Structure-Aware Sampling on Data Streams

Edith Cohen, Graham Cormode, Nick Duffield
AT&T Labs-Research
Summarizing Data Streams

♦ Many applications generate streams of data
 – Core example: transient data in IP networks
 – Need to track aggregate statistics for later analysis

♦ State-of-the-art summarization via sampling
 – Widely deployed in current network elements
 – General purpose summary, enables subset-sum queries
 – Higher level analysis: quantiles, heavy hitters, other patterns & trends
Limitations of Sampling

◊ Current sampling methods are structure oblivious
 – But most queries are structure respecting!
◊ Most queries are actually range queries
 – “How much traffic from region X to region Y between 2am and 4am?”
◊ Much structure in data
 – Order (e.g. ordered timestamps, durations etc.)
 – Hierarchy (e.g. geographic and network hierarchies)
 – (Multidimensional) products of structures
◊ Can making sampling structure-aware improve accuracy?
Toy Example

- Two level hierarchy with 9 leaves
 - Draw a sample of size $k=3$
- Structure-aware sampling would pick only 1 item from each branch
- Uniform stream sampling picks each subset of 3 items uniformly
 - Probability of picking one from each branch = $\frac{3!}{9C3} = \frac{9}{28}$
- There is an optimal structure aware sampling scheme that always picks one from each branch
 - Gives exact estimates for weight of $\{A,B,C\}$ $\{D,E,F\}$ and $\{G,H,I\}$
 - But not possible to sample from this distribution in the stream
Background on Stream Sampling

♦ Inclusion Probability Proportional to Size (IPPS):
 – Given parameter τ, probability of sampling key with weight w is $\min\{1, w/\tau\}$
 – Key i has adjusted weight $a_i = w_i/p_\tau(w_i) = \max\{\tau, w_i\}$ (Horvitz-Thompson)
 – Can pick a τ so that expected sample size is k

♦ Stream VarOpt sampling method is Variance Optimal on leaves:
 – Maintain a sample of size exactly k keys
 – Include key in the sample each new key i of weight w_i
 – Pivot: pick one key to eject, via IPPS

♦ Stream VarOpt is unique: no freedom to be structure aware
 – We must relax our requirements to allow structure to be used
Weight-bounded Summaries

♦ Generalize VarOpt summaries by relaxing requirements
♦ M-bounded summary stores k keys and adjusted weights a_i
 – Adjusted weights are unbiased: $E[a_i] = w_i$
 – Weights sum to correct value: $\sum_{i \in \text{sample}} a_i = \sum_{i \in \text{stream}} w_i$
 – Weights controlled by M: if $w_i \geq M$, then $a_i = w_i$, else $a_i \leq M$
 – Inclusion-exclusion bounds: for any subset of keys J and $N \geq \max_{i \in J} a_i$
 (Inclusion) $E[\prod_{i \in J} a_i] \leq \prod_{i \in J} w_i$
 (Exclusion) $E[\prod_{i \in J} (N-a_i)] \leq \prod_{i \in J} (N-w_i)$
♦ Intuition: VarOpt is M-bounded with M set to smallest value τ
 – So M-bounded shares many good properties of VarOpt
Candidate Set & Pivot Selection

♦ Given a set of $k+1$ keys and weights, pick 1 key to eject
 - **Pivot selection**: pick a subset of X based on structure conditions
 - Treat as an instance of Stream VarOpt on X
 - Compute a τ value for the set X
 - **Candidate subset X**: those keys with $a_i \leq \tau$
 - **Pivot**: pick one element of X to eject, via VarOpt algorithm
 - Adjust weights of other elements in X so they remain unbiased

♦ **Structure awareness**: pick X to be keys that are “close” in structure, so that shifting of “probability weight” is localized
 - Tradeoff optimality on leaves for better performance on ranges
Range Cost

♦ Many possible pivot sets X – how to choose?
♦ We define a “range cost” for each possible X
 – Measure as the local impact on the variance of adjusted weights
 – “Local”: only the change caused at this step
 – Average over the impact on all range queries
♦ Pick the pivot set with least range cost
 – Many to consider, so may restrict to small sets, e.g. $|X|=2$
Range Cost for Order

- Range cost of X is weighted average of variance over prefixes
 - Prefixes, not all ranges simplifies analysis
 - Any range is difference of two prefixes

- Analyze the impact of a pivot on the distribution of weights
 - Measure weight crossing each quantile boundary
 - Range cost minimized by picking $|X| = 2$

- Given $X = \{i, j\}$, range cost is
 \[
a_i a_j (\frac{a_i + a_j}{3} + \sum_{i < l < j} a_l)\]
 - Given $\{i, j\}$, cost can be found in constant time
 - Takes $O(k)$ time to find best pair (using structure of minimal pairs)
Range Cost for Hierarchy

- Use result for order to analyze hierarchy
- Consider all possible linearizations of hierarchy to an order
- For $X = \{i, j\}$, the range cost is computed over subtree T of $\{i, j\}$
 \[
 a_i a_j \left(\left(\sum_{l \in T} a_l \right)/2 - \sum_{l \in M} a_l / 6 \right)
 \]
 - where set $M = \text{leaves not in same subtree as } i \text{ or } j$
Range Cost for Product Spaces

- Generalize range costs to products of ranges
 - Define as average of one-dimensional range costs
 - Equivalent to averaging over all axis-parallel halfspaces
 - Expressions for optimal range cost become complex
 - Fast heuristics are preferred
Fast Pivot Selection

♦ Analysis allows optimal range-aware pivot selection
 - **Slow**: even $|X|=2$ leads to $O(k^2)$ time, too slow for stream

♦ “Pair heuristics” let us pick a good pair quickly
 - **SNN-Sum**: each node paired with nearest neighbor under order
 ▪ cost of a pair is sum of weights ($O(\log k)$) to maintain least
 - **SNN-Lin**: same pairing, but cost is computed from ‘hierarchy’ case
 - **TNN-Prod**: nodes paired with min-weight hierarchy neighbor
 ▪ cost of a pair is product of weights (slower to maintain)
 - **VSNN (multi-D)**: use KD-tree to find near neighbor for each node
 ▪ cost of a pair is product of weights ($O(\log k)$) time to maintain
 - **SpanApprox (multi-D)**: search over keys in same hierarchy (v slow)
1-dimensional Experiments

- Measure mean relative error on queries over IP data flows
- Compare to oblivious VarOpt and deterministic qdigest
- Order of magnitude improvement for structure awareness
- Benefit decreases over longer prefixes
 - Becomes like arbitrary subset queries (can’t beat VarOpt on leaves)
2-dimensional Experiments

- Benefit still clear, but less pronounced
- SpanApprox very promising, but too slow for large samples
- Crossover at 2D prefix length 8
 - Beyond this, queries touch $2^{-16} \sim 1e-5$ fraction of area
Concluding Remarks

- Structure awareness in sampling can improve accuracy on common range queries
- Guarantee performance no worse than a smaller VarOpt sample
- Can work at streaming speed: $O(\log k)$ work per step
- Open problems:
 - More fast pair heuristics
 - Extend analysis for unaggregated streams
 - Maintain samples over distributed data