
SIPping from the firehose:
Streaming Interactive Proofs
for verifying computations

Graham Cormode

graham@research.att.com

Amit Chakrabarti (Dartmouth)

Andrew McGregor (U Mass Amherst)

Michael Mitzenmacher (Harvard)

Justin Thaler (Harvard)

Ke Yi (HKUST)

Annotations in Data Streams2

Data Streams

� The data stream model requires computation in small space

with a single pass over input data

– Models large network data, database transactions

� Fundamental challenge of data stream analysis:

Too much information to store or transmit

� So process data as it arrives: one pass, small space: the data

stream approach.

� Approximate answers to many questions are OK, if there are

guarantees of result quality

– Parameters: space needed, time per update as function of

approximation accuracy, probability of error

Annotations in Data Streams3

Data Stream Algorithms

� Many problems solved efficiently in streaming model

– F0: How many distinct items (out of 1012 possible)?

– HH: Which items occur most frequently?

– H: What is the (empirical) entropy of the observed dbn?

� But many other natural problems are “hard” in this model

– Hardness means large amount of space is needed

– E.g. Was a particular item in the stream?

– E.g. What is inner product of two vectors?

� Lower bounds proved via communication complexity

– Independent of any assumptions on computational power

Annotations in Data Streams4

Streaming Interactive Proofs

� “Practical” solution: outsource to a more powerful “helper”

– Fundamental problem: how to be sure that the helper is being

honest?

� Helper provides “proof” of the correct answer

– Ensure that “verifier” has very low probability of being fooled

– Related to communication complexity Arthur-Merlin model, and

Algebrization, with additional streaming constraints

Data Stream

H
V “Proof”

Annotations in Data Streams5

Motivating Applications

� Cloud Computing

– To save money, and energy, outsource data to a 3rd party

– But want to know they are honest, without duplicating!

– Use a streaming interactive proof to verify computation

� Trusted Hardware

– Hardware components within a (distributed) system

(e.g. video card, additional computing cores)

– Use streaming interactive proofs for (mutual) trust

Annotations in Data Streams6

One Round Model

� One-round model [Chakrabarti, C, McGregor 09]

– Define protocol with help function h over input length N

– Maximum length of h over all inputs defines help cost, H

– Verifier has V bits of memory to work in

– Verifier uses randomness so that:

� For all help strings, Pr[output ≠ f(x)] ≤ δ
� Exists a help string so that Pr[output = f(x)] ≥ 1-δ

– H = 0, V = N is trivial; but H = N, V = polylog N is not

Data Stream

H
V “Proof”

Annotations in Data Streams7

Index Problem

� Fundamental (hard) problem in data streams

– Input is a length N binary string x followed by index y

– Desired output is x[y]

– Requires Ω(N) space even probabilistically

� Result: can obtain protocols for HV = O(N log N)

– E.g. H = O(√N), V= O(√N log N)

– HV = Ω(N) is necessary

0 1 1 1 0 1 0 1 1 0 0 0 0 … 2010

Annotations in Data Streams8

Lower Bound

� Show that a protocol implies solution in traditional model

� Pick k so that Pr[Binomial(k,1/3) > k/2] < 2-H/3

� Start protocol independently k = Θ(H) times in parallel

– Cost in bits is k * V = O(HV)

� Search for a H bit help string so that majority of instances

output 0 or 1, and output that value.

� If protocol is correct with δ < 1/3, must exist some help string

that does not ‘fail’ w/prob 2/3

– And low probability that it leads to the wrong output value

� By choice of k, 2H strings each fail with prob 2-H/3

– Gives a traditional protocol with cost O(HV), must be Ω(N)

Annotations in Data Streams9

Index Upper Bound

� Divide the bit string into blocks of H bits

� Verifier remembers a hash on each block

� After seeing index, Helper replays its block

� Verifier checks hash agrees, and outputs x[y]

� Cost: H bits of help, V = N/H hashes

– So HV = Ο(N log N), any point on tradeoff is possible

0 1 1 1 0 1 0 1 1 0 0 0 0 …

hash 1 hash 2 hash 3 0 1 0 1

Annotations in Data Streams10

Median Finding

� Similar ideas allow tracking any vector

� Use to find median of m items ∈ {1 … N}

� Define rank vector s.t. rank[i] = number of items seen < i

� Arrival of item j means rank[i] � rank[i] + 1 for all i > j

� Divide rank[] into blocks of H counters

– Can update hash of a block without knowing value of rank[i]

� Helper claims median is M, and shows rank[M], rank[M+1]

– Verifier checks that rank[M] ≤ N/2, rank[M+1] ≥ N/2

� Gives solution for any HV s.t. HV = Ω(N log N)

Annotations in Data Streams11

Frequency Moments

� Given a sequence of m items, let wi denote frequency of item i

� Define Fk = ∑i |wi|
k

– Core computation in data streams

– Requires Ω(N) space to compute exactly

– Need polynomial space to approximate for k>2

� Results: for h,v s.t. (hv) > N, exists a protocol with

H = k2 h log m, V = O(k v log m) to compute Fk

– Lower bounds: HV = Ω(N) necessary for exact,

and HV = Ω(N1-5/k) for approximate Fk computation

Annotations in Data Streams12

Frequency Moments

� Map [N] to h × v array

� Interpolate entries in array as a polynomial f(x,y)

� Verifier picks random r, evaluates f(r, j) for j ∈ [v]

� Helper sends s(x) = ∑j∈[v] f(x, j)k (degree kh)

– Verifier checks s(r) = ∑j∈[v] f(r,j)k

– Output Fk = ∑i ∈ [h] s(i) if test passed

� Probability of failure small if evaluated

over large enough field

3 7 1 2

0 8 5 9

1 1 1 0

3 7 1 2 0 8 5 9 1 1 1 0

Annotations in Data Streams13

Streaming Computation

� Must evaluate f(r,i) incrementally as f() is defined by stream

� Structure of polynomial means updates to (a,b) cause

f(r,i) � f(r,i) + pa,b(r,i)

where pa,b(x,y) = ∏i ∈ [h]\{a} (x-i)(a-i)-1⋅∏j ∈ [v]\{b} (y-j)(b-j)-1

� Can be computed quickly, using appropriate precomputed

look-up tables

Annotations in Data Streams14

Applications of Frequency Moments

� Inner products: x ⋅ y = ½ (F2(x+y) – (F2(x) +F2(y)))

– Adapt previous protocol to verify directly

� Approximate F2:

– Methods known to (1± ε) approximate F2 by computing F2 of a

random projection

– Random projection computable in small space

– Gives HV = Θ(1/ε2) tradeoff

� Approximate F∞ = maxi mi :

– Observe that F∞
t ≤ Ft ≤ N F∞

t

– Pick t = log N/log (1+ε) to get (1+ε) approx to F∞

– Gives HV = Θ(1/ε3 poly-log N) tradeoff

Annotations in Data Streams15

Multi-Round Protocol

� Advantage of one-round protocols: Helper can provide proof

without direct interaction (e.g. publish + go offline)

� Disadvantage: Resources still polynomial in input size

� Multi-round protocol can improve exponentially [C, Yi 10]:

– Helper and Verifier follow communication protocol

– H now denotes upper bound on total communication

– V is verifier’s space, study tradeoff between H and V as before

Data Stream

H
V

“Proof”

Annotations in Data Streams16

Multi-Round Index Protocol

� Basic idea: V keeps hash of whole stream, use helper to help

check hash of stream containing claimed answer

– Verifier imposes a binary tree, and a (secret) hash for each level

– Round 1: Helper sends answer, and its sibling

Verifier sends hash for leaf level

– Round 2: Helper sends hash of answer’s parent’s sibling

Verifier sends hash for next level…

– Round log N: Verifier checks root hash

� Correctness: Helper can only cheat via

hash collisions—but doesn’t know

hash function until too late to cheat

– Small chance over log N levels Data Stream

Claimed answer

Annotations in Data Streams17

Multi-Round Index Protocol

� Challenge: Verifier must compute hash of root in small space

� h(root) = hlog N(hlog N – 1(left half), hlog N – 1(right half))

= hlog N(hlog N … h2 (h1 (x1, x2) ….)))

� Solution: appropriate choice of each hash function

– hi(x, y) = x + ri y mod p gives sufficient security (1/p log N error)

– Then h(root) = ∑i (wi ∏j=1
log N rj

bit(j,i)) where bit(j,i) = i’th bit of j

– So each update requires only log N field multiplications

� Final bounds: O(log2 N) communication, O(log2 N) space

Annotations in Data Streams18

Multi-Round Frequency Moments

Now index data using {0,1}d in d = log N dimensional space

� Verifier picks one (r1 … rd) ∈ [p]d, and evaluates fk(r1, r2, … rd)

� Round 1: Helper sends g1(x1)=∑x2…xd
fk(x1, x2…xd), V sends r1

� Round i: Helper sends gi(xi) = ∑xi+1…xd
fk(r1, r2…ri-1, xi, xi+1…xd)

Verifier checks gi-1(ri-1) = gi(0) + gi(1), sends ri

� Round d: Helper sends gd(xd) = fk(r1, … rd-1, xd)

Verifier checks gd(rd) = fk(r1, r2, … rd)

3 7 1 2 0 8 5 9 1 1 1 0 …

3 7 1 2 0 8 5 9 1 1 1 0

Annotations in Data Streams19

Multi-Round Frequency Moments

� Correctness: helper can’t cheat last round without knowing rd

� Then can’t cheat round i without knowing ri…

– Similar to protocols from “traditional” Interactive Proofs

� Inductive proof, conditioned on each later round succeeding

� Bounds: O(k2 log N) total communication, O(k log N) space

� V’s incremental computation possible in small space, via

∏j=1
d (rj + bit(j,i)(1-2rj))

� Intermediate polynomials relatively cheap for helper to find

Annotations in Data Streams20

Graph Problems

� Count the number of triangles in a graph [CCM09]

– HV = Ω(N2) is necessary in one round

– H = O(N2), V = O(log N) via verifying matrix multiplication

– HV = O(N3) tradeoff via Frequency Moments in one round

� Connectivity and Bipartite Perfect Matchings

with V = O(log N) space in one round

– Different witnesses presented for positive/negative answers

– No tradeoffs known

Annotations in Data Streams21

Graph Problems

� H=|E|, V=log|E| graph protocols [C, Mitzenmacher, Thaler 10]

– BFS: List edges in BFS order, nodes with depth information

– DFS: List edges in DFS order, with information about stack

– MST: List edges in weight order, with component information

– Maximum matching: prove matching upper and lower bounds

� Connection to unimodular integer programs

– Can formulate many flow problems as unimodular IPs

– Use verification on matching feasible solutions for primal/dual

Annotations in Data Streams22

Vector Problems

� Find and verify frequent items with V = O(log N) space

– Complexity comes from verifying none are missing

� F0: Count the number of distinct items

– HV = O(N2/3) by extension of arguments for Fk

– In parallel use HH protocol to remove very high frequency items

� F∞: Find the most frequently occurring item

– “Harder” than finding just items above a frequency threshold

– HV = O(N2/3), solution similar to F0 approach

Annotations in Data Streams23

Open Challenges

� Lower bounds for multi-round versions of the protocols

– May need new communication complexity models

� Characterize problems that can be solved in this model

– NP is known to be solvable with H = poly(N), V = log N [Lipton 90]

– But we want H=O(N), and ideally H=o(N)

� Use these protocols

– Protocols seem practical, but are they compelling?

– For what problems are protocols most needed?

