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Sample-and-Threshold Histograms

Results

Federated Analytics (FA) emphasises distributed computation of statistics
In a privacy-preserving way.

Releasing histograms is a building block for many FA tasks, including
quantiles and heavy hitters.

Our goal is to gather data from a distributed set of clients and achieve a
centralized differential privacy (DP) guarantee.

The protocol should minimize communication, and minimize the work
of the server to obtain the private results.

It should be a practical building block for other applications.
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Background and Applications

Histogram release with DP has been heavily studied, via:

e Noise addition in the central model e.g. [1]
¢ Randomized response in the local model e.g. [3]

e Distributed noise addition in the shuffle model [2]

We show that sampling itself provides a DP histogram mechanism,
similar to the work of [4] on heavy hitters.

Heavy-hitters: Two histogram approaches to heavy hitters:

e Hierarchical search with growing histograms, as in [4]

e Direct histogram materialization at leaf level

Quantiles: Two histogram approaches to quantiles:

e Interactive (binary) search for target quantile

e Materialize hierarchical histograms for offline search

All approaches lead to (¢, 0)-DP and accuracy guarantees.
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Histogram Protocol for n clients, each holding one item:

— Sample each client with probability ps = a(1 — exp(—¢))

— Sampled clients report their item truthfully to the server

— The server reports only those items with at least 7 reports
Privacy guarantee: the output is (¢,9)-DP, for 6 = exp(—7O(In(1/a))).
Output also achieves a k-anonymity property for k = 7.

Intuition: sampling introduces Binomial noise on the counts.

After thresholding, it is hard to tell the difference between inputs
containing k or k + 1 copies of an item.
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Here, ps = 0.1 and 7 = 6 giving (¢ = 1, 0 = 0.0015)-DP.

Accuracy guarantees are proved with Chernoff bounds.

e Probability of not reporting a heavy item decreases exponentially
with its expected frequency above 7

e Jtems are reported with relative error when their frequency is high
enough

Experiments measure absolute frequency error on real and synthetic data,
varying the histogram size (D) from 2° to 2'4.
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For small domain size D = 2% and Binomial (left) and Shakespeare (right)
data, sample-and-threshold has similar or better error than central noise.
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For medium domain size (D = 2'”), sample-and-threshold lags central
noise, but improves over randomized response (local DP) and Bernoulli
noise (shuffle).
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Over large domains (D = 2'*) and small ¢, sample-and-threshold is

preferred. Errors are due to missing small counts from long-tail items.
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