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The anonymization scenario 

2 



Data-driven privacy 

 Much interest in private data release 

– Practical: release of AOL, Netflix data etc. 

– Research: hundreds of papers 

 In practice, many data-driven concerns arise: 

– Efficiency / practicality of algorithms as data scales 

– How to interpret privacy guarantees 

– Handling of common data features, e.g. sparsity 

– Ability to optimize for known query workload 

– Usability of output for general processing 

 This talk: outline some efforts to address these issues 
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Differential Privacy [Dwork 06] 

 Principle: released info reveals little about any individual 

– Even if adversary knows (almost) everything about everyone else! 

 Thus, individuals should be secure about contributing their data 

– What is learnt about them is about the same either way 

 Much work on providing differential privacy 

– Simple recipe for some data types e.g. numeric answers 

– Simple rules allow us to reason about composition of results 

– More complex for arbitrary data (exponential mechanism) 

 Adopted and used by several organizations: 

– US Census, Common Data Project, Facebook (?) 



Differential Privacy 

The output distribution of a differentially private algorithm 
changes very little whether or not any individual’s data is 
included in the input – so you should contribute your data 

A randomized algorithm K satisfies ε-differential privacy if: 
Given any pair of neighboring data sets,  
D1 and D2, and S in Range(K): 
 
 Pr[K(D1) = S]  ≤  eε Pr[K(D2) = S]  
 



Achieving ε-Differential Privacy 

  (Global) Sensitivity of publishing:   
  s = maxx,x’ |F(x) – F(x’)|, x, x’ differ by 1 individual 

  E.g., count individuals satisfying property P: one individual 
 changing info affects answer by at most 1; hence s = 1 

  For every value that is output: 

 Add Laplacian noise, Lap(ε/s): 
 Or Geometric noise for discrete case:  

Simple rules for composition of differentially private outputs: 
 Given output O1 that is 1 private and O2 that is 2 private 
  (Sequential composition) If inputs overlap, result is 1 + 2 private 
  (Parallel composition) If inputs disjoint, result is max(1, 2) private 



Exponential Mechanism [MT07] 

Datasets Output Domain 
D O 

 Define score(D,O)R 

Given function F: Datasets  Outputs  

Exponential Mechanism: Return O with probability 

How good O is as  
an answer to F(D) 

where D = max |score(D,O) – score(D’, O)| , 
taken over outputs O, neigbouring datasets D, D’ 



Sparse Spatial Data [ICDE 2012] 

 Consider location data of many individuals 

– Some dense areas (towns and cities), some sparse (rural) 

 Applying DP naively simply generates noise 

– lay down a fine grid, signal overwhelmed by noise 

 Instead: compact regions with sufficient number of points 
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Private Spatial decompositions 

 

 

 

 

 

 

 

 Build: adapt existing methods to have differential privacy 

 Release: a private description of data distribution  
(in the form of bounding boxes and noisy counts) 

quadtree kd-tree 
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Building a Private kd-tree 

 Process to build a private kd-tree 

 Input: maximum height h, minimum leaf size L, data set 

 Choose dimension to split 

 Get (private) median in this dimension 

 Create child nodes and add noise to the counts 

 Recurse until: 

 Max height is reached 

 Noisy count of this node less than L 

 Budget along the root-leaf path has used up 

 The entire PSD satisfies DP by the composition property 
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Building PSDs – privacy budget allocation 

 Data owner specifies a total budget reflecting the level of 
anonymization desired 

 Budget is split between medians and counts 

– Tradeoff accuracy of division with accuracy of counts 

 Budget is split across levels of the tree 

– Privacy budget used along any root-leaf path should total  

 
 Sequential 

composition 

Parallel composition 
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Privacy budget allocation 

 How to set an i for each level? 

– Compute the number of nodes touched by a ‘typical’ query 

– Minimize variance of such queries 

– Optimization: min i  2
h-i / i

2 s.t. i i =  

– Solved by i  (2(h-i))1/3 : more to leaves 

– Total error (variance) goes as 2h/2 

 Tradeoff between noise error and spatial uncertainty 

– Reducing h drops the noise error 

– But lower h increases the size of leaves, more uncertainty 
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Post-processing of noisy counts 

 Can do additional post-processing of the noisy counts 

– To improve query accuracy and achieve consistency 

 Intuition: we have count estimate for a node and for its children 

– Combine these independent estimates to get better accuracy 

– Make consistent with some true set of leaf counts 

 Formulate as a linear system in n unknowns 

– Avoid explicitly solving the system 

– Expresses optimal estimate for node v in terms of estimates of 
ancestors and noisy counts in subtree of v 

– Use the tree-structure to solve in three passes over the tree 

– Linear time to find optimal, consistent estimates 

 

 



Experimental study 

 1.63 million coordinates from US TIGER/Line dataset 

– Road intersections of US States 

 Queries of different shapes, e.g. square, skinny 

 Measured median relative error of 600 queries for each shape 
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Experimental study 

 Effectiveness of geometric budget and post-processing 

 

 

 

 

 

 

– Relative error reduced by up to an order of magnitude 

– Most effective when limited privacy budget 
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age 

PrivBayes [SIGMOD14] 

 Directly materializing a full distribution: low signal, high noise 

 Use a Bayesian network to approximate the full-dimensional 
distribution by lower-dimensional ones: 

 age workclass 

education title 

income 

low-dimensional distributions: high signal-to-noise 



 STEP 1: Choose a suitable Bayesian Network BN 

       - in a differentially private way 

 STEP 2: Compute distributions implied by edges of BN 

        - straightforward to do under differential privacy (Laplace) 

 STEP 3: Generate synthetic data by sampling from the BN 

        - post-processing: no privacy issues 

 Evaluate utility of synthetic data for variety of different tasks 

PrivBayes (SIGMOD14) 



 Optimal 1-degree BN maximizes 
(MI: mutual information) 

 Follows Prim’s MST algorithm: 

 Pick arbitrary starting point S = {A1} 

 For i = 1 … d-1: 
 Pick ei = (Ai, Ai+1) to maximize MI(ei) where Ai  S and Ai+1  S 
 Add ei to BN, S  S  {Ai+1}  

 Use exponential mechanism to pick edge with high mutual 
information at each step 

 For higher-degree BNs, pick a k’th order distribution at each step 

– Pick a set of parents Ai for Ai+1 with high mutual information 

 Problem solved? 

STEP 1: 1-degree BN [Chow-Liu’68] 



First attempt: define score(edge) = MI(edge) 

 We prove D(MI) = Q(log n / n), where n = |D|, size of the data          

 Applying exponential mechanism, the MST algorithm chooses 
ei= (Ai  S, Ai+1  S) with probability 
   

  

                  

 Problem: sensitivity D(MI) can be large compared to MI 

– Gives high chance of sampling an edge with low information 

– Can we find a better quality function for exponential mechanism? 

Choosing an edge in BN 



GOAL:                                 

             and large scores should correspond to large MI’s                                           

IDEA:  define score to agree with MI at maximum values 

 and interpolate linearly in-between 

Defining a new score function 

P: “optimal” dbns 
over (Ai, Ai+1) that 
maximize MI(Ai, Ai+1)  

We define:                                                                

D(score) = 1/n by triangle inequality 

how far? 



Optimal Distributions 

1.  Uniform marginal:    
                                        in each row  

2. Sparse: At most one          per column 

Infinitely many such 
distributions! 

Can prove that necessary conditions for optimality are: 



However, can show that  

 size of the          does not matter;   

 only their position matters 

But still (doubly) exponentially many possibilities… 

Define score(ei) by discrete optimization over layouts 

 General case: solved by Integer Program 

 When |Ai+1| = 2: can solve by Dynamic Program 

Optimal Distributions 



Naïve Bayes Summary 

 To choose next distribution to materialize: 

– For each possible next child Ai+1 

 Find optimal distribution via discrete optimization (DP or IP) 

 Find score as L1 distance of Pr[Ai+1, Ai] from optimal  

– Use exponential mechanism to pick next based on score 

 

 Can pick the degree of the Bayesian network based on 
estimated noise (independent of data) 

 

 Generate data from the released (private) Bayesian network 

– Plug into any desired application, e.g. classification, regression 
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Experiments: Counting Queries 

Histogram Fourier PrivBayes Laplace 

Adult dataset NLTCS dataset 

Query load  = Compute all 3-way marginals 



Experiments: Classification 

PrivGene 

PrivateERM (1) PrivBayes PrivateERM (4) 

Majority NoPrivacy 

Y = education: post-secondary degree? Y = marital status: never married? 

Adult dataset, build 4 classifiers  



Concluding Remarks 

 Differential privacy can be applied effectively for data release 

 Solutions: classical techniques (e.g., sampling, kd-tree, BN) 
adapted to provide differentially privacy 

– With a different trade off: minimize the privacy cost 

 Many open problems remain: 

– Transition these techniques to tools for data release 

– Extend to other forms of data: mobility data, graph data 

– Allow joining anonymized data sets accurately 

– Obtain alternate (workable) privacy definitions 
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Thank you! 


