directly adding noise to input would give noise O(n /  2) 
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Other Transforms 

Many other transforms can be applied within DP 

 (Discrete) Fourier Transform: also bounded sensitivity 

– Often need only a fixed set of coefficients: further reduces S(F) 

– Used for representing data cube counts, time series 

 Hierarchical Transforms: binary trees and quadtrees 

 Randomized Transforms: sketches and compressed sensing 
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Local Sensitivity 

 A common fallacy: using local sensitivity instead of global 

– Global sensitivity S(F) = maxx,x’ : |x-x’|=1 ‖F(x)-F(x’)‖1 

– Local sensitivity S(F,x) = maxx’ : |x-x’|=1 ‖F(x)-F(x’) ‖1 

– These can be very different: local can be much smaller than global 

– It is tempting (but incorrect) to calibrate noise to local sensitivity 

 Bad case for local sensitivity: Median 

– Consider X = [0n, 0, 0, Tn-1], X’ = [0n, 0, Tn], X’’ = [0n, T, Tn] 

– S(F,X) = 0 while S(F, X’) = T 

– Scale of the noise will reveal exactly which case we are in 

 Still, there has to be something better than always using global? 

– Such bad cases seem artificial, rare  
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Smooth Sensitivity 

 Previous case was bad because local sensitivity was low, but 
“close” to a case where local sensitivity was high 

 “Smooth sensitivity” combines sensitivity from all 
neighborhoods (based on parameter ) 

– SS(F,x) = maxoO LS(F,o) exp(- |o – x|) 

– Contribution of output o is decayed exponentially based on 
distance of o from x, |o – x| 

– Can add Laplace noise scaled by SS(F,x) to obtain (variant of) DP 

82 



Smooth Sensitivity: Example 

 Consider the median function M over n items again 

– Compute the maximum change in the median for each distance d 

– LS measures when median changes from xi to xi+1 

 So LS at distance d is at most max0 jd (xn/2+j – xn/2+j-d-1) 

– Largest gap that can be created by inserting/deleting at most d 
items 

 Gives SS(M,x) = max0 d  n exp(-d) max0j d (xn/2+j - xn/2+j-d-1) 

– Can compute in time O(n2)   

– Empirically, exponential mechanism seems preferable 

– No generic process for computing smooth sensitivity 
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Sample-and-aggregate 

 Sample-and-aggregate gives a useful template 

– Intuition: sampling is almost DP - can’t be sure who is included 

– Break input into moderate number of blocks, m 

– Compute desired function on each block 

– Snap to some range [min, max] and aggregate (e.g. mean) 

– Add Laplace noise scaled by sensitivity (max-min) 
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Data 

Block1 Block2 Block3 Blockm … 

f1 f2 f3 fm … 

(Winsorized) 
Mean 

Noisy 
mean 



Sparse Data 

 Suppose we have many (overlapping) queries, most of which 
have a small answer, but we don’t know which 

– We are only interesting in large answers (e.g. frequent itemsets) 

– Two problems: time efficiency, and “privacy efficiency” 

 Time efficiency: 

– Don’t want to add noise to every single zero-valued query 

– Assume we can materialize all non-zero query answers 

– Count how many are zero 

– Compute probability of noise pushing a zero-query past threshold 

– Sample from Binomial distribution how many to “upgrade” 

– Sample noisy value conditioned on passing threshold 
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Sparse Data – Privacy Efficiency 

 Only want to pay for c queries with that exceed threshold T 

– Assume all queries have sensitivity S 

 Compute noisy threshold T’ = T + Lap(2S/)  

 For each query, add noise Lap(2Sc/), only output if above T’ 

 Result is -DP 

– For “suppressed” answers, probability of seeing same output is 
about the same as if T’ was a little higher on neighboring input 

– For released answers, DP follows from Laplace mechanism 

 Result is reasonably accurate: with high probability, 

– All suppressed answers are smaller than T +  

– All released answers have error at most  

for parameter (c,1/, S), and at most c query answers > T -  
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Sparse Vector Technique 

 Sparse Vector Technique allows us to save on privacy budget 

– When asking multiple questions, most of which are negative 

 Setting: private input vector D, threshold T, budget ε, limit c 

– List of queries Qi whether Qi(D) > T?  Sensitivity of all queries < Δ 

 Initialize: count = 0, ρ = Lap(2 Δ/ε) 

 For each query i 

– Local noise νi = Lap(4c Δ /ε) 

– If Qi(D) + νi ≥ T + ρ then  

 output “over threshold”, increment count, abort if count ≥ c 

– Else, output “under threshold” 
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Sparse Vector Technique 

 Optimization: can choose how to split budget between local 
noise νi and global noise ρ 

– Give more to νi, because of the factor of c 

 Can easily have a different threshold for each query 

 Caution needed:  
multiple incorrect versions of SVT have been published! 

– They neglected to use cutoff limit c, or applied noise incorrectly 

 If we know all Qi in advance, can use EM to sample from them 

– Empirically, more accurate than SVT in practice! 
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Multiplicative weights [Hardt et al 12] 

 The idea of “multiplicative weights” widely used in optimization 

– Up-weight ‘good’ answers, down-weight ‘poor’ answers 

– Applied to output of DP mechanism 

 Set-up:  

– (Private) input, represented as vector D with n entries 

– Q, set of queries over x (matrix) 

– T, bound on number of iterations 

– Output: -DP vector A so that Q(A)  Q(D) 
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Multiplicative Weights Algorithm 

 Initialize vector A0 to assign uniform weight for each value 

 For i=1 to T: 

– Exponential Mechanism (/2T) to sample j prop. to |Qj(Ai) – Qj(D)| 

 Try to find query with large error 

– Laplace Mechanism to estimate  = (Qj(A) – Qj(D)) + Lap(2T/) 

 Error in the selected query 

– Set Ai = Ai-1 . exp( Qj(D)/2n), normalize so that Ai is a distribution 

 (Noisily) reward good answers, penalize poor answers 

 Output A = averagei nAi  — or just output An 

– Privacy follows via sequential composition of EM and LM steps 

– Accuracy (should) improve in each iteration, up to log iterations 
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Differential privacy for data release 

 Differential privacy is an attractive model for data release 

– Achieve a fairly robust statistical guarantee over outputs 

 Problem: how to apply to data release where f(x) = x?  

– Trying to use global sensitivity does not work well 

 General recipe: find a model for the data (e.g. PSDs) 

– Choose and release the model parameters under DP 

 A new tradeoff in picking suitable models 

– Must be robust to privacy noise, as well as fit the data 

– Each parameter should depend only weakly on any input item 

– Need different models for different types of data 

 Next 3 (biased) examples of recent work following this outline 
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age 

Example 1: PrivBayes [Zhang et al. 14] 

 Directly materializing tabular data: low signal, high noise 

 Use a Bayesian network to approximate the full-dimensional 
distribution by lower-dimensional ones: 

 age workclass 

education title 

income 

low-dimensional distributions: high signal-to-noise 
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 STEP 1: Choose a suitable Bayesian Network BN 

       - in a differentially private way 
       - sample (via exponential mechanism) edges in the network 

       - design surrogate quality function with low sensitivity 

 STEP 2: Compute distributions implied by edges of BN 

       - straightforward to do under differential privacy (Laplace) 

 STEP 3: Generate synthetic data by sampling from the BN 

        - post-processing: no privacy issues 

 Evaluate utility of synthetic data for variety of different tasks 
 - performs well for multiple tasks (classification, regression) 

PrivBayes (SIGMOD14) 
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Example 2: Graph Data 

 Releasing graph structured data remains a big challenge 

– Each individual (node) can have a big impact on graph structure 

 Most current work focuses on releasing graph statistics 

– Counts of small subgraphs like stars, triangles, cliques etc. 

– These counts are parameters for graph models 

– Sensitivity of these counts is large: one edge can change a lot 
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Attributed Graph Data [Jorgensen et al. 16] 

 Real graphs (e.g. social networks) have attributes 

– Different types of node, different types of edge 

 Define graph models that have attribute distributions 

– Capture real graph structure e.g. number of triangles 

 Learn parameters from input graphs (under differential privacy) 

 Sample “realistic” graphs from the learned model 
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Example 3: Trajectory Data 

 More and more location and mobility data available 

– From GPS enabled devices, approximate location from wifi/phone 

 Location and movements are very sensitive! 

 Location and movements are very identifying! 

– Easy to identify ‘work’ and ‘home’ locations from traces 

– 4 random points identify 95% of individuals [Montjoye et al 2013] 

 Aim for Differentially Private Trajectories [He et al.  15] 

– Find a model that works for trajectory data 

– Based on Markov models at multiple resolutions 
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Other topics 

 Huge amount of work in DP across theory, security, DB… 

 Many topics not touched on in this tutorial: 

– Connections to game theory and auction design 

– Mining primitives: regression, clustering, frequent itemsets 

– Efforts in programming languages and systems to support DP 

– Variant definitions: (, )-DP, other privacy/adversary models 

– Lower bounds for privacy (what is not possible) 

– Applications to graph data (social networks), mobility data etc. 

– Applications to machine learning: classifiers that don’t leak 

– Privacy over data streams: pan-privacy and continual observation 
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State of Anonymization 

 Data privacy and anonymization is a subject of ongoing 
research today 

 Many unresolved challenges: 

– How can a social network release a substantial data set without 
revealing private connections between users? 

– How can a video website release information on viewing 
patterns without disclosing who watched what? 

– How can a search engine release information on search queries 
without revealing who searched for what? 

– How to release private information efficiently over large scale 
data? 



Concluding Remarks 

 Differential privacy can be applied effectively for data release 

 Care is still needed to ensure that release is allowable 

– Can’t just apply DP and forget it: must analyze whether data 
release provides sufficient privacy for data subjects 

 Many open problems remain: 

– Transition these techniques to tools for data release 

– Want data in same form as input: private synthetic data? 

– Allow joining anonymized data sets accurately 

– Obtain alternate (workable) privacy definitions 
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