Differentially Private Mechanisms for Data Release

Graham Cormode

g.cormode@warwick.ac.uk

Joint work with

 $7 \stackrel{a}{\bigcirc 5}$

Magda Procopiuc (AT&T)

Divesh Srivastava (AT&T)

Entong Shen (NCSU)

Ting Yu (NCSU)

Xiaokui Xiao (NTU)

Jun Zhang (NTU)

The anonymization scenario

Data-driven privacy

- Much interest in private data release
 - Practical: release of AOL, Netflix data etc.
 - Research: hundreds of papers
- In practice, many data-driven concerns arise:
 - Efficiency / practicality of algorithms as data scales
 - How to interpret privacy guarantees
 - Handling of common data features, e.g. sparsity
 - Ability to optimize for known query workload
 - Usability of output for general processing
- This talk: outline some efforts to address these issues

Differential Privacy [Dwork 06]

- Principle: released info reveals little about any individual
 - Even if adversary knows (almost) everything about everyone else!
- Thus, individuals should be secure about contributing their data
 - What is learnt about them is about the same either way
- Much work on providing differential privacy
 - Simple recipe for some data types e.g. numeric answers
 - Simple rules allow us to reason about composition of results
 - More complex for arbitrary data (exponential mechanism)
- Adopted and used by several organizations:
 - US Census, Common Data Project, Facebook (?)

Differential Privacy

The output distribution of a differentially private algorithm changes very little whether or not any individual's data is included in the input – so you should contribute your data

A randomized algorithm K satisfies ϵ -differential privacy if: Given any pair of neighboring data sets, D_1 and D_2 , and S in Range(K):

$$Pr[K(D_1) = S] \le e^{\varepsilon} Pr[K(D_2) = S]$$

Achieving \(\epsilon\)-Differential Privacy

(Global) Sensitivity of publishing:

 $s = \max_{x,x'} |F(x) - F(x')|, x, x' \text{ differ by 1 individual}$

E.g., count individuals satisfying property P: one individual changing info affects answer by at most 1; hence s = 1

For every value that is output:

- Add Laplacian noise, Lap(ε/s):
- Or Geometric noise for discrete case:

Simple rules for composition of differentially private outputs: Given output O_1 that is ε_1 private and O_2 that is ε_2 private

- (Sequential composition) If inputs overlap, result is $\varepsilon_1 + \varepsilon_2$ private
- (Parallel composition) If inputs disjoint, result is $max(\varepsilon_1, \varepsilon_2)$ private

Exponential Mechanism [MT07]

Given function F: Datasets → Outputs

Exponential Mechanism: Return O with probability

$$Pr[O] \propto exp(\frac{\varepsilon}{2\Delta}score(D, O))$$

where $\Delta = \max |score(D,O) - score(D', O)|$, taken over outputs O, neighbouring datasets D, D'

Sparse Spatial Data [ICDE 2012]

- Consider location data of many individuals
 - Some dense areas (towns and cities), some sparse (rural)
- Applying DP naively simply generates noise
 - lay down a fine grid, signal overwhelmed by noise
- Instead: compact regions with sufficient number of points

Private Spatial decompositions

adtree kd-tree

- Build: adapt existing methods to have differential privacy
- Release: a private description of data distribution (in the form of bounding boxes and noisy counts)

Building a Private kd-tree

- Process to build a private kd-tree
 - > Input: maximum height h, minimum leaf size L, data set
 - Choose dimension to split
 - Get (private) median in this dimension
 - Create child nodes and add noise to the counts
 - Recurse until:
 - Max height is reached
 - Noisy count of this node less than L
 - Budget along the root-leaf path has used up
- The entire PSD satisfies DP by the composition property

Building PSDs – privacy budget allocation

- Data owner specifies a total budget reflecting the level of anonymization desired
- Budget is split between medians and counts
 - Tradeoff accuracy of division with accuracy of counts
- Budget is split across levels of the tree
 - Privacy budget used along any root-leaf path should total ε

Privacy budget allocation

- How to set an ε_i for each level?
 - Compute the number of nodes touched by a 'typical' query
 - Minimize variance of such queries
 - Optimization: min $\sum_{i} 2^{h-i} / \epsilon_{i}^{2}$ s.t. $\sum_{i} \epsilon_{i} = \epsilon$
 - Solved by $\varepsilon_{\rm i} \propto (2^{(h-i)})^{1/3} \varepsilon$: more to leaves
 - Total error (variance) goes as $2^{h}/\epsilon^{2}$

- Tradeoff between noise error and spatial uncertainty
 - Reducing h drops the noise error
 - But lower h increases the size of leaves, more uncertainty

Post-processing of noisy counts

- Can do additional post-processing of the noisy counts
 - To improve query accuracy and achieve consistency
- Intuition: we have count estimate for a node and for its children
 - Combine these independent estimates to get better accuracy
 - Make consistent with some true set of leaf counts
- Formulate as a linear system in n unknowns
 - Avoid explicitly solving the system
 - Expresses optimal estimate for node v in terms of estimates of ancestors and noisy counts in subtree of v
 - Use the tree-structure to solve in three passes over the tree
 - Linear time to find optimal, consistent estimates

Experimental study

- ◆ 1.63 million coordinates from US TIGER/Line dataset
 - Road intersections of US States
- Queries of different shapes, e.g. square, skinny
- Measured median relative error of 600 queries for each shape

Experimental study

Effectiveness of geometric budget and post-processing

- Relative error reduced by up to an order of magnitude
- Most effective when limited privacy budget

PrivBayes [SIGMOD 14]

- Directly materializing a full distribution: low signal, high noise
- Use a Bayesian network to approximate the full-dimensional distribution by lower-dimensional ones:

 $Pr[H] \approx Pr[age] \cdot Pr[education|age] \cdot Pr[workclass|age] \cdot \\ Pr[title|age,education,workclass] \cdot Pr[income|workclass,title] \cdot \\ Pr[marital status|age,income] \cdots$

low-dimensional distributions: high signal-to-noise

PrivBayes (SIGMOD14)

- STEP 1: Choose a suitable Bayesian Network BN
 - in a differentially private way
- STEP 2: Compute distributions implied by edges of BN
 - straightforward to do under differential privacy (Laplace)
- ◆ STEP 3: Generate synthetic data by sampling from the BN
 - post-processing: no privacy issues
- Evaluate utility of synthetic data for variety of different tasks

STEP I: I-degree BN [Chow-Liu'68]

- Optimal 1-degree BN maximizes $\sum MI(A_i, A_j)$ (MI: mutual information) (A_i, A_j) : edge
- Follows Prim's MST algorithm:
 - Pick arbitrary starting point S = {A₁}
 - For $i = 1 \dots d-1$:

 Pick $e_i = (A_i, A_{i+1})$ to maximize $MI(e_i)$ where $A_i \in S$ and $A_{i+1} \notin S$ Add e_i to BN, $S \leftarrow S \cup \{A_{i+1}\}$
- Use exponential mechanism to pick edge with high mutual information at each step
- For higher-degree BNs, pick a k'th order distribution at each step
 - Pick a set of parents A_i for A_{i+1} with high mutual information
- Problem solved?

Choosing an edge in BN

First attempt: define score(edge) = MI(edge)

- We prove $\Delta(MI) = \Theta(\log n / n)$, where n = |D|, size of the data
- ♦ Applying exponential mechanism, the MST algorithm chooses $e_i = (A_i \in S, A_{i+1} \notin S)$ with probability

$$Pr[e_i] \propto exp\left(\frac{\varepsilon n}{2} \frac{MI(e_i)}{\log n}\right)$$

- Problem: sensitivity $\Delta(MI)$ can be large compared to MI
 - Gives high chance of sampling an edge with low information
 - Can we find a better quality function for exponential mechanism?

Defining a new score function

GOAL:
$$Pr[e_i] \propto exp\left(\frac{\varepsilon n}{2}score(e_i)\right)$$

and large scores should correspond to large MI's

IDEA: define score to agree with MI at maximum values and interpolate linearly in-between

 Π : "optimal" dbns over (A_i, A_{i+1}) that maximize $MI(A_i, A_{i+1})$

We define:
$$score(e_i) = -\frac{1}{2} \min_{\Pi:\ optimal} \|e_i - \Pi\|_1$$

 Δ (score) = 1/n by triangle inequality

Optimal Distributions

Can prove that necessary conditions for optimality are:

1. Uniform marginal:

$$\sum$$
 () = $\frac{1}{|A_{i+1}|}$ in each row

2. Sparse: At most one per column

Infinitely many such distributions!

Optimal Distributions

However, can show that

- size of the does not matter;
- only their position matters

But still (doubly) exponentially many possibilities...

Define score(e_i) by discrete optimization over layouts

- ◆ General case: solved by Integer Program
- ♦ When $|A_{i+1}| = 2$: can solve by Dynamic Program

Naïve Bayes Summary

- To choose next distribution to materialize:
 - For each possible next child A_{i+1}
 - Find optimal distribution via discrete optimization (DP or IP)
 - Find score as L1 distance of Pr[A_{i+1}, A_i] from optimal
 - Use exponential mechanism to pick next based on score
- Can pick the degree of the Bayesian network based on estimated noise (independent of data)
- Generate data from the released (private) Bayesian network
 - Plug into any desired application, e.g. classification, regression

Experiments: Counting Queries

Query load = Compute all 3-way marginals

Experiments: Classification

Y = education: post-secondary degree?

Y = marital status: never married?

Adult dataset, build 4 classifiers

Concluding Remarks

- Differential privacy can be applied effectively for data release
- Solutions: classical techniques (e.g., sampling, kd-tree, BN) adapted to provide differentially privacy
 - With a different trade off: minimize the privacy cost
- Many open problems remain:
 - Transition these techniques to tools for data release
 - Extend to other forms of data: mobility data, graph data
 - Allow joining anonymized data sets accurately
 - Obtain alternate (workable) privacy definitions

Thank you!