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♦Approximate summaries are vital in managing large data

– E.g. sales records of a retailer; network activity for an ISP

– Need to store compact summaries for later analysis

♦State-of-the-art summarization via sampling

– Widely deployed in many settings

Summaries and Sampling
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– Widely deployed in many settings

– Models data as (key, weight) pairs

– General purpose summary, enables subset-sum queries

– Higher level analysis: quantiles, heavy hitters, other patterns & trends
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♦Current sampling methods are structure oblivious

– But most queries are structure respecting!

♦Most queries are actually range queries

– “How much traffic from region X to region Y between 2am and 4am?” 

♦Much structure in data

Limitations of Sampling
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♦Much structure in data

– Order (e.g. ordered timestamps, durations etc.)

– Hierarchy (e.g. geographic and network hierarchies)

– (Multidimensional) products of structures

♦Can we make sampling structure-aware and improve accuracy?
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♦ Inclusion Probability Proportional to Size (IPPS):

– Given parameter τ, probability of sampling key with weight w is 

min{1, w/τ}

– Key i has adjusted weight ai = wi/pτ(wi) = max{τ, wi} (Horvitz-Thompson)

– Can pick a τ so that expected sample size is k

♦

Background on Sampling
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♦VarOpt sampling methods are Variance Optimal over keys:

– Produces a sample of size exactly k keys using IPPS probabilities

– Allow correlations between inclusion of keys (unlike Poisson sampling)

– Give strong tail bounds on estimates via H-T estimates

– But do not yet consider structure of keys
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♦We define a probabilistic aggregate of sampling probabilities:

– Let vector p ∈ [0,1]n define sampling probabilities for n keys

– Probabilistic aggregation to p’ sets entries to 0 or 1 so that:

� ∀ i. E[p’i] = pi (Agreement in expectation)

� ∑i p’i = ∑i pi (Agreement in sum)

∀ ∏ ≤ ∏

Probabilistic Aggregation
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� ∀key sets J. E[ ∏i∈J p’i] ≤ ∏i∈J pi (Inclusion bounds)

� ∀key sets J. E[∏i∈J (1-p’i)] ≤ ∏i∈J (1-pi) (Exclusion bounds)

♦Apply probabilistic aggregation until all entries are set (0 or 1)

– The 1 entries define the contents of the sample

– This sample meets the requirements for a VarOpt sample
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♦Pair aggregation implements probabilistic aggregation

– Pick two keys, i and j, such that neither is 0 or 1

– If pi + pj < 1, one of them gets set to 0:

� Pick j to set to 0 with probability pi/(pi + pj), or i with pj/(pi + pj)

� The other gets set to pi + pj (preserving sum of probabilities)

Pair Aggregation
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– If pi + pj ≥ 1, one of them gets set to 1:

� Pick i with probability (1 - pj)/(2 - pi - pj), or j with (1 - pi)/(2 - pi - pj)

� The other gets set to pi + pj - 1 (preserving sum of probabilities)

– This satisfies all requirements of probabilistic aggregation

– There is complete freedom to pick which pair to aggregate at each step

� Use this to provide structure awareness by picking “close” pairs
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♦We want to measure the quality of a sample on structured data

♦Define range discrepancy  based on difference between

number of keys sampled in a range, and the expected number

– Given a sample S, drawn according to a sample distribution p:

Discrepancy of range R is ∆(S, R) = abs(|S ∩ R| - ∑i ∈ R pi)

– Maximum range discrepancy maximizes over ranges and samples:

Range Discrepancy
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– Maximum range discrepancy maximizes over ranges and samples:

Discrepancy over sample dbn Ω is ∆ = maxs ∈ Ω maxR∈R ∆(S,R)

– Given range space R, seek sampling schemes with small discrepancy
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♦Can give very tight bounds for one-dimensional range structures

♦R = Disjoint Ranges

– Pair selection picks pairs where both keys are in same range R

– Otherwise, pick any pair

♦R = Hierarchy

One-dimensional structures
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♦R = Hierarchy

– Pair selection picks pairs with lowest LCA

♦ In both cases, for any R∈R, |S ∩ R| ∈ {  ∑i∈R pi ,  ∑i∈R pi }

– The maximum range discrepancy is optimal: ∆ < 1
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♦R = order (i.e. points lie on a line in 1D)

– Apply a left-to-right algorithm over the data in sorted order

– For first two keys with 0 < pi, pj < 1, apply pair aggregation

– Remember which key was not set, find next unset key, pair aggregate

– Continue right until all keys are set

One-dimensional order
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– Continue right until all keys are set

♦Sampling scheme for 1D order has discrepancy ∆ < 2 

– Analysis: view as a special case of hierarchy over all prefixes

– Any R ∈R is the difference of 2 prefixes, so has ∆ < 2

♦This is tight: cannot give VarOpt distribution with ∆ < 2

– For given ∆, we can construct a worst case input 
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♦More generally, we have multidimensional keys

♦E.g. (timestamp, bytes) is product of hierarchy with order

♦KDHierarchy approach partitions space into regions

– Make probability mass in each region approximately equal

– Use KD-trees to do this.  For each dimension in turn:

Product Structures
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– Use KD-trees to do this.  For each dimension in turn:

� If it is an ‘order’ dimension, use median to split keys

� If it is a ‘hierarchy’, find the split that minimizes the size difference

� Recurse over left and right branches until we reach leaves
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KD-Hierarchy Analysis
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♦Any query rectangle fully contains some rectangles, and cuts others

– In d-dimensions on s leaves, at most O(d s(d-1)/d log s) rectangles touched

– Consequently, error is concentrated around O((d log 1/2s)s(d-1)/2d) )
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♦Building the KD-tree over all data consumes a lot of space

♦ Instead, take two passes over data and use less space

– Pass 1: Compute uniform sample of size s’ > s and build tree

– Pass 2: Maintain one key for each node in the tree

� When two keys fall in same node, use pair aggregation

I/O efficient sampling for product spaces 
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� When two keys fall in same node, use pair aggregation

� At end, pair aggregate up the binary tree to generate final sample

� Conclude with a sample of size s, guided by structure of tree

♦Variations of the same approach work for 1D structures
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♦Compared structure aware I/O Efficient Sampling to:

– VarOpt ‘obliv’ (structure unaware) sampling

– Qdigest: Deterministic summary for range queries

– Sketches: Randomized summary based on hashing

– Wavelets: 2D Haar wavelets – generate all coefficients, then prune

Experimental Study
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– Wavelets: 2D Haar wavelets – generate all coefficients, then prune

♦Studied on various data sets with different size, structure

– Shown here: network traffic data (product of 2 hierarchies: 232 x 232)

– Query loads: uniform area rectangles, and uniform weight rectangles
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Accuracy results
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♦Compared on uniform area queries, and uniform weight queries

♦Clear benefit to structure aware sampling

♦Wavelet sometimes competitive but very slow
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Scalability Results
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♦Structure aware sampling is somewhat slower than VarOpt

– But still much faster than everything else, particularly wavelets

♦Queries take same time to perform for both sampling methods

– Just answer query over the sample
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♦Structure aware sampling can improve accuracy greatly 

– For structure-respecting queries

– Result is still variance optimal

♦The streaming (one-pass) case is harder

– There is a unique VarOpt sampling distribution

Concluding Remarks
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– There is a unique VarOpt sampling distribution

– Instead, must relax VarOpt requirement

– Initial results in SIGMETRICS’11
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