
Sketching Probabilistic
Data Streams

Minos Garofalakis

Yahoo! Research
minos@acm.org

Graham Cormode

AT&T Labs - Research
graham@research.att.com

Sketching Probabilistic Streams — Cormode & Garofalakis2

Challenge of Uncertain Data

� Many applications generate data which is uncertain:

– Quality of Record Linkages

– Confidences of extracted rules

– Noisy Sensor/RFID readings

� Leads us to study probabilistic data management

� Tuple level uncertainty: each tuple is uncertain,

independent

� Leads to exponentially many possible worlds

Sketching Probabilistic Streams — Cormode & Garofalakis3

Simple Model

� We adopt simplest model (Dalvi and Suciu 2004):

– A set of probabilistic tuples 〈t, p〉

– A pair of a value, t∈[1…M] and a probability p

– With probability p, t is in relation, (1-p) it is not

– More generally, can have a (compact) PDF

� Example: S = (〈x, ½〉, 〈y, 1/3〉, 〈y, ¼〉)

– Encodes 6 “possible worlds” ground relations:

Grnd(S) = {φ, (x), (y), (x, y), (y, y), (x, y, y)}

– Can compute probabilities of each possible relation:

1/241/245/245/24¼¼Pr[G]

x,y,yy,yx,yyxφG

Sketching Probabilistic Streams — Cormode & Garofalakis4

Probabilistic Stream Computations

� In general, too expensive to track all possible worlds

� Probabilistic streams: too expensive to track all tuples!

– E.g. stream of sensor readings

� Want to compute aggregate functions over prob. streams

– Given function F, find expected value:

E(F(S)) = ∑G∈Grnd(S) Pr[G] F(G)

– Also compute variance to quantify reliability:

Var(F(S)) = E(F2(S)) – E2(F(S))

� Focus on computing Frequency moments (F0, F1, F2),

much studied in deterministic streams

� Measure space and time cost (one pass over stream)

Sketching Probabilistic Streams — Cormode & Garofalakis5

Sampling Approach

� Efficient streaming algorithms are known for many
deterministic streaming computations

� Natural idea: sample several possible ground streams,
compute F on each, and compute E and Var of samples.

– Can work OK for E: sampling O(ε-2 Var[F(S)]/E2[F(S)])

gives relative error ε.

– Depends on the stream and aggregate properties, but for

many cases, the ratio Var/E2 is small.

– Bounds for estimating Var are much worse, need many

more samples

Sketching Probabilistic Streams — Cormode & Garofalakis6

Warm up case: F1

� Some functions are easy to compute exactly, in
streaming model with small cost.

� F1 is just count – E(F1(S)) is expected length of stream

� Easy to see E(F1(S)) = ∑i pi (sum of Bernoulli variables)

� By summation of variances, Var(F1(S)) = ∑i pi(1-pi)

� Can use these observations to estimate quantiles and

heavy hitters with additive error ε in space O(1/ε)

Sketching Probabilistic Streams — Cormode & Garofalakis7

F0: Count Distinct

� E[F0(S)] is the expected number of distinct tuples seen

– Easy to track in (high) space O(M), by keeping information

for each possible tuple value t.

� M is often very large, want solution with cost O(log M)

– Make use of the Flajolet-Martin (FM) sketch, which solves

F0 for deterministic streams

Sketching Probabilistic Streams — Cormode & Garofalakis8

0

FM Sketch Summary

� Estimates number of distinct inputs (count distinct)

� Uses hash function mapping input items to i with prob 2-i

– i.e. Pr[h(x) = 1] = ½, Pr[h(x) = 2] = ¼, Pr[h(x)=3] = 1/8 …

– Easy to construct h() from a uniform hash function by

counting trailing zeros

� FM Sketch = bitmap array of L = log M bits

– Initialize bitmap to all 0s

– For each incoming value x, set FM[h(x)] = 1

x = 5 h(x) = 3 0 0 0 001

FM BITMAP

6 5 4 3 2 1

Sketching Probabilistic Streams — Cormode & Garofalakis9

Probabilistic FM sketch (pFM)

� In FM sketch, 1 indicates that some item hashed there

� Interpret this as a probability: when ti arrives, update

pFM[h(ti)] ← pi + (1-pi)pFM[h(ti)]

� Build estimator D for E[F0(S)] as

D = ∑j 2j pFM[j] ∏k>j (1-pFM[k])

– uses (expected) location of most significant 1 bit in array

� Can show that D is a constant factor approx of E[F0(S)]

with constant probability

Sketching Probabilistic Streams — Cormode & Garofalakis10

Improved Estimator

� Can build an (ε, δ) estimator for E[F0(S)]: finds a value d
such that d = (1±ε) E[F0(S)] with probability at least 1-δ

– Using same pFM sketch as before

� Use constant factor approx to find a sampling level

k* ≈ log2 E[F0(S)] + O(1)

– Probe multiple repetitions of sketch at level k* to build a

better estimator (details in paper)

� Can (ε,δ) approximate E[F0(S)] using O(ε-2 log δ-1) pFMs

– Similar to cost for deterministic streams

Sketching Probabilistic Streams — Cormode & Garofalakis11

Estimating Var(F0)

� Also want to estimate Var[F0(S)], the variance of F0

– Reduce to computing E[F0(S)] over modified streams

� Given S = (〈 ti, pi〉), set S2 = (〈 ti, 2pi – pi
2〉)

– Can prove that Var[F0(S)] = E[F0(S2)] – E[F0(S)]

– Since E[F0(S2)] ≤ 2E[F0(S)], error is at most 3εE[F0(S)]

� Can estimate Var[F0(S)] with additive error εE[F0(S)]

w/prob at least 1-δ using O(ε-2 log δ-1) pFM sketches

Sketching Probabilistic Streams — Cormode & Garofalakis12

F2: Self-join size

� Let ft be the frequency of item t; F2 = ∑t ft
2, self-join size.

– On prob. streams, E[F2(S)] is expected self-join size

� Let Xt be random variable for occurrences of t.

– E[Xt] = ∑〈ti = t, pi〉∈S pi and Var[Xt] = ∑〈ti = t, pi〉∈S pi(1-pi)

� Since E[Xt
2] = Var[Xt] + E2[Xt], we have:

– E[F2(S)] = ∑t (∑ 〈ti = t, pi〉∈S pi(1-pi) + (∑ 〈ti = t, pi〉∈S pi)
2)

– First term can be computed exactly

– Second term is a L2
2 norm of a deterministic stream of pi’s

� Use AMS sketch on pi’s to (ε,δ) approximate E[F2(S)] in

space O(ε-2 log δ-1)

Sketching Probabilistic Streams — Cormode & Garofalakis13

Var[F2(S)], variance of self-join size

� We used the fact that Var[X] = E[X2] - E2[X] and that
Var[X + Y] = Var[X] + Var[Y] to find E[F2(S)]

� Can use similar cumulants to find higher moments:

κ3[X] = E[(X – E(X))3] κ4[X] = E[(X-E(X))4] – 3Var[X]2

and κj[X + Y] = κj[X] + κj[Y] for all j

� Can write Var[X2] in terms of cumulants:

Var[X2] = κ4[X] + 4κ3[X]κ1[X]+2κ2
2[X] + 4κ2[X]κ1

2[X]

� For Bernoulli random variable B with parameter p:

κ1[B]=p, κ2[B]=p-p2, κ3[B] =(1-2p)(p-p2), κ4[B]=(1-6p+6p2)(p-p2)

Sketching Probabilistic Streams — Cormode & Garofalakis14

Var[F2(S)] results

� Consequently, can rewrite Var[F2(S)] in terms of
deterministic stream functions of the pi’s

� Estimate in small space by using AMS sketches to
estimate appropriate vector dot-products

� Can find an estimate of Var[F2(S)] with error at most ε
E[F2(S)]3/2 with prob. at least 1-δ in space O(ε-2 log δ-1)

� Similar cumulant-based techniques allow estimation of
join size, and higher moments

Sketching Probabilistic Streams — Cormode & Garofalakis15

Experimental Study

� Implemented our algorithms for F0 and F2, both E and
Var

� Used real data from MYSTIQ project based on linkages
between Amazon and IMDB data

� Synthetic data with zipfian distribution on tuples, uniform
on probabilities

Sketching Probabilistic Streams — Cormode & Garofalakis16

F0 Results

� Sampling possible worlds for non-pathological streams
does well for E[F0(S)], is terrible for V[F0(S)] (off chart)

� pFM sketches are much faster (by a factor of about 30)

Sketching Probabilistic Streams — Cormode & Garofalakis17

F2 Results

� Sampling slightly better on synthetic streams for
expectation, still way off for variance

� Both methods fast: about 1 second to process 106 tuples

80KB space

Sketching Probabilistic Streams — Cormode & Garofalakis18

Closing Remarks

� Fundamental aggregates such as Frequency Moments
can be approximated accurately on probabilistic streams

� Requires careful analysis and proof to give guarantees

� Need space and time similar to deterministic streams

� Results scale pretty well experimentally

– e.g.10% relative error in 80KB space

� Many other problems to study in this domain

