
Compact Summaries for  
Large Datasets 

Graham Cormode   

University of Warwick 

G.Cormode@Warwick.ac.uk 

Big Data 



The case for “Big Data” in one slide 

 “Big” data arises in many forms: 

– Medical data: genetic sequences, time series 

– Activity data: GPS location, social network activity 

– Business data: customer behavior tracking at fine detail 

– Physical Measurements: from science (physics, astronomy) 

 Common themes:  

– Data is large, and growing 

– There are important patterns and trends in the data 

– We don’t fully know how to find them 

 “Big data” is about more than simply the volume of the data 

– But large datasets present a particular challenge for us! 
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Computational scalability 

 The first (prevailing) approach: scale up the computation 

 Many great technical ideas: 

– Use many cheap commodity devices 

– Accept and tolerate failure 

– Move data to code, not vice-versa 

– MapReduce: BSP for programmers 

– Break problem into many small pieces 

– Add layers of abstraction to build massive DBMSs and warehouses 

– Decide which constraints to drop: noSQL, BASE systems 

 Scaling up comes with its disadvantages: 

– Expensive (hardware, equipment, energy), still not always fast 

 This talk is not about this approach! 
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Downsizing data 

 A second approach to computational scalability:  
scale down the data! 

– A compact representation of a large data set 

– Capable of being analyzed on a single machine 

– What we finally want is small: human readable analysis / decisions 

– Necessarily gives up some accuracy: approximate answers 

– Often randomized (small constant probability of error) 

– Much relevant work: samples, histograms, wavelet transforms 

 Complementary to the first approach: not a case of either-or 

 Some drawbacks: 

– Not a general purpose approach: need to fit the problem 

– Some computations don’t allow any useful summary 

Compact Summaries for Big Data 
4 



Outline for the talk 

 Some examples of compact summaries (high level, no proofs) 

– Sketches: Bloom filter, Count-Min, AMS 

– Sampling: simple samples, count distinct  

– Summaries for more complex objects: graphs and matrices 

 Lower bounds: limitations of when summaries can exist 

– No free lunch 

 Current trends and future challenges for compact summaries 

 Many abbreviations and omissions (histograms, wavelets, ...) 

 A lot of work relevant to compact summaries  

– Including many papers in SIGMOD/PODS 
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Summary Construction 

 There are several different models for summary construction 

– Offline computation: e.g. sort data, take percentiles 

– Streaming: summary merged with one new item each step 

– Full mergeability: allow arbitrary merges of partial summaries 

 The most general and widely applicable category 

 Key methods for summaries: 

– Create an empty summary 

– Update with one new tuple: streaming processing 

– Merge summaries together: distributed processing (eg MapR) 

– Query: may tolerate some approximation (parameterized by ε) 

 Several important cost metrics (as function of ε, n):  

– Size of summary, time cost of each operation 
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Bloom Filters 

 Bloom filters [Bloom 1970] compactly encode set membership  

– E.g. store a list of many long URLs compactly  

– k hash functions map items to m-bit vector k times 

– Set all k entries to 1 to indicate item is present 

– Can lookup items, store set of size n in O(n) bits 

 Analysis: choose k and size m to obtain small false positive prob 

 

 

 

 

 Duplicate insertions do not change Bloom filters 

 Can be merge by OR-ing vectors (of same size) 

item 

1 1 1 
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Bloom Filters Applications 

 Bloom Filters widely used in “big data” applications 

– Many problems require storing a large set of items 

 Can generalize to allow deletions 

– Swap bits for counters: increment on insert, decrement on delete 

– If representing sets, small counters suffice: 4 bits per counter 

– If representing multisets, obtain (counting) sketches  

 Bloom Filters are an active research area 

– Several papers on topic in every networking conference… 
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Count-Min Sketch 

 Count Min sketch [C, Muthukrishnan 04] encodes item counts 

– Allows estimation of frequencies (e.g. for selectivity estimation) 

– Some similarities in appearance to Bloom filters 

 Model input data as a vector x of dimension U  

– Create a small summary as an array of w  d in size 

– Use d hash function to map vector entries to [1..w] 

W 

d 
Array: 

CM[i,j] 
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Count-Min Sketch Structure 

 Each entry in vector x is mapped to one bucket per row. 

 Merge two sketches by entry-wise summation 

 Estimate x[j] by taking mink CM[k,hk(j)] 
– Guarantees error less than e||x||1 in size O(1/e) 

– Probability of more error reduced by adding more rows 

+c 

+c 

+c 

+c 

h1(j) 

hd(j) 

j,+c 

d
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w = 2/e 
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Generalization: Sketch Structures 

 Sketch is a class of summary that is a linear transform of input 

– Sketch(x) = Sx for some matrix S 

– Hence, Sketch(x + y) =  Sketch(x) +  Sketch(y) 

– Trivial to update and merge 

 Often describe S in terms of hash functions 

– S must have compact description to be worthwhile 

– If hash functions are simple, sketch is fast 

 Analysis relies on properties of the hash functions 

– Seek “limited independence” to limit space usage 

– Proofs usually study the expectation and variance of the estimates 
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Sketching for Euclidean norm 

 AMS sketch presented in [Alon Matias Szegedy 96] 

– Allows estimation of F2 (second frequency moment) 

– Leads to estimation of (self) join sizes, inner products 

– Used at the heart of many streaming and non-streaming applications: 
achieves dimensionality reduction (‘Johnson-Lindenstrauss lemma’) 

 Here, describe (fast) AMS sketch by generalizing CM sketch  

– Use extra hash functions g1...gd {1...U} {+1,-1} 

– Now, given update (j,+c), set CM[k,hk(j)] += c*gk(j) 

 Estimate squared Euclidean norm (F2) = mediank i CM[k,i]2 

– Intuition: gk hash values cause ‘cross-terms’ to cancel out, on average 

– The analysis formalizes this intuition 

– median reduces chance of large error 
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Application to Large Scale Machine Learning 

 In machine learning, often have very large feature space 

– Many objects, each with huge, sparse feature vectors 

– Slow and costly to work in the full feature space 

 “Hash kernels”: work with a sketch of the features 

– Effective in practice! [Weinberger, Dasgupta, Langford, Smola, Attenberg ‘09] 

 Similar analysis explains why: 

– Essentially, not too much noise on the important features 
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Min-wise Sampling 

 Fundamental problem: sample m items uniformly from data 

– Allows evaluation of query on sample for approximate answer 

– Challenge: don’t know how large total input is, so how to set rate? 

 For each item, pick a random fraction between 0 and 1 

 Store item(s) with the smallest random tag [Nath et al.’04] 

 

0.391 0.908 0.291 0.555 0.619 0.273 

 Each item has same chance of least tag, so uniform 

 Leads to an intuitive proof of correctness 

 Can run on multiple inputs separately, then merge 
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F0 Estimation 

 F0 is the number of distinct items in the data  

– A fundamental quantity with many applications 

– COUNT DISTINCT estimation in DBMS 

 Application: track online advertising views 

– Want to know how many distinct viewers have been reached 

 Early approximate summary due to Flajolet and Martin [1983]  

 Will describe a generalized version of the FM summary due to 
Bar-Yossef et. al with only pairwise indendence 

– Known as the “k-Minimum values (KMV)” algorithm 
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KMV F0 estimation algorithm 

 Let m be the domain of data elements 

– Each item in data is from [1…m] 

 Pick a random (pairwise) hash function h: [m]  [R] 

– For R “large enough” (polynomial), assume no collisions under h 

 

 
 Keep the t distinct items achieving the smallest values of h(i) 

– Note: if same i is seen many times, h(i) is same 

– Let vt = t’th smallest (distinct) value of h(i) seen 

 If n = F0 < t, give exact answer, else estimate F’0 = tR/vt 

– vt/R  fraction of hash domain occupied by t smallest 

– Analysis sets t = 1/ e2  to give e relative error 

m3 0m3 vt 
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Engineering Count Distinct 

 Hyperloglog algorithm [Flajolet Fusy Gandouet Meunier 07] 

– Hash each item to one of 1/e2 buckets (like Count-Min) 

– In each bucket, track the function max log(h(x))  

 Can view as a coarsened version of KMV 

 Space efficient: need log log m  6 bits per bucket 

– Take harmonic mean of estimates from each bucket 

 Analysis much more involved 

 Can estimate intersections between sketches 

– Make use of identity |A  B| = |A| + |B| - |A  B| 

– Error scales with e √(|A||B|), so poor for small intersections 

 Lower bound implies should not estimate intersections well! 

– Higher order intersections via inclusion-exclusion principle 
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L0 Sampling 

 L0 sampling: sample item i with prob (1±e) fi
0/F0

 

– i.e., sample (near) uniformly from items with non-zero frequency 

– Challenging when frequencies can increase and decrease 

 General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05] 

– Sub-sample all items (present or not) with probability p 

– Generate a sub-sampled vector of frequencies fp 

– Feed fp to a k-sparse recovery data structure (summary)  

 Allows reconstruction of fp if F0 < k, uses space O(k) 

– If fp is k-sparse, sample from reconstructed vector 

– Repeat in parallel for exponentially shrinking values of p 
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Sampling Process 

 Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16… 1/U 

– Want there to be a level where k-sparse recovery will succeed 

 Sub-sketch that can decode a vector if it has few non-zeros 

– At level p, expected number of items selected S is pF0 

– Pick level p so that k/3 < pF0  2k/3 

 Analysis: this is very likely to succeed and sample correctly 
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Graph Sketching 

 Given L0 sampler, use to sketch (undirected) graph properties 

 Connectivity: want to test if there is a path between all pairs 

 Basic alg: repeatedly contract edges between components 

– Implement: Use L0 sampling to get edges from vector of adjacencies 

– One sketch for the adjacency list for each node 

 Problem: as components grow, sampling edges from components 
most likely to produce internal links 
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Graph Sketching 

 Idea: use clever encoding of edges [Ahn, Guha, McGregor 12] 

 Encode edge (i,j) as ((i,j),+1) for node i<j, as ((i,j),-1) for node j>i 

 When node i and node j get merged, sum their L0 sketches 

– Contribution of edge (i,j) exactly cancels out 

 

 

 

– Only non-internal edges remain in the L0 sketches 

 Use independent sketches for each iteration of the algorithm 

– Only need O(log n) rounds with high probability 

 Result: O(poly-log n) space per node for connectivity 
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Other Graph Results via sketching 

 Recent flurry of activity in summaries for graph problems 

– K-connectivity via connectivity 

– Bipartiteness via connectivity:  

– (Weight of the) Minimum spanning tree:  

– Sparsification: find G’ with few edges so that cut(G,C)  cut(G’,C) 

– Matching: find a maximal matching (assuming it is small) 

 Cost is typical O(|V|), rather than O(|E|) 

– Semi-streaming / semi-external model 
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Matrix Sketching 

 Given matrices A, B, want to approximate matrix product AB 

– Measure the normed error of approximation C: ǁAB – Cǁ 

 Main results for the Frobenius (entrywise) norm ǁǁF 

– ǁCǁF = (i,j Ci,j
2)½   

– Results rely on sketches, so this entrywise norm is most natural 
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Direct Application of Sketches 

 Build AMS sketch of each row of A (Ai), each column of B (Bj) 

 Estimate Ci,j by estimating inner product of Ai with Bj 

– Absolute error in estimate is e ǁAiǁ2 ǁBjǁ2 (whp) 

– Sum over all entries in matrix, squared error is eǁAǁFǁBǁF 

 Outline formalized & improved by Clarkson & Woodruff [09,13] 

– Improve running time to linear in number of non-zeros in A,B 
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Compressed Matrix Multiplication 

 What if we are just interested in the large entries of AB? 

– Or, the ability to estimate any entry of (AB) 

– Arises in recommender systems, other ML applications 

 If we had a sketch of (AB), could find these approximately 

 Compressed Matrix Multiplication [Pagh 12]: 

– Can we compute sketch(AB) from sketch(A) and sketch(B)? 

– To do this, need to dive into structure of the Count (AMS) sketch 

 Several insights needed to build the method: 

– Express matrix product as summation of outer products 

– Take convolution of sketches to get a sketch of outer product 

– New hash function enables this to proceed 

– Use the FFT to speed up from O(w2) to O(w log w)  

 Compact Summaries for Big Data 
25 



More Linear Algebra 

 Matrix multiplication improvement: use more powerful hash fns 

– Obtain a single accurate estimate with high probability 

 Linear regression given matrix A and vector b: 
 find x  Rd to (approximately) solve minx ǁAx – bǁ 

– Approach: solve the minimization in “sketch space” 

– From a summary of size O(d2/e) [independent of rows of A] 

 Frequent directions: approximate matrix-vector product  
[Ghashami, Liberty, Phillips, Woodruff 15]  

– Use the SVD to (incrementally) summarize matrices 

 The relevant sketches can be built quickly: proportional to the 
number of nonzeros in the matrices (input sparsity) 

– Survey: Sketching as a tool for linear algebra [Woodruff 14] 
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Lower Bounds 

 While there are many examples of things we can summarize… 

– What about things we can’t do?  

– What’s the best we could achieve for things we can do? 

 Lower bounds for summaries from communication complexity 

– Treat the summary as a message that can be sent between players 

 Basic principle: summaries must be proportional to the size of the 
information they carry 

– A summary encoding N bits of data must be at least N bits in size! 

 

 1 0 1 1 1 0 1 0 1 … 

Alice 

Bob 



Summary of Lower Bounds 

 Some fundamental hard problems: 

– Can’t retrieve arbitrary bits from a vector of n bits: INDEX 

– Can’t determine whether two n bit vectors intersect: DISJ 

– Can’t distinguish small differences in Hamming distance: 
GAP-HAMMING 

 These in turn provide lower bounds on the cost of 

– Finding the maximum count (can’t do this exactly in small space) 

– Approximating the number of distinct items (need 1/ε2, not 1/ε) 

– Graph connectivity (can’t do better than |V|) 

– Approximating matrix multiplication (can’t get relative error) 
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Current Directions in Data Summarization 

 Sparse representations of high dimensional objects 

– Compressed sensing, sparse fast fourier transform 

 General purpose numerical linear algebra for (large) matrices 

– k-rank approximation, linear regression, PCA, SVD, eigenvalues 

 Summaries to verify full calculation: a ‘checksum for computation’ 

 Geometric (big) data: coresets, clustering, machine learning 

 Use of summaries in large-scale, distributed computation 

– Build them in MapReduce, Continuous Distributed models 

 Communication-efficient maintenance of summaries 

– As the (distributed) input is modified 
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 Two complementary approaches in response to growing data sizes 

– Scale the computation up; scale the data down 

 The theory and practice of data summarization has many guises 

– Sampling theory (since the start of statistics) 

– Streaming algorithms in computer science 

– Compressive sampling, dimensionality reduction… (maths, stats, CS) 

 Continuing interest in applying and developing new theory 

– Ad: Postdoc & PhD studentships available at  U of Warwick 

 

Summary of Summaries 
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