Sketching Probabilistic Data Streams

Graham Cormode

AT&T Labs - Research graham@research.att.com

Minos Garofalakis

Yahoo! Research minos@acm.org

Challenge of Uncertain Data

- Many applications generate data which is uncertain:
 - Quality of Record Linkages
 - Confidences of extracted rules
 - Noisy Sensor/RFID readings
- Leads us to study probabilistic data management
- Tuple level uncertainty: each tuple is uncertain, independent
- Leads to exponentially many *possible worlds*

Simple Model

We adopt simplest model (Dalvi and Suciu 2004):

- A set of probabilistic tuples (t, p)
- A pair of a value, $t \in [1 \dots M]$ and a probability p
- With probability p, t is in relation, (1-p) it is not
- More generally, can have a (compact) PDF
- Example: $S = (\langle x, \frac{1}{2} \rangle, \langle y, \frac{1}{3} \rangle, \langle y, \frac{1}{4} \rangle)$
 - Encodes 6 "possible worlds" ground relations: $Grnd(S) = \{\phi, (x), (y), (x, y), (y, y), (x, y, y)\}$
 - Can compute probabilities of each possible relation:

G	ø	X	у	x,y	y,y	x,y,y
Pr[G]	1⁄4	1⁄4	5/24	5/24	1/24	1/24

Probabilistic Stream Computations

- In general, too expensive to track all possible worlds
- Probabilistic streams: too expensive to track all tuples!
 - E.g. stream of sensor readings
- Want to compute aggregate functions over prob. streams
 - Given function F, find *expected value*: $E(F(S)) = \sum_{G \in Grnd(S)} Pr[G] F(G)$
 - Also compute *variance* to quantify reliability:

 $Var(F(S)) = E(F^2(S)) - E^2(F(S))$

- Focus on computing Frequency moments (F₀, F₁, F₂), much studied in deterministic streams
- Measure space and time cost (one pass over stream)

Sampling Approach

- Efficient streaming algorithms are known for many deterministic streaming computations
- Natural idea: sample several possible ground streams, compute F on each, and compute E and Var of samples.
 - Can work OK for E: sampling O(ε⁻² Var[F(S)]/E²[F(S)]) gives relative error ε.
 - Depends on the stream and aggregate properties, but for many cases, the ratio Var/E² is small.
 - Bounds for estimating Var are much worse, need many more samples

Warm up case: F₁

- Some functions are easy to compute exactly, in streaming model with small cost.
- F_1 is just count $E(F_1(S))$ is expected length of stream
- Easy to see $E(F_1(S)) = \sum_i p_i$ (sum of Bernoulli variables)
- By summation of variances, $Var(F_1(S)) = \sum_i p_i(1-p_i)$
- Can use these observations to estimate quantiles and heavy hitters with additive error ε in space O(1/ε)

F₀: **Count Distinct**

E[F₀(S)] is the expected number of distinct tuples seen

- Easy to track in (high) space O(M), by keeping information for each possible tuple value t.
- M is often very large, want solution with cost O(log M)
 - Make use of the Flajolet-Martin (FM) sketch, which solves
 F₀ for deterministic streams

FM Sketch Summary

- Estimates number of distinct inputs (count distinct)
- Uses hash function mapping input items to i with prob 2⁻ⁱ
 - i.e. $Pr[h(x) = 1] = \frac{1}{2}$, $Pr[h(x) = 2] = \frac{1}{4}$, $Pr[h(x)=3] = \frac{1}{8}$...
 - Easy to construct h() from a uniform hash function by counting trailing zeros
- FM Sketch = bitmap array of L = log M bits
 - Initialize bitmap to all 0s
 - For each incoming value x, set FM[h(x)] = 1

Sketching Probabilistic Streams — Cormode & Garofalakis

Probabilistic FM sketch (pFM)

- In FM sketch, 1 indicates that some item hashed there
- Interpret this as a probability: when t_i arrives, update pFM[h(t_i)] ← p_i + (1-p_i)pFM[h(t_i)]
- Build estimator D for $E[F_0(S)]$ as $D = \sum_j 2^j pFM[j] \prod_{k>j} (1-pFM[k])$
 - uses (expected) location of most significant 1 bit in array
- Can show that D is a constant factor approx of E[F₀(S)] with constant probability

Improved Estimator

- Can build an (ε, δ) estimator for $E[F_0(S)]$: finds a value d such that $d = (1 \pm \varepsilon) E[F_0(S)]$ with probability at least $1-\delta$
 - Using same pFM sketch as before
- Use constant factor approx to find a sampling level k^{*} ≈ log₂ E[F₀(S)] + O(1)
 - Probe multiple repetitions of sketch at level k* to build a better estimator (details in paper)
- Can (ε, δ) approximate $E[F_0(S)]$ using $O(\varepsilon^{-2} \log \delta^{-1})$ pFMs
 - Similar to cost for deterministic streams

Estimating Var(F₀)

Also want to estimate Var[F₀(S)], the variance of F₀
 Reduce to computing E[F₀(S)] over modified streams

- Given S = ($\langle t_i, p_i \rangle$), set S₂ = ($\langle t_i, 2p_i p_i^2 \rangle$)
 - Can prove that $Var[F_0(S)] = E[F_0(S_2)] E[F_0(S)]$
 - Since $E[F_0(S_2)] \le 2E[F_0(S)]$, error is at most $3\epsilon E[F_0(S)]$
- Can estimate Var[F₀(S)] with additive error εE[F₀(S)] w/prob at least 1-δ using O(ε⁻² log δ⁻¹) pFM sketches

F₂: Self-join size

- Let f_t be the frequency of item t; $F_2 = \sum_t f_t^2$, self-join size.
 - On prob. streams, $E[F_2(S)]$ is expected self-join size
- Let X_t be random variable for occurrences of t.
 - $E[X_t] = \sum_{\langle ti = t, pi \rangle \in S} p_i \text{ and } Var[X_t] = \sum_{\langle ti = t, pi \rangle \in S} p_i(1-p_i)$
- Since $E[X_t^2] = Var[X_t] + E^2[X_t]$, we have:
 - $\mathsf{E}[\mathsf{F}_2(\mathsf{S})] = \sum_t \left(\sum_{\langle ti = t, pi \rangle \in \mathsf{S}} p_i(1-p_i) + \left(\sum_{\langle ti = t, pi \rangle \in \mathsf{S}} p_i \right)^2 \right)$
 - First term can be computed exactly
 - Second term is a L₂² norm of a deterministic stream of p_i's
- Use AMS sketch on p_i's to (ε,δ) approximate E[F₂(S)] in space O(ε⁻² log δ⁻¹)

Var[F₂(S)], variance of self-join size

- We used the fact that Var[X] = E[X²] E²[X] and that Var[X + Y] = Var[X] + Var[Y] to find E[F₂(S)]
- Can use similar *cumulants* to find higher moments: $\kappa_3[X] = E[(X - E(X))^3]$ $\kappa_4[X] = E[(X-E(X))^4] - 3Var[X]^2$ and $\kappa_j[X + Y] = \kappa_j[X] + \kappa_j[Y]$ for all j
- Can write Var[X²] in terms of cumulants: Var[X²] = κ_4 [X] + 4 κ_3 [X] κ_1 [X]+2 κ_2 ²[X] + 4 κ_2 [X] κ_1 ²[X]
- For Bernoulli random variable B with parameter p: $\kappa_1[B]=p, \kappa_2[B]=p-p^2, \kappa_3[B] = (1-2p)(p-p^2), \kappa_4[B]=(1-6p+6p^2)(p-p^2)$

Var[F₂(S)] results

- Consequently, can rewrite Var[F₂(S)] in terms of deterministic stream functions of the p_i's
- Estimate in small space by using AMS sketches to estimate appropriate vector dot-products
- Can find an estimate of Var[F₂(S)] with error at most ε E[F₂(S)]^{3/2} with prob. at least 1- δ in space O($\varepsilon^{-2} \log \delta^{-1}$)
- Similar cumulant-based techniques allow estimation of join size, and higher moments

Experimental Study

- Implemented our algorithms for F₀ and F₂, both E and Var
- Used real data from MYSTIQ project based on linkages between Amazon and IMDB data
- Synthetic data with zipfian distribution on tuples, uniform on probabilities

F₀ **Results**

- Sampling possible worlds for non-pathological streams does well for E[F₀(S)], is terrible for V[F₀(S)] (off chart)
- pFM sketches are much faster (by a factor of about 30)

F₂ Results

- Sampling slightly better on synthetic streams for expectation, still way off for variance
- Both methods fast: about 1 second to process 10⁶ tuples

Closing Remarks

- Fundamental aggregates such as Frequency Moments can be approximated accurately on probabilistic streams
- Requires careful analysis and proof to give guarantees
- Need space and time similar to deterministic streams
- Results scale pretty well experimentally
 - e.g.10% relative error in 80KB space
- Many other problems to study in this domain