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Document Exchange

• Two parties — each have a copy of a (huge) file

• The copies differ and there is no record of the changes

• Goal: the parties communicate to exchange their files

• If the files are size n and the “distance” is f, want the
communication to be f · g(n)

• Aim is to minimize communication, and number of rounds
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Prior Work
Correcting f Hamming Differences

• Metzner 83, Metzner 91, Barbará & Lipton 91

• Abdel-Ghaffar and Abbadi (1994) communicate 
O(f log n) bits [based on Reed-Solomon codes]

Protocols fail if there are more than f differences

Edit Distance
Heuristics given by Schwarz, Bowdidge, Burkhard 90

and the simple Rsync utility (Tridgell, Mackerras 96)

No guarantees on performance
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Correcting Differences
Correcting the differences is the easy part
(if we have a bound on their number)

• Divide-and-conquer approach to match substrings
O(f log n log log n) bits for Hamming, edit distances

• Coding approach to send O(f log n) bits for Hamming, edit,
block edit distances (Orlitsky 91, developed in CPSV 99)

The hard part is estimating a bound on the distance
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Estimating the distance
Given two (binary) strings: x held by A and y held by B, what is
the communication cost of estimating:

• Hamming distance Σi=1…n (xi ≠ yi)

• Edit distance minimum changes, inserts, deletes, of x into y

• Block edit distances minimum edit and block operations of x into y

For solutions to be interesting, communication cost must be o(n)
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Negative results

Obviously, can’t give exact answer with probability 1
(since we need Ω(n) bits just to test for exact equality)

Pang & Gamal (1986): need Ω(n) bits to estimate
Hamming distance with constant probability.

Overcome this by trying to approximate distances:

find an estimate    so whp ),(),(ˆ),( yxdcyxdyxd ⋅≤≤),(ˆ yxd
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Estimating Hamming distance
Idea: sample a geometrically increasing number of places until
differences are noticed.  This size used to estimate distance.

Hash each sample to constant size to reduce communication.

Use the sample-XOR technique of Andersson, Miltersen, Riis,
Thorup 96 to build a “signature” function
(also used by Kushilevitz, Ostrovsky, Rabani 98 in context of nearest neighbor search)

Pick probability of underestimation = ε.  Set

• For i = 1…logβ n, pick βi random locations ri[1..βi] from x

• Build the message m[1..log β n] as mi(x) = XORj=1…βi(x[ri,j])

•

ε
φβ

1ln
ln1+≤
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Estimating Hamming Distance II

k
nyxh

2
1ln)1(3),(ˆ εβ −⋅=

• A sends m(x) to B, who computes m(y) using same r

• Compute m(x) XOR m(y) = 0,0,0,…,0,1,...

• The first “1” is the first evidence of disagreement

• Let location of first “1”= k

• Estimate of Hamming distance is 

The communication cost is 

There is a single round of communication.

)log1(log nO ⋅ε
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A limited block edit distance
Before estimating general block edit distances, we show how to
transform a restricted block edit distance into Hamming distance.

The limited distance of x and y, ltd(x,y) is the minimum number
of moves to transform x into y.  Permitted moves are:

• change a single bit
• swap “aligned” non-overlapping substrings
• copy a substring over an “aligned” substring as long as
there is another aligned copy of the replaced substring

Two substrings of length n are
aligned if their locations are
i2l + m, j2l + m  (n < 2l)

2lm m

n n
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Limited Binary Histograms
If x is a string of length 2k then LT(x) is defined as follows:

For each possible substring z of length 2i, LT(x)[z] is 1 if z
occurs starting at a location m2i in x (∀m), and 0 otherwise.

Example: x = 1011

0 1 00 01 10 11

LT(x) 1 1  0  0  1  1

The histogram is exponentially big but only O(n) entries will be 1
It is never explicitly built, as it is represented by the string x

…
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Transforming limited block edit distance
into Hamming distance

Theorem:  For strings x, y, length 2k

),(8))(),((),(2
1 yxltdkyLTxLThyxltd ⋅<≤

• Lower bound: construct y from x by at most 2h(LT(x), LT(y))
moves

Build intermediate strings x0, x1, … xk so xi has a superset of all
length 2i substrings of y which occur at locations m2i

Clearly, xk must be equal to y

• Upper bound: observe each “limited block” edit operation affects
no more than O(k) elements of LT(x)
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Inductive Step

Therefore we can estimate this block edit distance by estimating the
Hamming distance of the strings’ histograms.

Given xi-1 (has all length 2i-1 substrings of y occurring at m2i-1

∀m), how to build xi?

• Build the missing length 2i substrings from left to right

• Copy left and right half of each new substring w into its slot

• Use 2 ‘credits’ from LT(x)[w]=LT(xi)[w]=0, LT(y)[w]=1

• If we are copying over the last occurrence of z, pay for this
by using 2 ‘credits’ to overcopy the left & right half of z from
LT(x)[z]=1, LT(y)[z]=0
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Extending to incorporate edit distance
Key ideas:

• Use a more powerful distance, LZ(x,y)
  It allows arbitrary block copies, deletions, as well as the
edit distance operations so LZ(x,y) ≤ e(x,y)

• Base the new histograms, T(x), T(y), on local labels
  Use Locally Consistent Parsing [Sahinalp Vishkin 96]
(LCP) to overcome the need for alignment
  Create histogram entries which are ‘cores’ in LCP

Theorem: h(T(x), T(y)) is O(k2 LZ(x,y)) and Ω(LZ(x,y))
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Summary

• Can estimate Hamming distance with high probability

• Can transform edit distance, block edit distance into
Hamming distance problems with up to a small
poly-logarithmic factor

• Can then run a correction protocol with this estimated
distance


