Some Sketchy Results

Graham Cormode

graham@research.att.com

Intro to Sketches

- "Sketch" data structures are compact, randomized summaries
- Term coined by Broder in 1997
 - Exact interpretation varies
- Common sketch properties:
 - Approximate a holistic function
 - Sublinear in size of the input
 - Linear transform of input
 - Can easily merge sketches

Compact summary Limited independence Linear transform

Sketch Types

- (Linear) Fingerprints for equality tests (~1981)
 - Gives updatable randomized equality tests in constant space
- Bloom filters for set membership queries (1970)
 - Can be made linear transforms of the input
- Min-wise hashes for (Jaccard) similarity and sampling (~1997)
 - Not linear, but mergeable / distributable
- Counting sketches summarize distributions (1996, 99, 02, 03)
 - Count sketch, AMS, Count-min etc.
- Count-Distinct sketches (1983, 2001, 2002)
 - Flajolet-Martin, Gibbons-Tirthapura, BJKST etc.

Sketches in the Field

- Sketches have been widely used in many applications
- Why are they successful?
 - Often simple to implement
 - Solve foundational problems well
 - Can seem magical on first encounter
- Why aren't they **more successful**?
 - Primarily: not yet fully mainstream
- What can we do to promote their success?

Count-Min Sketch

- Simple sketch idea, can be used within many different tasks
- Model input data as a vector x of dimension m
- Creates a small summary as an array of w × d in size
- Use d hash function to map vector entries to [1..w]
- (Implicit) linear transform of input vector, so flexible

Count-Min Sketch Structure

- Each entry in vector x is mapped to one bucket per row.
- Merge two sketches by entry-wise summation
- Estimate x[j] by taking min_k CM[k,h_k(j)]
 - Guarantees error less than εF_1 in size $O(1/\varepsilon \log 1/\delta)$ (Markov ineq)
 - Probability of more error is less than 1- δ

[C, Muthukrishnan '04]

Count-Min for "Heavy Hitters"

- After sequence of items, can estimate f_i for any i (up to εN)
- Heavy Hitters are all those i s.t. $f_i > \phi N$
- Slow way: test every i after creating sketch
- Faster way: test every i after it is seen, and keep largest f's
- Alternate way:
 - keep a binary tree over the domain of input items, where each node corresponds to a subset
 - keep sketches of all nodes at same level
 - descend tree to find large frequencies, discarding branches with low frequency

F₀ Sketch

F₀ is the number of distinct items in a multiset

- a fundamental quantity with many applications
- [BJKST02] Pick random hash over items, h: $[m] \rightarrow [m^3]$

- For each item i, compute h(i), and track the t distinct items achieving the smallest values of h(i)
 - Note: whenever i occurs, h(i) is same
 - Let v_t = t'th smallest value of h(i) seen.
- If $F_0 < t$, give exact answer, else estimate $F'_0 = tm^3/v_t$
 - $v_t/m^3 \approx$ fraction of hash domain occupied by t smallest
 - Analysis shows relative error $(1 \pm 1/Vt)$ via Chebyshev bound

F₀ Sketch Properties

• Space cost for $1 \pm \varepsilon$ error:

- Store $t=1/\epsilon^2$ hash values, so $O(1/\epsilon^2 \log m)$ bits
- Can improve to $O(1/\epsilon^2 + \log m)$ with additional tricks

Time cost:

- Hash i, update v_t and list of t smallest if necessary
- Total time $O(\log 1/\epsilon + \log m)$ worst case
- Generalization [Gibbons-Tirthapura 01, Beyer-HRSG09]:
 - Store t original items with their hash values ("distinct sample")
 - Estimate number of distinct items satisfying some predicate
 - Other extensions: can allow (multiset) deletions

Application: Compressed Sensing

"Compressed Sensing" has been rocking the EE world since 2004

- Design a compact measurement matrix M
- Given product (Mx), recover a good approximation of vector x
- Optimize: rows of M, density of M, recovery time, error prob
- Sketch techniques yield compressed sensing techniques
 - Very sparse binary M, very fast decoding, but weaker error prob
- Has launched a line of research on sparse recovery
 - See Gilbert-Indyk survey, wiki

Application: Stream Data Analysis

Many "big data" applications generate large data streams

- Network traffic analysis, web log analysis
- Sketches allow complex reports on large streaming data
 - In GS-tool (AT&T), CMON (Sprint) for telecom/network data
 - In Sawzall (Google), the only permitted tool for any log analysis
- E.g. track popular queries, number of distinct destinations

Application: Sensor Networks

Sensor networks distribute many small, weak sensors

- (Mergeable) sketches fit in here exactly

Problem: no one actually does anything like this [Welsh 10]

- Most sensor deployments have few nodes, careful placement
- Attempt to capture all data, no in-network processing
- Hundreds of papers, but algorithms not in this field (yet)

Other Emerging Applications

- Machine learning over huge numbers of features
- Data mining: scalable anomaly/outlier detection
- Database query planning
- Password quality checking [HSM 10]
- Large linear algebra computations
- Cluster computations (MapReduce)
- Distributed Continuous Monitoring
- Privacy preserving computations
- ... [Your application here?]

Sketch Issues

Strengths

- Easy to code up and use
 - Easier than exact algs
- Small cache-friendly
 - So can be very fast
- Open source implementations
 - (maybe barebones, rigid)
- Easily teachable
 - As intro to probabilistic analysis
- Highly parallel

Weaknesses

- (Still) resistance to random, approx algs
 - Less so for Bloom filter, hashes
- Memory/disk is cheap
 - Unless data is "too Big To File"
- Not yet in standard libraries
- Not yet in ugrad curricula/texts
 - "this CM sketch sounds like the bomb! (although I have not heard of it before)"
- Looking for killer parallel apps

Open Problems

- More sketches for applications
- More applications for sketches
- More outreach/PR for sketches

- More info:
 - Wiki: sites.google.com/site/countminsketch/
 - "Sketch Techniques for Approximate Query Processing" www.eecs.harvard.edu/~michaelm/CS222/sketches.pdf

