Pattern Matching

We want to find good matches of P in T as measured by $d(-,-)$ where d is some string edit distance.

General setting: for each i, find

$$D[i] = \min_j d(T[i:j], P)$$
Pattern Matching Problems

Hamming distance in time
- $O(nm^{1/2})$: Abrahamson 87
- $O(1/\varepsilon^2 \, n \log^3 n)$: Karloff 93 (1 + ε approx)
- $O(1/\varepsilon^2 \, n \log n)$: Indyk 98 (1 + ε approx)

Edit distance in time
- $O(nm)$: Dynamic Programming

Other solutions parametrized by k (largest distance) still have $O(nm)$ worst case performance in general

We want $o(nm)$ time solutions, ideally close to $O(n)$.
Our results

We make a simplification, and allow approximations of each $D[i]$

We will study the string edit distance \textit{with moves}:

$d(X,Y) =$ smallest number of following operations to turn X into Y

- insert a character
- delete a character
- replace a character
- move a substring

Substring moves are relevant to many situations, eg Computational Biology, Text Editing, Web Page updates etc.

We will find each $D[i]$ up to a factor of $O(\log n \log^* n)$
Main Features

- Embed the string distance into the L_1 vector distance, up to a $O(\log n \log^* n)$ factor
- Compute this vector embedding quickly with a single pass over the string
- Quickly find the representation for any substring of T
- Only need to consider $O(n)$ substrings
- Solve the whole problem approximately but deterministically in time $O(n \log n)$
The embedding is based on parsing strings in a deterministic way. We parse the strings in a way so that edit operations have only a limited effect on the parsing — this will allow us to make the approximation.

Find ‘landmarks’ in the string based only on their locality.

- Repetitions (aaa) are easily identifiable landmarks
- Local maxima are good landmarks in varying sequences, but may be far apart — so reduce the alphabet to ensure landmarks occur often enough.

Procedure: Isolate repetitions, leaving substrings with no repeats.
Alphabet Reduction

Write each character as a bitstring ie a = 00000, b = 00001

Reduce the alphabet. For each character, find a new label as:
Smallest bit location where it differs from its left neighbor
+ Bit value there

e.g. Char b d a
 Binary 00001 00011 00000
 Location - 001 000
 Label - 0011 0000
Alphabet Reduction

If the starting alphabet is Σ, the new alphabet has $2 \log |\Sigma|$ values

Repeat the procedure on the string iteratively until the alphabet is size 6, $\Sigma^\prime = \{0,1,2,3,4,5\}$

Then reduce from 6 to 3, ensuring no adjacent pair are identical (first remove all 5s, then all 4s, then all 3s)

Properties of the final labels:
- Final alphabet is $\{0,1,2\}$
- No adjacent pair is identical
- Takes $\log^* |\Sigma|$ iterations
- Each label depends on the $O(\log^* |\Sigma|)$ characters to its left
Marking characters

Consider the final labels, and mark certain characters:
• Mark any labels that are local maxima (greater than left & right)
• Also mark any local minima if not adjacent to a marked char.

Clearly, no two adjacent characters are marked.
Also, successive marked labels are separated by at most two labels

<table>
<thead>
<tr>
<th>Text</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>g</th>
<th>e</th>
<th>f</th>
<th>a</th>
<th>c</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labels</td>
<td>010</td>
<td>001</td>
<td>000</td>
<td>011</td>
<td>010</td>
<td>001</td>
<td>000</td>
<td>011</td>
<td>010</td>
<td>011</td>
<td></td>
</tr>
<tr>
<td>Final</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Group into pairs and triples

Now, whole string can be arranged into pairs and triples:
- For repeats, parse in a regular way aaaaaaa => (aaa)(aa)(aa)
- For varying substrings, use alphabet reduction, define pairs and triples based on the marked characters.

<table>
<thead>
<tr>
<th>Text</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>g</th>
<th>e</th>
<th>f</th>
<th>a</th>
<th>c</th>
<th>e</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Relabel each pair or triple — can do this deterministically, building a dictionary of labels using Karp-Miller-Rosenberg labelling.

The parsing of each character depends on a $\log^* n + c$ neighborhood.
Build Hierarchical Structure

Given the new labels, repeat the process… this builds a 2-3 tree

Can be constructed in time $O(n \log^* n)$
Vector Representation

From this structure, derive a vector representation \(V \) recording the frequency of occurrence of each (level, label) pair:

<table>
<thead>
<tr>
<th></th>
<th>(0,a)</th>
<th>(0,b)</th>
<th>(0,c)</th>
<th>(0,d)</th>
<th>(0,e)</th>
<th>(0,f)</th>
<th>(0,g)</th>
<th>(0,_)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(1,2)</th>
<th>(1,3)</th>
<th>(1,6)</th>
<th>(1,7)</th>
<th>(1,8)</th>
<th>(1,10)</th>
<th>(1,12)</th>
<th>(1,14)</th>
<th>(1,16)</th>
<th>(1,20)</th>
<th>(1,21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(2,5)</th>
<th>(2,7)</th>
<th>(2,10)</th>
<th>(2,13)</th>
<th>(2,17)</th>
<th>(2,20)</th>
<th>(3,3)</th>
<th>(3,15)</th>
<th>(3,23)</th>
<th>(4,10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Theorem: \(\frac{1}{2} d(X, Y) \leq \| V(X) - V(Y) \|_1 \leq O(\log n \log^* n) d(X, Y) \)
Upper bound

\[\| V(X) - V(Y) \|_1 \leq O(\log n \log^* n) \ d(X,Y) \]

Consider the effect of each permitted edit operation:

- Insert / change / delete a character:
 Fairly straightforward, at most \(\log^* n \) nodes can change per level

- Move a substring:
 Within the substring, there are no changes.
 At the fringes, only \(\log^* n \) nodes change per level

As each operation changes \(V \) by \(O(\log n \log^* n) \), so

\[\|V(X) - V(Y)\|_1 / O(\log n \log^* n) \leq d(X,Y) \]

Hence the bound holds.
Lower bound

A constructive proof: we give an algorithm to transform X into Y using at most $2||V(X) - V(Y)||_1$ operations.

We want to make sure we keep hold of large pieces of the string that are common to both X and Y, so we will go through and protect enough pieces of X that will be needed in Y, and we avoid changing these in the manipulation.

Then we will go through level by level to turn X into Y:

- At the bottom, we add or remove characters as needed.
- For each subsequent level, proceed inductively:
 Assume we have enough nodes of the level below. Then to make any node we only need to move at most 2 nodes from the level below.
Application to String Matching

To find $D[i]$, we need to compare every substring of T against P — this is $O(n^2)$. We reduce this to $O(n)$ substrings.

$$d(T[l:l+m-1], P) \leq d(T[l:l+m-1], T[l:r]) + d(T[l:r], P)$$

by triangle inequality

$$= |(r - l + 1) - m| + d(T[l:r], P)$$

$|(r - l + 1) - m| \leq d(T[l:r], P)$ since we need at least $|(r-l+1) - m|$ operations to make $T[l:r]$ the same length as P. So

$$d(T[l:l+m-1], P) \leq 2d(T[l:r], P)$$

So we only need to consider the $O(n)$ substrings of length m and this will be a 2-approximation of the optimal matching.
Final algorithm

By construction, a subtree of an ESP tree induced by any substring has the same properties: the L_1 distance of the vector embedding approximates the edit distance with moves.

String matching algorithm:

- Create a naming function for T and P using Karp-Miller-Rosenberg Labelling.
- Compute parse trees for T and P
- Find $||V(T[1:m]) - V(P)||_1$
- Iteratively compute $D[i] \approx ||V(T[i:i+m-1]) - V(P)||_1$

Overall cost is $O(n \log n)$ for the whole algorithm.
Conclusion

Advantages of this embedding approach:
- General: applicable to many other problems
 eg Approximate Nearest Neighbor, Clustering
- Easy to compute, can be made probabilistically in
 the streaming model

Disadvantages of this solution:
- Large approximation factor
- Does not obviously extend to Levenshtein edit distance

Open problems: remedy these disadvantages!