Lightweight Authentication of Linear Algebraic Queries on Data Streams

Stavros Papadopoulos (HKUST), Graham Cormode (University of Warwick)

Antonios Deligiannakis (Technical University of Crete), Minos Garofalakis (Technical University of Crete)

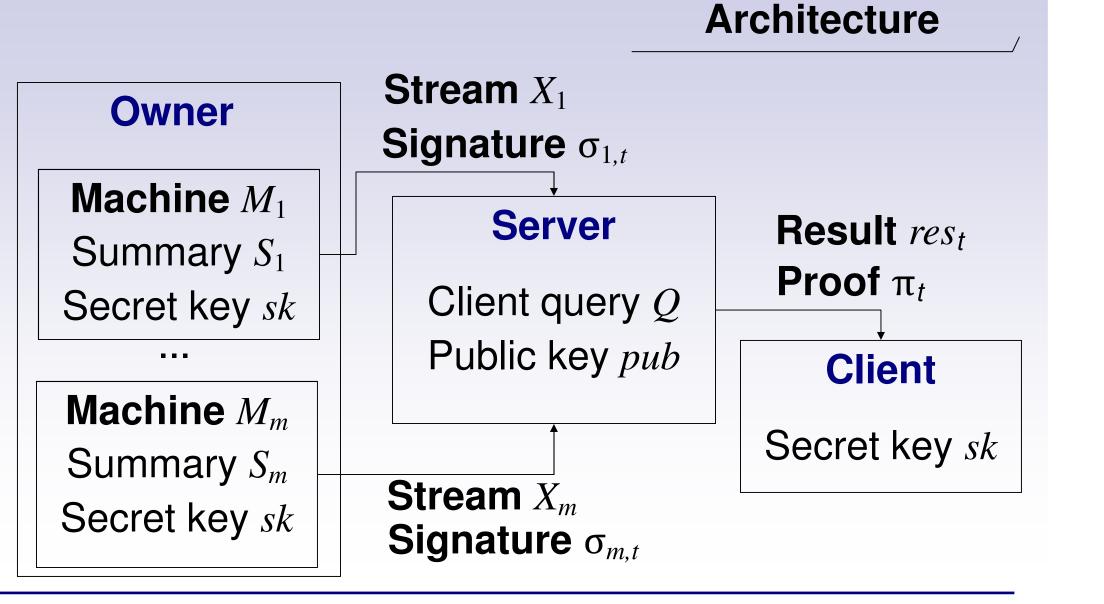
Problem Definition

Motivation: A company may not possess the resources for deploying a DSMS

Solution: The company outsources its data stream storage and management to a third-party server

<u>Challenge:</u> The server may be untrustworthy: result integrity and freshness must be ensured to the clients

Result Summary: For 3 important functions (vector sum, dot product, matrix product) we show secure and lightweight schemes that allow the client to check the computation of the server



Dynamic Vector Sum (DVS)

Setting

- There are *m* machines generating *m* streams
- Stream X_i updates an *n*-element vector \mathbf{a}_i at M_i
- The query result is $\sum_{i \in [m]} a_i$

Our Results:

- **O(1)** costs at M_i
- O(m) processing cost and O(1) space at the server
- O(m+n) verification cost at the client
- **O(1)** proof size (a few bytes)
- All operations are **lightweight** (order of a few μs)

Solution idea:

- → M_i incrementally maintains summary $S_i = \sum_{j \in [n]} k_j \cdot a_i[j]$ (in a finite field) where k_j are secret keys
- $-M_i$ signs S_i with a variant of one-time pad encryption
- All keys are produced from *sk*
- The server computes proof $\pi_t = \sum_{i \in [m]} \sigma_{i,t}$
- The client can verify π_t with the result and sk
- Security is based on the security of pseudorandom functions (PRFs)

Applications:

- Group by queries (e.g., for network analysis)
- Sum and count queries in sensor networks

Dynamic Matrix Product (DMP)

Setting

- Machines M_a , M_b generate streams X_a , X_b , resp.
- $X_a(X_b)$ updates an $n_a \ge n (n \ge n_b)$ matrix A (B)
- The query result is $n_a \ge n_b$ matrix $\mathbf{A} \cdot \mathbf{B}$

Our Results:

Solution idea:

- The matrix product is the summation of outer products between a column from A and a row from B \mathbf{B}
- $M_a(M_b)$ maintains summary $S_a[j](S_b[j])$ for each *n*-element column (row) *j*, similar to DVS
- $\sum_{j \in [n]} S_a[j] \cdot S_b[j]$ is an (unsigned) summary for **A**-**B**
- A trick is needed to handle the one-time pad nonces

- **O(1)** update and **O(n)** space/comm. cost at M_a , M_b

- O(n) processing cost and O(1) space at the server
- O(n_a n_b) verification cost at the client
- O(1) proof size
- All operations are lightweight

Security is based on the security of PRFs

Applications:

- Event co-occurrence in monitoring applications
- Joint frequency distribution of attributes in joins

Dynamic Dot Product (DDP)

Setting

- Machines M_a , M_b generate streams X_a , X_b , resp.
- $X_a(X_b)$ updates an *n*-element vector **a** (**b**)
- \neg The query result is the dot product $\mathbf{a} \cdot \mathbf{b}$

Our Results:

- **O(1)** costs at M_a , M_b
- O(n log n) process. and O(n) space at the server
- O(1) verification cost at the client
- O(1) proof size
- All operations at the client and M_a , M_b are **lightweight** (the server requires exponentiations)

Solution idea:

- The result is the trace of the outer product $\mathbf{a} \otimes \mathbf{b}$
- Create a signed summary for $\mathbf{a} \otimes \mathbf{b}$ similar to DMP, and assist the server to remove unnecessary terms
- To avoid giving key material to the server, we provide (offline and only once as public info *pub*) the key information in the exponent of a group generator—all computations move to the exponent
- Security is based on the security of PRFs and the Diffie Hellman Exponent (n-DHE) assumption

Applications:

- Joins
- Similarity queries