
Engineering Streaming 
Algorithms 

Graham Cormode   

University of Warwick 

G.Cormode@Warwick.ac.uk 



Computational scalability and “big” data 

 Most work on massive data tries to scale up the computation 

 Many great technical ideas: 

– Use many cheap commodity devices 

– Accept and tolerate failure 

– Move code to data, not vice-versa 

– MapReduce: BSP for programmers 

– Break problem into many small pieces 

– Add layers of abstraction to build massive DBMSs and warehouses 

– Decide which constraints to drop: noSQL, BASE systems 

 Scaling up comes with its disadvantages: 

– Expensive (hardware, equipment, energy), still not always fast 

 This talk is not about this approach! 
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Downsizing data 

 A second approach to computational scalability:  
scale down the data as it is seen! 

– A compact representation of a large data set 

– Capable of being analyzed on a single machine 

– What we finally want is small: human readable analysis / decisions 

– Necessarily gives up some accuracy: approximate answers 

– Often randomized (small constant probability of error) 

– Much relevant work: samples, histograms, wavelet transforms 

 Complementary to the first approach: not a case of either-or 

 Some drawbacks: 

– Not a general purpose approach: need to fit the problem 

– Some computations don’t allow any useful summary 
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Outline for the talk 

 The frequent items problem 

 Engineering streaming algorithms for frequent items 

– From algorithms to prototype code 

– From prototype code to deployed code 

 Next steps: robust code, other hardware targets 

 Bulk of the talk is on two (actually, one) very simple algorithms 

– Experience and reflections on a ‘simple’ implementation task 
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The Frequent Items Problem 

 The Frequent Items Problem (aka Heavy Hitters):   
given stream of N items, find those that occur most frequently 

– E.g. Find all items occurring more than 1% of the time 

 Formally “hard” in small space, so allow approximation 

 Find all items with count  N, none with count < (-e)N 

– Error 0 <  e < 1, e.g. e = 1/1000 

– Related problem: estimate each frequency with error eN 
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Why Frequent Items? 

 A natural question on streaming data 

– Track bandwidth hogs, popular destinations etc. 

 The subject of much streaming research 

– Scores of papers on the subject 

 A core streaming problem 

– Many streaming problems connected to frequent items 
(itemset mining, entropy estimation, compressed sensing) 

 Many practical applications deployed 

– In search log mining, network data analysis, DBMS optimization 



Engineering Streaming Algorithms 
7 

Misra-Gries Summary (1982) 

 Misra-Gries (MG) algorithm finds up to k items that occur 
more than 1/k fraction of the time in the input 

 Update: Keep k different candidates in hand.  For each item: 

– If item is monitored, increase its counter 

– Else, if < k items monitored, add new item with count 1 

– Else, decrease all counts by 1 
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Frequent Analysis 

 Analysis: each decrease can be charged against k arrivals of 
different items, so no item with frequency N/k is missed 

 Moreover, k=1/e counters estimate frequency with error eN 

– Not explicitly stated until later [Bose et al., 2003] 

 

 Some history: First proposed in 1982 by Misra and Gries, 
rediscovered twice in 2002 

– Later papers discussed how to make fast implementations 
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Merging two MG Summaries [ACHPWY ‘12] 

 Merge algorithm: 

– Merge the counter sets in the obvious way 

– Take the (k+1)th largest counter = Ck+1, and subtract from all 

– Delete non-positive counters 

– Sum of remaining counters is M12 

 This keeps the same guarantee as Update: 

– Merge subtracts at least (k+1)Ck+1 from counter sums 

– So (k+1)Ck+1  (M1 + M2 – M
12

) 

– By induction, error is  
((N1-M1) + (N2-M2) + (M1+M2–M12))/(k+1)=((N1+N2) –M12)/(k+1)  

(prior error) (from merge) (as claimed) 
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SpaceSaving Algorithm 

 “SpaceSaving” (SS) algorithm [Metwally, Agrawal, El Abaddi 05] 
is similar in outline 

 Keep k = 1/e item names and counts, initially zero 
Count first k distinct items exactly 

 On seeing new item: 
– If it has a counter, increment counter 

– If not, replace item with least count, increment count 
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SpaceSaving Analysis 

 Smallest counter value, min, is at most en 

– Counters sum to n by induction 

– 1/e counters, so average is en: smallest cannot be bigger 

 True count of an uncounted item is between 0 and min 

– Proof by induction, true initially, min increases monotonically 

– Hence, the count of any item stored is off by at most en 

 Any item x whose true count > en is stored  

– By contradiction: x was evicted in past, with count  mint 

– Every count is an overestimate, using above observation 

– So est. count of x > en  min  mint, and would not be evicted 

 So: Find all items with count > en, error in counts  en 



Two algorithms, or one? 

 A belated realization: SS and MG are the same algorithm! 

– Can make an isomorphism between the memory state 

 Intuition: “overwrite the min” is conceptually equivalent to 
delete elements with (decremented) zero count 

 The two perspectives on the same algorithm lead to different 
implementation choices 
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Implementation Issues 

 These algorithms are really simple, so should be easy… right? 

 There is surprising subtlety in implementing them 

 Basic steps:  

– Lookup is current item stored?  If so, update count 

– If not: 

 Find min weight item and overwrite it (SS) 

 Decrement counts and delete zero weights (MG) 

 Several implementation choices for each step 

– Optimization goals: speed (throughput, latency) and space 

– I discuss my implementation experience and current thoughts 
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Lookup Item 

 Lookup: is current item stored 

– The canonical dictionary data structure problem 

 Misra Gries paper: use balanced search tree 

– O(log k) worst case time to search 

 Hash table: hash to O(k) buckets 

– O(1) expected time, but now alg is randomized 

 May have bad worst case performance? 

– How to handle collisions and deletions?  

 (My implementations used chaining) 

– Could surely be further optimized… 

 Use cuckoo hashing or other options? 

 Can we use fact that table occupancy is guaranteed at most k? 
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Decrement Counts 

 Decrement counts could be done simply 

– Iterate through all counts, subtract by one 

– A blocking operation, O(k) time 

 Proof of correctness means it happens < n/k times 

– So would be O(1) cost amortized… 

– (considered too fiddly to deamortize when I implemented) 

 Multithreaded/double buffered approach could simplify 
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Decrement Counts: linked list approach 

 Linked list approach (Demaine et al. 02): 

– Keep elements in a list sorted by frequency 

– Store the difference between successive items 

– Decrement now only affects the first item 

 But increments are more complicated: 

– Keep elements with same frequency in a group 

– Since we only increase count by 1, move to next group 

 Increments and decrements now take time O(1) but: 

– Non-standard, lots of cases (housekeeping) to handle 

– Forward and backward pointers in circular linked lists 

– Significant space overhead (about 6 pointers per item) 
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Overwrite min 

 Could also adapt the linked list approach 

– Keep items in sorted order, overwrite current min 

 Findmin is a more standard data structure problem 

– Could use a minheap (binary, binomial, fibonacci…) 

– Increments easy: update and reheapify O(log k) 

 Probably faster, since only adding one to the count 

– All operations O(log k) worst case, but may be faster “typically”: 

 Heap property can often be restored locally 

 Head of heap likely to be in cache 

 Access pattern non-uniform? 
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Experimental Comparison 

 Implementation study (several years old now) 

– Best effort implementations in C (use a different language now?) 

– All low-level data structures manually implemented 
(using manual memory management) 

– http://hadjieleftheriou.com/frequent-items/index.html 

 Experimental comparison highlights some differences not 
apparent from analytic study 

– E.g. algorithms are often more accurate than worst-case analysis 

– Perhaps because real inputs are not worst-case 

 Compared on a variety of web, network and synthetic data 
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Frequent Algorithms Experiments 

 Two implementations of SpaceSaving (SSL, SSH) achieve 
perfect accuracy in small space (10KB – 1MB) 

 Misra Gries (F) has worse accuracy: different estimator used 

 Very fast: 20M – 30M updates per second 

– Heap seems faster than linked list approach 
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Frequent Algorithms Summary 

 These algorithms very efficient for arrivals-only case 

– Use O(1/e) space, guarantee eN accuracy 

– Very fast in practice (many millions of updates per second) 

 Similar algorithms, but a surprisingly clear “winner” 

– Over many data sets, parameter settings, SpaceSaving 
algorithm gives appreciably better results 

 Many implementation details even for simple algorithms 

– “Find if next item is monitored”: search tree, hash table…? 

– “Find item with smallest count”: heap, linked lists…? 

 Not much room left for improvement in core algorithm? 

– Maybe more explicitly model input distributions (skewed)? 



Ready for prime time? 
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Streaming in practice: Packet stream analysis 

 AT&T Gigascope / GS tool: stream data analysis 

– Developed since early 2000s 

– Based on commodity hardware + Endace packet capture cards 

 High-level (SQL like) language to express continuous queries 

– Allows “User Defined Aggregate Functions” (UDAFs) plugins 

– Sketches in gigascope since 2003 at network line speeds (Gbps) 

– Flexible use of streaming algs to summarize behaviour in groups 

– Rolled into standard query set for network monitoring 

– Software-based approach to attack, anomaly detection 

 Current status: latest generation of GS in production use at AT&T 
Also in Twitter analytics, Yahoo, other query log analysis tools 
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More Recent Progress 

[Anderson et al ’17] report their experience at Yahoo! 

 Delete min operation can be amortized over multiple steps 

 Instead of deleting based on min of k, used median of 2k counts 

 Estimate median by sampling rather than quickselect 

 May be seen as similar to a merge and prune approach 

 Several times faster again than heap-based method 

 Moderately increased error  
compared to delete min 

 Java sketch library:  
https://datasketches.github.io/ 
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Conclusions 

 Finding the frequent items is one of the most studied 
problems in data streams 

– Continues to intrigue researchers (for better or worse) 

– Many variations proposed (for weighted or negative updates) 

– Algorithms have been deployed in Google, AT&T, elsewhere… 

– New variants continue to be suggested 

 Other streaming primitives have been similarly engineered 

– E.g. Bloom Filters, Hyperloglog (Heule et al ‘13), Quantiles 

– More general sketches that can handle deletions and insertions 

 Areas for more work:  

– Allow easier composition of algorithms 

– Adapt to new models (parallel, distributed, FPGA/GPU) 


