You can check others' work more quickly than doing it yourself

Graham Cormode
G.Cormode@warwick.ac.uk

Chris Hickey (Warwick)
Checksums for Computation

- Checksums on data are used to ensure correct transmission
 - If the checksums agree then (almost certainly) the data matches
- What could we do if we had **checksums for computation**?
 - Check that an algorithm has provided the expected answer
 - Check that a hardware accelerator has not made a mistake
 - Check that the cloud has not tried to cheat us!

![Diagram of Data Stream]
Checksums for Computation Do Exist!

- There are techniques to quickly check arbitrary computation, but:
 - They need the computation to be written as an arithmetic circuit
 - They can be quite slow and require a lot of rounds of interaction
- There are faster techniques to check specific computations
- Example: Matrix multiplication
 - Given $n \times n$ matrices A and B, compute checksums for A, B and AB
 - Computing $h(A)$, $h(B)$ takes time linear in number of nonzero entries
 - Computing $h(AB)$ from $h(A)$, $h(B)$ takes time $O(n)$
 - Compared to computing AB, takes time $\sim O(n^{2.8})$
Verifying Data Analysis

- Recent work [C, Hickey 18] shows how to apply this model to:
 - (Least Squares) Regression
 - Principal Component Analysis
 - Linear Discriminant Analysis Classifier

- Technical challenges:
 - Have to tolerate rounding errors to finite precision
 - Need to verify that vectors are approximate eigenvectors
 - Build primitives to check matrix inversion, matrix decomposition
Challenges to Data Engineering

- Incorporate checksums for computation into real systems
 - Outsourced computations return mathematical proof of correctness?
 - Internal checks within systems?
- Generalize these techniques for a wider range of problems
 - Check Machine learning models are (approximately) optimal
 - Verify result of database queries (see [vSQL 2017])
- Optimize, extend and simplify
 - When can proof be provided as a byproduct of computation?
 - Allow efficient composition of computations?
 - Other models: interactive proofs, multiple provers?