SIPping from the firehose: Streaming Interactive Proofs for verifying computations

Graham Cormode

graham@research.att.com

Amit Chakrabarti (Dartmouth) Andrew McGregor (U Mass Amherst) Michael Mitzenmacher (Harvard) Justin Thaler (Harvard) Ke Yi (HKUST)

Data Streams

- The data stream model requires computation in small space with a single pass over input data
 - Models large network data, database transactions
- Fundamental challenge of data stream analysis: Too much information to store or transmit

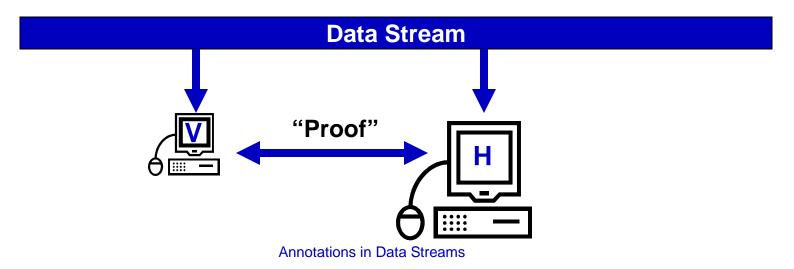
- So process data as it arrives: one pass, small space: the *data* stream approach.
- Approximate answers to many questions are OK, if there are guarantees of result quality
 - Parameters: space needed, time per update as function of approximation accuracy, probability of error

Data Stream Algorithms

- Many problems solved efficiently in streaming model
 - F_0 : How many distinct items (out of 10¹² possible)?
 - HH: Which items occur most frequently?
 - H: What is the (empirical) entropy of the observed dbn?
- But many other natural problems are "hard" in this model
 - Hardness means large amount of space is needed
 - E.g. Was a particular item in the stream?
 - E.g. What is inner product of two vectors?
- Lower bounds proved via communication complexity
 - Independent of any assumptions on computational power

Streaming Interactive Proofs

- "Practical" solution: outsource to a more powerful "helper"
 - Fundamental problem: how to be sure that the helper is being honest?
- Helper provides "proof" of the correct answer
 - Ensure that "verifier" has very low probability of being fooled
 - Related to communication complexity Arthur-Merlin model, and Algebrization, with additional streaming constraints



Motivating Applications

Cloud Computing

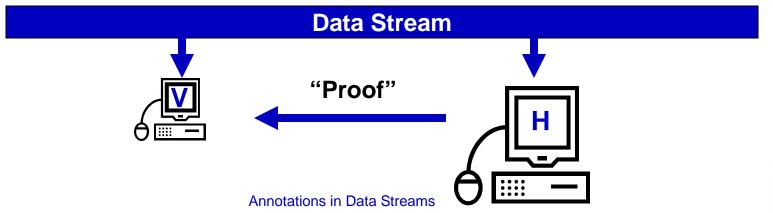
- To save money, and energy, outsource data to a 3rd party
- But want to know they are honest, without duplicating!
- Use a streaming interactive proof to verify computation

Trusted Hardware

- Hardware components within a (distributed) system (e.g. video card, additional computing cores)
- Use streaming interactive proofs for (mutual) trust

One Round Model

- One-round model [Chakrabarti, C, McGregor 09]
 - Define protocol with help function h over input length N
 - Maximum length of h over all inputs defines help cost, H
 - Verifier has V bits of memory to work in
 - Verifier uses randomness so that:
 - For all help strings, $Pr[output \neq f(x)] \le \delta$
 - Exists a help string so that $Pr[output = f(x)] \ge 1-\delta$
 - H = 0, V = N is trivial; but H = N, V = polylog N is not



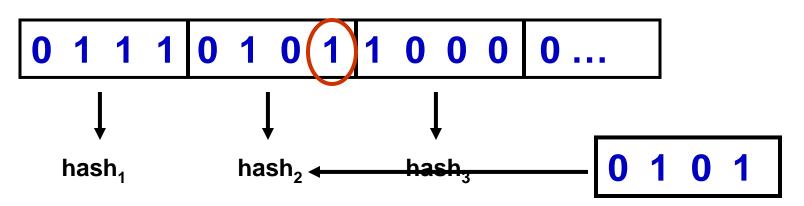
Index Problem

- Fundamental (hard) problem in data streams
 - Input is a length N binary string x followed by index y
 - Desired output is x[y]
 - Requires $\Omega(N)$ space even probabilistically
- Result: can obtain protocols for HV = O(N log N)
 - E.g. H = O(\sqrt{N}), V= O($\sqrt{N} \log N$)
 - $HV = \Omega(N)$ is necessary

Lower Bound

- Show that a protocol implies solution in traditional model
- Pick k so that Pr[Binomial(k,1/3) > k/2] < 2^{-H}/3
- Start protocol independently k = O(H) times in parallel
 - Cost in bits is k * V = O(HV)
- Search for a H bit help string so that majority of instances output 0 or 1, and output that value.
- If protocol is correct with δ < 1/3, must exist some help string that does not 'fail' w/prob 2/3
 - And low probability that it leads to the wrong output value
- By choice of k, 2^H strings each fail with prob 2^{-H}/3
 - Gives a traditional protocol with cost O(HV), must be $\Omega(N)$

Index Upper Bound



- Divide the bit string into blocks of H bits
- Verifier remembers a hash on each block
- After seeing index, Helper replays its block
- Verifier checks hash agrees, and outputs x[y]
- Cost: H bits of help, V = N/H hashes
 - So HV = O(N log N), any point on tradeoff is possible

Median Finding

- Similar ideas allow tracking any vector
- Use to find median of m items $\in \{1 ... N\}$
- Define rank vector s.t. rank[i] = number of items seen < i</p>
- Divide rank[] into blocks of H counters
 - Can update hash of a block without knowing value of rank[i]
- Helper claims median is M, and shows rank[M], rank[M+1]
 - Verifier checks that rank[M] \leq N/2, rank[M+1] \geq N/2
- Gives solution for any HV s.t. $HV = \Omega(N \log N)$

Frequency Moments

- Given a sequence of m items, let w_i denote frequency of item i
- Define $F_k = \sum_i |w_i|^k$
 - Core computation in data streams
 - Requires $\Omega(N)$ space to compute exactly
 - Need polynomial space to approximate for k>2
- Results: for h,v s.t. (hv) > N, exists a protocol with H = k^2 h log m, V = O(k v log m) to compute F_k
 - Lower bounds: $HV = \Omega(N)$ necessary for exact, and $HV = \Omega(N^{1-5/k})$ for approximate F_k computation

Frequency Moments

- Map [N] to h × v array
- Interpolate entries in array as a polynomial f(x,y)
- Verifier picks random r, evaluates f(r, j) for j ∈ [v]
- Helper sends $s(x) = \sum_{j \in [v]} f(x, j)^k$ (degree kh)
 - Verifier checks $s(r) = \sum_{j \in [v]} f(r,j)^k$
 - Output $F_k = \sum_{i \in [h]} s(i)$ if test passed
- Probability of failure small if evaluated over large enough field

		•	
3	7	1	2
0	8	5	9
1	1	1	0

1

0

3712085911

Streaming Computation

- Must evaluate f(r,i) incrementally as f() is defined by stream
- Structure of polynomial means updates to (a,b) cause

 $f(r,i) \leftarrow f(r,i) + p_{a,b}(r,i)$

where $p_{a,b}(x,y) = \prod_{i \in [h] \setminus \{a\}} (x-i)(a-i)^{-1} \cdot \prod_{j \in [v] \setminus \{b\}} (y-j)(b-j)^{-1}$

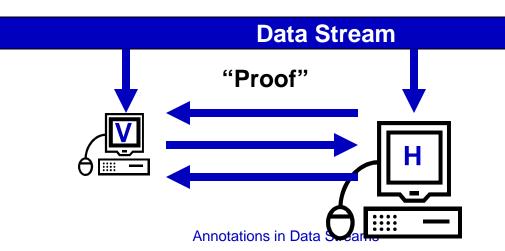
 Can be computed quickly, using appropriate precomputed look-up tables

Applications of Frequency Moments

- Inner products: $x \cdot y = \frac{1}{2} (F_2(x+y) (F_2(x) + F_2(y)))$
 - Adapt previous protocol to verify directly
- Approximate F₂:
 - Methods known to $(1\pm\epsilon)$ approximate F_2 by computing F_2 of a random projection
 - Random projection computable in small space
 - Gives $HV = \Theta(1/\epsilon^2)$ tradeoff
- Approximate $F_{\infty} = \max_{i} m_{i}$:
 - Observe that $F_{\infty}^{t} \leq F_{t} \leq N F_{\infty}^{t}$
 - Pick t = log N/log (1+ ε) to get (1+ ε) approx to F_{∞}
 - Gives HV = $\Theta(1/\epsilon^3 \text{ poly-log N})$ tradeoff

Multi-Round Protocol

- Advantage of one-round protocols: Helper can provide proof without direct interaction (e.g. publish + go offline)
- Disadvantage: Resources still polynomial in input size
- Multi-round protocol can improve exponentially [C, Yi 10]:
 - Helper and Verifier follow communication protocol
 - H now denotes upper bound on total communication
 - V is verifier's space, study tradeoff between H and V as before



Multi-Round Index Protocol

- Basic idea: V keeps hash of whole stream, use helper to help check hash of stream containing claimed answer
 - Verifier imposes a binary tree, and a (secret) hash for each level
 - Round 1: Helper sends answer, and its sibling
 Verifier sends hash for leaf level
 - Round 2: Helper sends hash of answer's parent's sibling
 Verifier sends hash for next level...
 - Round log N: Verifier checks root hash
- Correctness: Helper can only cheat via hash collisions—but doesn't know hash function until too late to cheat
 - Small chance over log N levels

Data Stream

Multi-Round Index Protocol

- Challenge: Verifier must compute hash of root in small space
- h(root) $= h_{\log N}(h_{\log N-1}(\text{left half}), h_{\log N-1}(\text{right half}))$ $= h_{\log N}(h_{\log N} \dots h_2 (h_1 (x_1, x_2) \dots)))$
- Solution: appropriate choice of each hash function
 - $h_i(x, y) = x + r_i y \mod p$ gives sufficient security (1/p log N error)
 - Then h(root) = \sum_{i} ($w_i \prod_{j=1}^{\log N} r_j^{\operatorname{bit}(j,i)}$) where bit(j,i) = i'th bit of j
 - So each update requires only log N field multiplications
- Final bounds: O(log² N) communication, O(log² N) space

Multi-Round Frequency Moments

Now index data using $\{0,1\}^d$ in $d = \log N$ dimensional space

- Verifier picks one $(r_1 ... r_d) \in [p]^d$, and evaluates $f^k(r_1, r_2, ... r_d)$
- Round 1: Helper sends $g_1(x_1) = \sum_{x_2...x_d} f^k(x_1, x_2...x_d)$, V sends r_1
- Round i: Helper sends $g_i(x_i) = \sum_{x_{i+1}...x_d} f^k(r_1, r_2...r_{i-1}, x_i, x_{i+1}...x_d)$ Verifier checks $g_{i-1}(r_{i-1}) = g_i(0) + g_i(1)$, sends r_i
- Round d: Helper sends $g_d(x_d) = f^k(r_1, \dots, r_{d-1}, x_d)$ Verifier checks $g_d(r_d) = f^k(r_1, r_2, \dots, r_d)$

3712085911

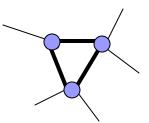
37

208591110...

Multi-Round Frequency Moments

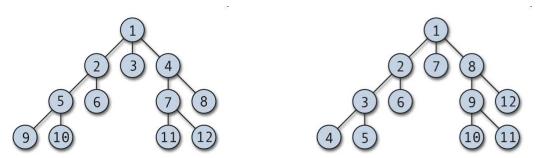
- Correctness: helper can't cheat last round without knowing r_d
- Then can't cheat round i without knowing r_i...
 - Similar to protocols from "traditional" Interactive Proofs
- Inductive proof, conditioned on each later round succeeding
- Bounds: O(k² log N) total communication, O(k log N) space
- V's incremental computation possible in small space, via $\prod_{j=1}^{d} (r_j + bit(j,i)(1-2r_j))$
- Intermediate polynomials relatively cheap for helper to find

Graph Problems



- Count the number of triangles in a graph [CCM09]
 - $HV = \Omega(N^2)$ is necessary in one round
 - $H = O(N^2)$, $V = O(\log N)$ via verifying matrix multiplication
 - $HV = O(N^3)$ tradeoff via Frequency Moments in one round
- Connectivity and Bipartite Perfect Matchings with V = O(log N) space in one round
 - Different witnesses presented for positive/negative answers
 - No tradeoffs known

Graph Problems



H=|E|, V=log|E| graph protocols [C, Mitzenmacher, Thaler 10]

- BFS: List edges in BFS order, nodes with depth information
- **DFS**: List edges in DFS order, with information about stack
- MST: List edges in weight order, with component information
- Maximum matching: prove matching upper and lower bounds
- Connection to unimodular integer programs
 - Can formulate many flow problems as unimodular IPs
 - Use verification on matching feasible solutions for primal/dual

Vector Problems

- Find and verify frequent items with V = O(log N) space
 - Complexity comes from verifying none are missing
- F₀: Count the number of distinct items
 - $HV = O(N^{2/3})$ by extension of arguments for F_k
 - In parallel use HH protocol to remove very high frequency items
- F_∞: Find the most frequently occurring item
 - "Harder" than finding just items above a frequency threshold
 - $HV = O(N^{2/3})$, solution similar to F_0 approach

Open Challenges

- Lower bounds for multi-round versions of the protocols
 - May need new communication complexity models
- Characterize problems that can be solved in this model
 - NP is known to be solvable with H = poly(N), V = log N [Lipton 90]
 - But we want H=O(N), and ideally H=o(N)
- Use these protocols
 - Protocols seem practical, but are they compelling?
 - For what problems are protocols most needed?

