
Engineering Streaming
Algorithms

Graham Cormode

University of Warwick

G.Cormode@Warwick.ac.uk

Computational scalability and “big” data

 Most work on massive data tries to scale up the computation

 Many great technical ideas:

– Use many cheap commodity devices

– Accept and tolerate failure

– Move code to data, not vice-versa

– MapReduce: BSP for programmers

– Break problem into many small pieces

– Add layers of abstraction to build massive DBMSs and warehouses

– Decide which constraints to drop: noSQL, BASE systems

 Scaling up comes with its disadvantages:

– Expensive (hardware, equipment, energy), still not always fast

 This talk is not about this approach!
2

Engineering Streaming Algorithms

Downsizing data

 A second approach to computational scalability:
scale down the data as it is seen!

– A compact representation of a large data set

– Capable of being analyzed on a single machine

– What we finally want is small: human readable analysis / decisions

– Necessarily gives up some accuracy: approximate answers

– Often randomized (small constant probability of error)

– Much relevant work: samples, histograms, wavelet transforms

 Complementary to the first approach: not a case of either-or

 Some drawbacks:

– Not a general purpose approach: need to fit the problem

– Some computations don’t allow any useful summary
3

Engineering Streaming Algorithms

Outline for the talk

 The frequent items problem

 Engineering streaming algorithms for frequent items

– From algorithms to prototype code

– From prototype code to deployed code

 Next steps: robust code, other hardware targets

 Bulk of the talk is on two (actually, one) very simple algorithms

– Experience and reflections on a ‘simple’ implementation task

4
Engineering Streaming Algorithms

Engineering Streaming Algorithms
5

The Frequent Items Problem

 The Frequent Items Problem (aka Heavy Hitters):
given stream of N items, find those that occur most frequently

– E.g. Find all items occurring more than 1% of the time

 Formally “hard” in small space, so allow approximation

 Find all items with count  N, none with count < (-e)N

– Error 0 < e < 1, e.g. e = 1/1000

– Related problem: estimate each frequency with error eN

Engineering Streaming Algorithms
6

Why Frequent Items?

 A natural question on streaming data

– Track bandwidth hogs, popular destinations etc.

 The subject of much streaming research

– Scores of papers on the subject

 A core streaming problem

– Many streaming problems connected to frequent items
(itemset mining, entropy estimation, compressed sensing)

 Many practical applications deployed

– In search log mining, network data analysis, DBMS optimization

Engineering Streaming Algorithms
7

Misra-Gries Summary (1982)

 Misra-Gries (MG) algorithm finds up to k items that occur
more than 1/k fraction of the time in the input

 Update: Keep k different candidates in hand. For each item:

– If item is monitored, increase its counter

– Else, if < k items monitored, add new item with count 1

– Else, decrease all counts by 1

7

5

1 2 1

4

6

Engineering Streaming Algorithms
8

Frequent Analysis

 Analysis: each decrease can be charged against k arrivals of
different items, so no item with frequency N/k is missed

 Moreover, k=1/e counters estimate frequency with error eN

– Not explicitly stated until later [Bose et al., 2003]

 Some history: First proposed in 1982 by Misra and Gries,
rediscovered twice in 2002

– Later papers discussed how to make fast implementations

Engineering Streaming Algorithms
9

Merging two MG Summaries [ACHPWY ‘12]

 Merge algorithm:

– Merge the counter sets in the obvious way

– Take the (k+1)th largest counter = Ck+1, and subtract from all

– Delete non-positive counters

– Sum of remaining counters is M12

 This keeps the same guarantee as Update:

– Merge subtracts at least (k+1)Ck+1 from counter sums

– So (k+1)Ck+1  (M1 + M2 – M
12

)

– By induction, error is
((N1-M1) + (N2-M2) + (M1+M2–M12))/(k+1)=((N1+N2) –M12)/(k+1)

(prior error) (from merge) (as claimed)

Engineering Streaming Algorithms
10

SpaceSaving Algorithm

 “SpaceSaving” (SS) algorithm [Metwally, Agrawal, El Abaddi 05]
is similar in outline

 Keep k = 1/e item names and counts, initially zero
Count first k distinct items exactly

 On seeing new item:
– If it has a counter, increment counter

– If not, replace item with least count, increment count

7

5

1 2 3

Engineering Streaming Algorithms
11

SpaceSaving Analysis

 Smallest counter value, min, is at most en

– Counters sum to n by induction

– 1/e counters, so average is en: smallest cannot be bigger

 True count of an uncounted item is between 0 and min

– Proof by induction, true initially, min increases monotonically

– Hence, the count of any item stored is off by at most en

 Any item x whose true count > en is stored

– By contradiction: x was evicted in past, with count  mint

– Every count is an overestimate, using above observation

– So est. count of x > en  min  mint, and would not be evicted

 So: Find all items with count > en, error in counts  en

Two algorithms, or one?

 A belated realization: SS and MG are the same algorithm!

– Can make an isomorphism between the memory state

 Intuition: “overwrite the min” is conceptually equivalent to
delete elements with (decremented) zero count

 The two perspectives on the same algorithm lead to different
implementation choices

Engineering Streaming Algorithms
12

7

5

1 2 1

4

6 7

5

1 2 3

Implementation Issues

 These algorithms are really simple, so should be easy… right?

 There is surprising subtlety in implementing them

 Basic steps:

– Lookup is current item stored? If so, update count

– If not:

 Find min weight item and overwrite it (SS)

 Decrement counts and delete zero weights (MG)

 Several implementation choices for each step

– Optimization goals: speed (throughput, latency) and space

– I discuss my implementation experience and current thoughts

Engineering Streaming Algorithms
13

Lookup Item

 Lookup: is current item stored

– The canonical dictionary data structure problem

 Misra Gries paper: use balanced search tree

– O(log k) worst case time to search

 Hash table: hash to O(k) buckets

– O(1) expected time, but now alg is randomized

 May have bad worst case performance?

– How to handle collisions and deletions?

 (My implementations used chaining)

– Could surely be further optimized…

 Use cuckoo hashing or other options?

 Can we use fact that table occupancy is guaranteed at most k?

 Engineering Streaming Algorithms
14

Decrement Counts

 Decrement counts could be done simply

– Iterate through all counts, subtract by one

– A blocking operation, O(k) time

 Proof of correctness means it happens < n/k times

– So would be O(1) cost amortized…

– (considered too fiddly to deamortize when I implemented)

 Multithreaded/double buffered approach could simplify

Engineering Streaming Algorithms
15

Decrement Counts: linked list approach

 Linked list approach (Demaine et al. 02):

– Keep elements in a list sorted by frequency

– Store the difference between successive items

– Decrement now only affects the first item

 But increments are more complicated:

– Keep elements with same frequency in a group

– Since we only increase count by 1, move to next group

 Increments and decrements now take time O(1) but:

– Non-standard, lots of cases (housekeeping) to handle

– Forward and backward pointers in circular linked lists

– Significant space overhead (about 6 pointers per item)

Engineering Streaming Algorithms

16

7

+2

+1

A

C

D

B

E

Hash

table

Overwrite min

 Could also adapt the linked list approach

– Keep items in sorted order, overwrite current min

 Findmin is a more standard data structure problem

– Could use a minheap (binary, binomial, fibonacci…)

– Increments easy: update and reheapify O(log k)

 Probably faster, since only adding one to the count

– All operations O(log k) worst case, but may be faster “typically”:

 Heap property can often be restored locally

 Head of heap likely to be in cache

 Access pattern non-uniform?

Engineering Streaming Algorithms
17

Engineering Streaming Algorithms
18

Experimental Comparison

 Implementation study (several years old now)

– Best effort implementations in C (use a different language now?)

– All low-level data structures manually implemented
(using manual memory management)

– http://hadjieleftheriou.com/frequent-items/index.html

 Experimental comparison highlights some differences not
apparent from analytic study

– E.g. algorithms are often more accurate than worst-case analysis

– Perhaps because real inputs are not worst-case

 Compared on a variety of web, network and synthetic data

http://hadjieleftheriou.com/frequent-items/index.html
http://hadjieleftheriou.com/frequent-items/index.html
http://hadjieleftheriou.com/frequent-items/index.html
http://hadjieleftheriou.com/frequent-items/index.html
http://hadjieleftheriou.com/frequent-items/index.html

Engineering Streaming Algorithms
19

Frequent Algorithms Experiments

 Two implementations of SpaceSaving (SSL, SSH) achieve
perfect accuracy in small space (10KB – 1MB)

 Misra Gries (F) has worse accuracy: different estimator used

 Very fast: 20M – 30M updates per second

– Heap seems faster than linked list approach

Engineering Streaming Algorithms
20

Frequent Algorithms Summary

 These algorithms very efficient for arrivals-only case

– Use O(1/e) space, guarantee eN accuracy

– Very fast in practice (many millions of updates per second)

 Similar algorithms, but a surprisingly clear “winner”

– Over many data sets, parameter settings, SpaceSaving
algorithm gives appreciably better results

 Many implementation details even for simple algorithms

– “Find if next item is monitored”: search tree, hash table…?

– “Find item with smallest count”: heap, linked lists…?

 Not much room left for improvement in core algorithm?

– Maybe more explicitly model input distributions (skewed)?

Ready for prime time?

Engineering Streaming Algorithms
21

Streaming in practice: Packet stream analysis

 AT&T Gigascope / GS tool: stream data analysis

– Developed since early 2000s

– Based on commodity hardware + Endace packet capture cards

 High-level (SQL like) language to express continuous queries

– Allows “User Defined Aggregate Functions” (UDAFs) plugins

– Sketches in gigascope since 2003 at network line speeds (Gbps)

– Flexible use of streaming algs to summarize behaviour in groups

– Rolled into standard query set for network monitoring

– Software-based approach to attack, anomaly detection

 Current status: latest generation of GS in production use at AT&T
Also in Twitter analytics, Yahoo, other query log analysis tools

22
Engineering Streaming Algorithms

More Recent Progress

[Anderson et al ’17] report their experience at Yahoo!

 Delete min operation can be amortized over multiple steps

 Instead of deleting based on min of k, used median of 2k counts

 Estimate median by sampling rather than quickselect

 May be seen as similar to a merge and prune approach

 Several times faster again than heap-based method

 Moderately increased error
compared to delete min

 Java sketch library:
https://datasketches.github.io/

Engineering Streaming Algorithms
23

Engineering Streaming Algorithms
24

Conclusions

 Finding the frequent items is one of the most studied
problems in data streams

– Continues to intrigue researchers (for better or worse)

– Many variations proposed (for weighted or negative updates)

– Algorithms have been deployed in Google, AT&T, elsewhere…

– New variants continue to be suggested

 Other streaming primitives have been similarly engineered

– E.g. Bloom Filters, Hyperloglog (Heule et al ‘13), Quantiles

– More general sketches that can handle deletions and insertions

 Areas for more work:

– Allow easier composition of algorithms

– Adapt to new models (parallel, distributed, FPGA/GPU)

