Sketching Probabilistic Data Streams

Graham Cormode
AT&T Labs - Research
graham@research.att.com

Minos Garofalakis
Yahoo! Research
minos@acm.org
Challenge of Uncertain Data

- Many applications generate data which is uncertain:
 - Quality of Record Linkages
 - Confidences of extracted rules
 - Noisy Sensor/RFID readings
- Leads us to study *probabilistic data management*
- *Tuple level uncertainty*: each tuple is uncertain, independent
- Leads to exponentially many *possible worlds*
Simple Model

- We adopt simplest model (Dalvi and Suciu 2004):
 - A set of probabilistic tuples \(\langle t, p \rangle \)
 - A pair of a value, \(t \in [1 \ldots M] \) and a probability \(p \)
 - With probability \(p \), \(t \) is in relation, \((1-p) \) it is not
 - More generally, can have a (compact) PDF

- Example: \(S = \langle \langle x, \frac{1}{2} \rangle, \langle y, \frac{1}{3} \rangle, \langle y, \frac{1}{4} \rangle \rangle \)
 - Encodes 6 “possible worlds” ground relations: \(\text{Grnd}(S) = \{ \phi, (x), (y), (x, y), (y, y), (x, y, y) \} \)
 - Can compute probabilities of each possible relation:

<table>
<thead>
<tr>
<th>G</th>
<th>(\phi)</th>
<th>(x)</th>
<th>(y)</th>
<th>(x,y)</th>
<th>(y,y)</th>
<th>(x,y,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Pr}[G])</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{5}{24})</td>
<td>(\frac{5}{24})</td>
<td>(\frac{1}{24})</td>
<td>(\frac{1}{24})</td>
</tr>
</tbody>
</table>
In general, too expensive to track all possible worlds

Probabilistic streams: too expensive to track all tuples!
 - E.g. stream of sensor readings

Want to compute aggregate functions over prob. streams
 - Given function F, find expected value:
 \[
 E(F(S)) = \sum_{G \in \text{Grnd}(S)} \text{Pr}[G] \, F(G)
 \]
 - Also compute variance to quantify reliability:
 \[
 \text{Var}(F(S)) = E(F^2(S)) - E^2(F(S))
 \]

Focus on computing Frequency moments (F_0, F_1, F_2), much studied in deterministic streams

Measure space and time cost (one pass over stream)
Sampling Approach

Efficient streaming algorithms are known for many deterministic streaming computations

Natural idea: sample several possible ground streams, compute F on each, and compute E and Var of samples.

– Can work OK for E: sampling $O(\varepsilon^{-2} \text{Var}[F(S)]/E^2[F(S)])$ gives relative error ε.
– Depends on the stream and aggregate properties, but for many cases, the ratio Var/E^2 is small.
– Bounds for estimating Var are much worse, need many more samples
Warm up case: F_1

- Some functions are easy to compute exactly, in streaming model with small cost.
- F_1 is just count – $E(F_1(S))$ is expected length of stream
- Easy to see $E(F_1(S)) = \sum_i p_i$ (sum of Bernoulli variables)
- By summation of variances, $\text{Var}(F_1(S)) = \sum_i p_i(1-p_i)$

- Can use these observations to estimate quantiles and heavy hitters with additive error ε in space $O(1/\varepsilon)$
F₀: Count Distinct

- \(\mathbb{E}[F_0(S)] \) is the expected number of distinct tuples seen
 - Easy to track in (high) space \(O(M) \), by keeping information for each possible tuple value \(t \).

- \(M \) is often very large, want solution with cost \(O(\log M) \)
 - Make use of the Flajolet-Martin (FM) sketch, which solves \(F_0 \) for deterministic streams
FM Sketch Summary

- Estimates number of distinct inputs (count distinct)
- Uses hash function mapping input items to \(i \) with prob \(2^{-i} \)
 - i.e. \(\text{Pr}[h(x) = 1] = \frac{1}{2}, \text{Pr}[h(x) = 2] = \frac{1}{4}, \text{Pr}[h(x)=3] = \frac{1}{8} \ldots \)
 - Easy to construct \(h() \) from a uniform hash function by counting trailing zeros
- FM Sketch = bitmap array of \(L = \log M \) bits
 - Initialize bitmap to all 0s
 - For each incoming value \(x \), set \(\text{FM}[h(x)] = 1 \)

\[
\begin{align*}
x = 5 & \quad \Rightarrow \quad h(x) = 3 \\
\text{FM BITMAP} & \quad \begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}
\end{align*}
\]
In FM sketch, 1 indicates that some item hashed there
Interpret this as a probability: when t_i arrives, update
$$p_{FM}[h(t_i)] \leftarrow p_i + (1-p_i)p_{FM}[h(t_i)]$$

Build estimator D for $E[F_0(S)]$ as
$$D = \sum_j 2^j p_{FM}[j] \prod_{k>j} (1-p_{FM}[k])$$
 - uses (expected) location of most significant 1 bit in array

Can show that D is a constant factor approx of $E[F_0(S)]$
with constant probability
Improved Estimator

- Can build an \((\varepsilon, \delta)\) estimator for \(E[F_0(S)]\): finds a value \(d\) such that \(d = (1 \pm \varepsilon) E[F_0(S)]\) with probability at least \(1-\delta\)
 - Using same pFM sketch as before

- Use constant factor approx to find a sampling level
 \(k^* \approx \log_2 E[F_0(S)] + O(1)\)
 - Probe multiple repetitions of sketch at level \(k^*\) to build a better estimator (details in paper)

- Can \((\varepsilon,\delta)\) approximate \(E[F_0(S)]\) using \(O(\varepsilon^{-2} \log \delta^{-1})\) pFMs
 - Similar to cost for deterministic streams
Estimating Var(F₀)

- Also want to estimate Var[F₀(S)], the variance of F₀
 - Reduce to computing E[F₀(S)] over modified streams

- Given S = (⟨tᵢ, pᵢ⟩), set S₂ = (⟨tᵢ, 2pᵢ − pᵢ²⟩)
 - Can prove that Var[F₀(S)] = E[F₀(S₂)] − E[F₀(S)]
 - Since E[F₀(S₂)] ≤ 2E[F₀(S)], error is at most 3εE[F₀(S)]

- Can estimate Var[F₀(S)] with additive error εE[F₀(S)]
 w/prob at least 1 − δ using O(ε⁻² log δ⁻¹) pFM sketches
F₂: Self-join size

- Let \(f_t \) be the frequency of item \(t \); \(F_2 = \sum_t f_t^2 \), self-join size.
 - On prob. streams, \(E[F_2(S)] \) is expected self-join size

- Let \(X_t \) be random variable for occurrences of \(t \).
 - \(E[X_t] = \sum_{\langle ti = t, p_i \rangle \in S} p_i \) and \(\text{Var}[X_t] = \sum_{\langle ti = t, p_i \rangle \in S} p_i (1 - p_i) \)

- Since \(E[X_t^2] = \text{Var}[X_t] + E^2[X_t] \), we have:
 - \(E[F_2(S)] = \sum_t (\sum_{\langle ti = t, p_i \rangle \in S} p_i (1 - p_i) + (\sum_{\langle ti = t, p_i \rangle \in S} p_i)^2) \)
 - First term can be computed exactly
 - Second term is a \(L^2_2 \) norm of a deterministic stream of \(p_i \)'s

- Use AMS sketch on \(p_i \)'s to \((\epsilon, \delta)\) approximate \(E[F_2(S)] \) in space \(O(\epsilon^{-2} \log \delta^{-1}) \)
Var\[F_2(S)\], variance of self-join size

- We used the fact that \(\text{Var}[X] = \text{E}[X^2] - \text{E}^2[X] \) and that \(\text{Var}[X + Y] = \text{Var}[X] + \text{Var}[Y] \) to find \(\text{E}[F_2(S)] \).

- Can use similar *cumulants* to find higher moments:
 \[
 \kappa_3[X] = \text{E}[(X - \text{E}(X))^3] \quad \kappa_4[X] = \text{E}[(X-\text{E}(X))^4] - 3\text{Var}[X]^2 \]
 and \(\kappa_j[X + Y] = \kappa_j[X] + \kappa_j[Y] \) for all \(j \).

- Can write \(\text{Var}[X^2] \) in terms of cumulants:
 \[
 \text{Var}[X^2] = \kappa_4[X] + 4\kappa_3[X]\kappa_1[X] + 2\kappa_2^2[X] + 4\kappa_2[X]\kappa_1^2[X] \]

- For Bernoulli random variable \(B \) with parameter \(p \):
 \[
 \kappa_1[B] = p, \quad \kappa_2[B] = p - p^2, \quad \kappa_3[B] = (1-2p)(p-p^2), \quad \kappa_4[B] = (1-6p+6p^2)(p-p^2) \]
Var[F_2(S)] results

- Consequently, can rewrite \(\text{Var}[F_2(S)] \) in terms of deterministic stream functions of the \(p_i \)'s

- Estimate in small space by using AMS sketches to estimate appropriate vector dot-products

- Can find an estimate of \(\text{Var}[F_2(S)] \) with error at most \(\varepsilon \) \(E[F_2(S)]^{3/2} \) with prob. at least \(1-\delta \) in space \(O(\varepsilon^{-2} \log \delta^{-1}) \)

- Similar cumulant-based techniques allow estimation of join size, and higher moments
Experimental Study

- Implemented our algorithms for F_0 and F_2, both E and Var
- Used real data from MYSTIQ project based on linkages between Amazon and IMDB data
- Synthetic data with zipfian distribution on tuples, uniform on probabilities
F₀ Results

- Sampling possible worlds for non-pathological streams does well for $E[F₀(S)]$, is terrible for $V[F₀(S)]$ (off chart)
- pFM sketches are much faster (by a factor of about 30)
F₂ Results

- Sampling slightly better on synthetic streams for expectation, still way off for variance
- Both methods fast: about 1 second to process 10^6 tuples

80KB space
Closing Remarks

- Fundamental aggregates such as Frequency Moments can be approximated accurately on probabilistic streams
- Requires careful analysis and proof to give guarantees
- Need space and time similar to deterministic streams
- Results scale pretty well experimentally
 - e.g. 10% relative error in 80KB space
- Many other problems to study in this domain