Rethink Possible

Structure-Aware Sampling: Flexible and Accurate Summarization

Edith Cohen, Graham Cormode, Nick Duffield AT&T Labs-Research

© 2010 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.

Summaries and Sampling

- Approximate summaries are vital in managing large data
 - E.g. sales records of a retailer; network activity for an ISP
 - Need to store compact summaries for later analysis
- State-of-the-art summarization via sampling
 - Widely deployed in many settings
 - Models data as (key, weight) pairs
 - General purpose summary, enables subset-sum queries
 - Higher level analysis: quantiles, heavy hitters, other patterns & trends

Limitations of Sampling

- Current sampling methods are structure oblivious
 - But most queries are structure respecting!
- Most queries are actually range queries
 - "How much traffic from region X to region Y between 2am and 4am?"
- Much structure in data
 - Order (e.g. ordered timestamps, durations etc.)
 - Hierarchy (e.g. geographic and network hierarchies)
 - (Multidimensional) products of structures
- Can we make sampling structure-aware and improve accuracy?

Background on Sampling

- Inclusion Probability Proportional to Size (IPPS):
 - Given parameter τ , probability of sampling key with weight w is min{1, w/ τ }
 - Key i has adjusted weight $a_i = w_i/p_\tau(w_i) = max\{\tau, w_i\}$ (Horvitz-Thompson)
 - Can pick a τ so that expected sample size is k
- VarOpt sampling methods are Variance Optimal over keys:
 - Produces a sample of size exactly k keys using IPPS probabilities
 - Allow correlations between inclusion of keys (unlike Poisson sampling)
 - Give strong tail bounds on estimates via H-T estimates
 - But do not yet consider structure of keys

Probabilistic Aggregation

- We define a probabilistic aggregate of sampling probabilities:
 - Let vector $p \in [0,1]^n$ define sampling probabilities for n keys
 - Probabilistic aggregation to p' sets entries to 0 or 1 so that:
 - \forall i. $E[p'_i] = p_i$
 - $\sum_i \mathbf{p'}_i = \sum_i \mathbf{p}_i$
 - \forall key sets J. E[$\prod_{i \in J} p'_i$] $\leq \prod_{i \in J} p_i$ (Inclusion bounds)
 - \forall key sets J. E[$\prod_{i \in J} (1-p'_i)$] $\leq \prod_{i \in J} (1-p_i)$ (Exclusion bounds)
- Apply probabilistic aggregation until all entries are set (0 or 1)

(Agreement in sum)

- The 1 entries define the contents of the sample
- This sample meets the requirements for a VarOpt sample

Pair Aggregation

Pair aggregation implements probabilistic aggregation

- Pick two keys, i and j, such that neither is 0 or 1
- If $p_i + p_i < 1$, one of them gets set to 0:
 - Pick j to set to 0 with probability $p_i/(p_i + p_j)$, or i with $p_i/(p_i + p_j)$
 - The other gets set to p_i + p_i (preserving sum of probabilities)
- If $p_i + p_j \ge 1$, one of them gets set to 1:
 - Pick i with probability $(1 p_i)/(2 p_i p_j)$, or j with $(1 p_i)/(2 p_i p_j)$
 - The other gets set to p_i + p_j 1 (preserving sum of probabilities)
- This satisfies all requirements of probabilistic aggregation
- There is complete freedom to pick which pair to aggregate at each step
 - Use this to provide structure awareness by picking "close" pairs

Range Discrepancy

- We want to measure the quality of a sample on structured data
- Define range discrepancy based on difference between number of keys sampled in a range, and the expected number
 - Given a sample S, drawn according to a sample distribution p: Discrepancy of range R is $\Delta(S, R) = abs(|S \cap R| - \sum_{i \in R} p_i)$
 - Maximum range discrepancy maximizes over ranges and samples: Discrepancy over sample dbn Ω is $\Delta = \max_{s \in \Omega} \max_{R \in \Re} \Delta(S,R)$
 - Given range space \mathcal{R} , seek sampling schemes with small discrepancy

One-dimensional structures

- Can give very tight bounds for one-dimensional range structures
- \mathbf{R} = Disjoint Ranges
 - Pair selection picks pairs where both keys are in same range R
 - Otherwise, pick any pair
- ♦ *R* = Hierarchy
 - Pair selection picks pairs with lowest LCA
- ♦ In both cases, for any $R \in \mathcal{R}$, $|S \cap R| \in \{ \lfloor \sum_{i \in R} p_i \rfloor, \lceil \sum_{i \in R} p_i \rceil \}$
 - The maximum range discrepancy is optimal: $\Delta < 1$

One-dimensional order

• \Re = order (i.e. points lie on a line in 1D)

- Apply a left-to-right algorithm over the data in sorted order
- For first two keys with $0 < p_i$, $p_i < 1$, apply pair aggregation
- Remember which key was not set, find next unset key, pair aggregate
- Continue right until all keys are set
- Sampling scheme for 1D order has discrepancy Δ < 2
 - Analysis: view as a special case of hierarchy over all prefixes
 - Any $R \in \mathcal{R}$ is the difference of 2 prefixes, so has $\Delta < 2$
- \blacklozenge This is tight: cannot give VarOpt distribution with Δ < 2
 - For given Δ , we can construct a worst case input

Product Structures

- More generally, we have multidimensional keys
- E.g. (timestamp, bytes) is product of hierarchy with order
- KDHierarchy approach partitions space into regions
 - Make probability mass in each region approximately equal
 - Use KD-trees to do this. For each dimension in turn:
 - If it is an 'order' dimension, use median to split keys
 - If it is a 'hierarchy', find the split that minimizes the size difference
 - Recurse over left and right branches until we reach leaves

Any query rectangle fully contains some rectangles, and cuts others

- In d-dimensions on s leaves, at most O(d s^{(d-1)/d} log s) rectangles touched
- Consequently, error is concentrated around O((d log ^{1/2}s)s^(d-1)/2d))

I/O efficient sampling for product spaces

- Building the KD-tree over all data consumes a lot of space
- Instead, take two passes over data and use less space
 - Pass 1: Compute uniform sample of size s' > s and build tree
 - Pass 2: Maintain one key for each node in the tree
 - When two keys fall in same node, use pair aggregation
 - At end, pair aggregate up the binary tree to generate final sample
 - Conclude with a sample of size s, guided by structure of tree
- Variations of the same approach work for 1D structures

Experimental Study

- Compared structure aware I/O Efficient Sampling to:
 - VarOpt 'obliv' (structure unaware) sampling
 - Qdigest: Deterministic summary for range queries
 - Sketches: Randomized summary based on hashing
 - Wavelets: 2D Haar wavelets generate all coefficients, then prune
- Studied on various data sets with different size, structure
 - Shown here: network traffic data (product of 2 hierarchies: 2³² x 2³²)
 - Query loads: uniform area rectangles, and uniform weight rectangles

- Compared on uniform area queries, and uniform weight queries
- Clear benefit to structure aware sampling
- Wavelet sometimes competitive but very slow

Scalability Results

- Structure aware sampling is somewhat slower than VarOpt
 - But still much faster than everything else, particularly wavelets
- Queries take same time to perform for both sampling methods
 - Just answer query over the sample

Concluding Remarks

Structure aware sampling can improve accuracy greatly

- For structure-respecting queries
- Result is still variance optimal
- The streaming (one-pass) case is harder
 - There is a unique VarOpt sampling distribution
 - Instead, must relax VarOpt requirement
 - Initial results in SIGMETRICS'11

