Differentially Private Mechanisms for Data Release

Graham Cormode
g.cormode@warwick.ac.uk

Joint work with
Magda Procopiuc (AT&T)
Divesh Srivastava (AT&T)
Entong Shen (NCSU)
Ting Yu (NCSU)
Xiaokui Xiao (NTU)
Jun Zhang (NTU)
The anonymization scenario
Data-driven privacy

- Much interest in private data release
 - Practical: release of AOL, Netflix data etc.
 - Research: hundreds of papers

- In practice, many data-driven concerns arise:
 - Efficiency / practicality of algorithms as data scales
 - How to interpret privacy guarantees
 - Handling of common data features, e.g. sparsity
 - Ability to optimize for known query workload
 - Usability of output for general processing

- This talk: outline some efforts to address these issues
Differential Privacy [Dwork 06]

- **Principle**: released info reveals little about any individual
 - Even if adversary knows (almost) everything about everyone else!
- Thus, individuals should be secure about contributing their data
 - What is learnt about them is about the same either way
- Much work on providing differential privacy
 - Simple recipe for some data types e.g. numeric answers
 - Simple rules allow us to reason about composition of results
 - More complex for arbitrary data (exponential mechanism)
- Adopted and used by several organizations:
 - US Census, Common Data Project, Facebook (?)
Differential Privacy

The output distribution of a differentially private algorithm changes very little whether or not any individual’s data is included in the input – so you should contribute your data.

A randomized algorithm K satisfies ε-differential privacy if:
Given any pair of neighboring data sets, D_1 and D_2, and S in $\text{Range}(K)$:

$$\Pr[K(D_1) = S] \leq e^\varepsilon \Pr[K(D_2) = S]$$
Achieving ε-Differential Privacy

(Global) Sensitivity of publishing:
\[s = \max_{x,x'} |F(x) - F(x')|, \quad x, x' \text{ differ by 1 individual} \]

E.g., count individuals satisfying property P: one individual changing info affects answer by at most 1; hence $s = 1$

For every value that is output:
- Add Laplacian noise, $\text{Lap}(\varepsilon/s)$:
- Or Geometric noise for discrete case:

Simple rules for composition of differentially private outputs:
Given output O_1 that is ε_1 private and O_2 that is ε_2 private
- (Sequential composition) If inputs overlap, result is $\varepsilon_1 + \varepsilon_2$ private
- (Parallel composition) If inputs disjoint, result is $\max(\varepsilon_1, \varepsilon_2)$ private
Exponential Mechanism [MT07]

Given function F: Datasets \rightarrow Outputs

Define $score(D, O) \in \mathbb{R}$

How good O is as an answer to $F(D)$

Exponential Mechanism: Return O with probability

$$Pr[O] \propto \exp\left(\frac{\varepsilon}{2\Delta} score(D, O)\right)$$

where $\Delta = \max |score(D, O) - score(D', O)|$, taken over outputs O, neighbouring datasets D, D'
Consider location data of many individuals
- Some dense areas (towns and cities), some sparse (rural)

Applying DP naively simply generates noise
- Lay down a fine grid, signal overwhelmed by noise

Instead: compact regions with sufficient number of points
Private Spatial decompositions

- **Build**: adapt existing methods to have differential privacy
- **Release**: a private description of data distribution (in the form of bounding boxes and noisy counts)
Building a Private kd-tree

- Process to build a private kd-tree
 - **Input:** maximum height h, minimum leaf size L, data set
 - Choose dimension to split
 - Get (private) median in this dimension
 - Create child nodes and add noise to the counts
 - Recurse until:
 - Max height is reached
 - Noisy count of this node less than L
 - Budget along the root-leaf path has used up
- The entire PSD satisfies DP by the composition property
Building PSDs – privacy budget allocation

- Data owner specifies a total budget reflecting the level of anonymization desired
- Budget is split between medians and counts
 - Tradeoff accuracy of division with accuracy of counts
- Budget is split across levels of the tree
 - Privacy budget used along any root-leaf path should total ε

Sequential composition

Parallel composition
Privacy budget allocation

- How to set an ε_i for each level?
 - Compute the number of nodes touched by a ‘typical’ query
 - Minimize variance of such queries
 - **Optimization**: $\min \sum_i 2^{h-i}/\varepsilon_i^2$ s.t. $\sum_i \varepsilon_i = \varepsilon$
 - Solved by $\varepsilon_i \propto (2^{(h-i)})^{1/3}\varepsilon$: more to leaves
 - Total error (variance) goes as $2^h/\varepsilon^2$

- Tradeoff between noise error and spatial uncertainty
 - Reducing h drops the noise error
 - But lower h increases the size of leaves, more uncertainty
Post-processing of noisy counts

♦ Can do additional post-processing of the noisy counts
 – To improve query accuracy and achieve consistency
♦ Intuition: we have count estimate for a node and for its children
 – Combine these independent estimates to get better accuracy
 – Make consistent with some true set of leaf counts
♦ Formulate as a linear system in n unknowns
 – Avoid explicitly solving the system
 – Expresses optimal estimate for node v in terms of estimates of ancestors and noisy counts in subtree of v
 – Use the tree-structure to solve in three passes over the tree
 – Linear time to find optimal, consistent estimates
Experimental study

- 1.63 million coordinates from US TIGER/Line dataset
 - Road intersections of US States
- Queries of different shapes, e.g. square, skinny
- Measured median relative error of 600 queries for each shape
Experimental study

- Effectiveness of geometric budget and post-processing

 - Relative error reduced by up to an order of magnitude
 - Most effective when limited privacy budget
PrivBayes [SIGMOD14]

- Directly materializing a full distribution: low signal, high noise
- Use a Bayesian network to approximate the full-dimensional distribution by lower-dimensional ones:

\[
\Pr[H] \approx \Pr[\text{age}] \cdot \Pr[\text{education}|\text{age}] \cdot \Pr[\text{workclass}|\text{age}] \cdot \\
\Pr[\text{title}|\text{age}, \text{education}, \text{workclass}] \cdot \Pr[\text{income}|\text{workclass}, \text{title}] \cdot \\
\Pr[\text{marital status}|\text{age}, \text{income}] \cdots
\]

low-dimensional distributions: high signal-to-noise
PrivBayes (SIGMOD14)

♦ **STEP 1:** Choose a suitable Bayesian Network BN
 - in a differentially private way
♦ **STEP 2:** Compute distributions implied by edges of BN
 - straightforward to do under differential privacy (Laplace)
♦ **STEP 3:** Generate synthetic data by sampling from the BN
 - post-processing: no privacy issues
♦ Evaluate utility of synthetic data for variety of different tasks
STEP 1: 1-degree BN [Chow-Liu’68]

- Optimal 1-degree BN maximizes $\sum_{(A_i, A_j)} MI(A_i, A_j)$ (MI: mutual information)

- Follows Prim’s MST algorithm:
 - Pick arbitrary starting point $S = \{A_1\}$
 - For $i = 1 \ldots d-1$:
 - Pick $e_i = (A_i, A_{i+1})$ to maximize $MI(e_i)$ where $A_i \in S$ and $A_{i+1} \notin S$
 - Add e_i to BN, $S \leftarrow S \cup \{A_{i+1}\}$

- Use exponential mechanism to pick edge with high mutual information at each step

- For higher-degree BNs, pick a k’th order distribution at each step
 - Pick a set of parents A_i for A_{i+1} with high mutual information

- Problem solved?
Choosing an edge in BN

First attempt: define \(\text{score}(\text{edge}) = \text{MI}(\text{edge})\)

- We prove \(\Delta(\text{MI}) = \Theta(\log n / n)\), where \(n = |D|\), size of the data
- Applying exponential mechanism, the MST algorithm chooses \(e_i = (A_i \in S, A_{i+1} \not\in S)\) with probability

\[
\Pr[e_i] \propto \exp \left(\frac{\varepsilon n}{2} \frac{\text{MI}(e_i)}{\log n} \right)
\]

- Problem: sensitivity \(\Delta(\text{MI})\) can be large compared to MI
 - Gives high chance of sampling an edge with low information
 - Can we find a better quality function for exponential mechanism?
Defining a new score function

GOAL: \(Pr[e_i] \propto \exp \left(\frac{\varepsilon n}{2} \text{score}(e_i) \right) \)

and large scores should correspond to large MI’s.

IDEA: define \textit{score} to agree with MI at maximum values and interpolate linearly in-between.

We define: \(\text{score}(e_i) = -\frac{1}{2} \min_{\Pi: \text{optimal}} \|e_i - \Pi\|_1 \)

\(\Delta(\text{score}) = 1/n \) by triangle inequality
Optimal Distributions

1. Uniform marginal:
 \[\sum \text{(Green)} = \frac{1}{|A_{i+1}|} \text{ in each row} \]

2. Sparse: At most one \text{(Green)} per column

Can prove that necessary conditions for optimality are:

- Infinitely many such distributions!
Optimal Distributions

However, can show that

- size of the \(A_i \) does not matter;
- only their position matters

But still (doubly) exponentially many possibilities...

Define \(\text{score}(e_i) \) by discrete optimization over layouts

- **General case**: solved by Integer Program
- **When** \(|A_{i+1}| = 2\): can solve by Dynamic Program
Naïve Bayes Summary

- To choose next distribution to materialize:
 - For each possible next child A_{i+1}
 - Find optimal distribution via discrete optimization (DP or IP)
 - Find score as L1 distance of $\Pr[A_{i+1}, A_i]$ from optimal
 - Use exponential mechanism to pick next based on score

- Can pick the degree of the Bayesian network based on estimated noise (independent of data)

- Generate data from the released (private) Bayesian network
 - Plug into any desired application, e.g. classification, regression
Experiments: Counting Queries

PrivBayes Laplace Fourier Histogram

Adult dataset

Query load = Compute all 3-way marginals

NLTCS dataset
Experiments: Classification

- PrivBayes
- PrivateERM (4)
- PrivateERM (1)
- NoPrivacy
- PrivGene
- Majority

Y = education: post-secondary degree?
Y = marital status: never married?

Adult dataset, build 4 classifiers
Concluding Remarks

- Differential privacy can be applied effectively for data release
- **Solutions**: classical techniques (e.g., sampling, kd-tree, BN) adapted to provide differentially privacy
 - With a different trade off: minimize the **privacy cost**
- Many open problems remain:
 - **Transition** these techniques to tools for data release
 - Extend to other forms of data: mobility data, graph data
 - Allow **joining** anonymized data sets accurately
 - Obtain alternate (workable) **privacy definitions**

Thank you!