
Substring
Compression
Problems

Graham Cormode
cormode@bell-labs.com

S. Muthukrishnan
muthu@cs.rutgers.edu

Overview
� Recent applications of compression

� Define “substring compression problems”

� Give exact and approximate algs for substring
compression problems under Lempel-Ziv

� Run out of time

� Stop abruptly

Introduction
Text compression is part of most algorithms

courses

Basic problem: given text T, produce C(T),
compressed version of T, which can be
decompressed: D(C(T)) = T

Some variations have been studied, eg, searching
compressed texts, compressed text indexes.

A variety of recent applications…

Use 1: Kolmogorov Complexity
Compression programs used as a surrogate for

Kolmogorov Complexity:

� Kolmogorov Complexity of a string is smallest
possible algorithmic description.

� But this is uncomputable.

� Compressed version of a string attempts to be
smallest possible efficiently computable
description.

� So in practice use compressed size.
[Li and Vitanyi]

Use 2: Biological Sequences
In Bioinformatics, people have designed

compression methods for DNA sequences etc.

Different parts show different compressibility:
coding regions are hard to compress, “junk DNA”
more compressible.

Methods are either off-the-shelf compressors, or
extensions of these to add plausible operations
(reverse-copies etc.)

Use 3: Sequence Comparison
A heuristic idea: given sequences X and Y,

compute |C(XY)| - |C(X)| as a measure of
similarity of X & Y (Y compressed in context of X)

Applied in practice with some success.
[Benedetto, Caglioti, Loreto 02]

Explained in terms of relative Kolmogorov
complexity [Li, Chen, Li, Ma, Vitanyi 03] and
approximation of combinatorial distances
[Ergun, Muthukrishnan, Sahinalp 03]

Proposed by physicists, used by biologists,
explained by computer scientists

Substring Applications
In most previous applications, compression has

been applied at whole string level, but can also
be used for substrings:

� Estimate Kolmogorov complexity of substrings
(find most complex substring)

� Compute compressed version of substrings of
Biological sequences (find subsection of interest)

� Find compressed size of substring using another
as initial dictionary (gives distance between
substrings)

Substring Compression
Gives a new direction in stringology: substring

compression problems.

Fix a compression method C, and given string S,
we can ask a variety of questions:

Substring Compression Query
After efficient preprocessing of string S:

Substring Compression Query (SCQ):
Given (i, j) compute the compressed
representation of S[i, j], C(S[i,j]).

Substring Compression Size Query (SCSQ):
Given (i, j), compute |C(S[i,j])|

Generalized Substring Compression Query
(GCSQ): Given (α, β, i, j) compute the
compressed version of S[i, j] in the context of
S[α, β].

Substring Compression Query
Two trivial solutions for SCQ:

(1) Preprocess all (i, j) pairs and store answer.
Preprocessing O(|S|2), query time O(|C(S[i,j])|).

(2) Compute compressed version on demand.
Preprocessing: O(1), Query time O(|S|).

Queries need Ω(|C(S[i,j])|) time to output result

Goal is therefore o(|S|2) preprocessing, and o(|S|)
time for queries.

Least Compressible Substring
Given string S and value λ:

Least Compressible Substring (LCS): Find i so
|C(S[i, i+λ-1])| = maxj |C(S[j, j+λ-1)|

Generalized Least Compressible Substring
(GLCS): Given α, β find least compressible
substring in context of S[α, β].

Most Compressible Substring is similar.

Compression Method
Choice of compression method is vital.

Simple methods eg Run Length Encoding, Huffman
Encoding, have mostly trivial solutions.

We will focus on Lempel-Ziv and variants:

LZSS: Given string S, greedily parse left-to-right
the longest substring that occurs earlier in string
(or single character).

Compressed size counts the number of phrases.

Our Results
� Exact algorithms for SCQ.

O(|S| log |S|) preprocessing, poly-log time to
produce each phrase in C(S[i,j]).

� Constant factor approximation of LCS
in time O(|S| λ / log λ).

� Poly-log factor approximation of LCS and SCSQ
O(|S| log2 |S|) preprocessing, O(1) per query

Exact Solutions for SCQ
Build the suffix tree for S$.

Note that there is a bijection between suffixes Sj =
S[j, |S|] and the leaves of the suffix tree.

Label the leaf for Sj with j and its position in the
lexicographic order.

b

ba$a

bba

$

a

b

ba$abba$

(1,1) (3,2)

(6,3)

(2,4) (5,5)

(4,6)

S=ababba

Interval Longest Common Prefix
We define the Interval Longest Common Prefix

(ILCP) as the longest common prefix of Sk and
suffixes Sl … Sm (l < m)

Using ILCP repeatedly, answer SCQ(i,j):

k=i;
repeat

ILCP = ILCP(k,i,k-1)
output ILCP
k ← k + |ILCP|

until k>j

i k j

ILCP(k,i,k-1)

Reduction
Split ILCP into two parts:

� ILCP that is (lexicographically) greater than Sk

� ILCP that is smaller than Sk

Focus on the latter, since former is symmetric.

Suppose Sk is labeled (k,p). The longest matching
suffix is the one labeled (a, b) where a ∈ [l, m]
and b is as large as possible but < p.

Range searching: query for pairs ∈ ([l, m], [b, p]),
binary search on b to find greatest. Use least
common ancestor (LCA) in tree to find length.

Example
b

ba$a

bba

$

a

b

ba$abba$

(1,1) (3,2)

(6,3)

(2,4) (5,5)

(4,6)

4

X6
X5

X4
X3

X2
X1

65321

ILCP(5,2,4) answered by range searching
for pair (x, y) with y < 5, x ∈ [2, 4].

Solution is (2, 4) whose LCA with (5,5) is
ba = S2[2].

4

X6
X5

X4
X3

X2
X1

65321

Cost
Preparing data structures for ILCP:

Build Suffix Tree, LCA O(|S| log |Σ|)
Range search structure O(|S| log |S|)

Each ILCP costs O(log |S|) range queries.

Total number of ILCPs = |C(S[i,j])|.

Overall cost per SCQ:
O(|C(S[i,j])| log|S| log log|S|)

ie poly-log factor over optimal
(for small |C(S[i,j])|)

Approximate Solutions
We can find approximate solutions to substring

compression problems: either approximating the
length of SCQ, or finding a substring which is
approximately the LCS.

Techniques rely on relating compressed size of
substrings to other combinatorial measures
which are easier to manipulate.

Parsing Methods
Preprocess S by generating a tree parsing using

methods based on Deterministic Coin Tossing
[Sahinalp, Vishkin 96, Muthukrishnan Sahinalp
00, Cormode Muthukrishnan 02].

Any substring induces a subtree of the parse tree:

a b a a a b a b a b a a

Parsing Methods for LCS
The number of unique nodes in the induced

subtree (nodes representing substrings)
approximates LZ compressed size of substring.

Approximate Least Compressible Substring by
walking over tree, adding and removing nodes to
represent sliding substring.

Result: Approximate LCS in time O(|S| log |S|)
up to factor of O(log |S| log* |S|).

Naïve alg costs O(|S| λ).

Parsing Methods for SCSQ
Compute number of unique nodes for all

substrings of length 2a. Represent any substring
by two overlapping substrings of length 2a.

Compute estimate of SCSQ by summing number
of distinct nodes (giving 2-factor approx).

Result: O(|S| log2 |S|) preprocessing.

Approximate SCSQ to O(log |S| log*|S|) in time
O(1) per query

2a

i j

2a

Approximation of GLCS
From [Ergun, Muthukrishnan, Sahinalp 03], can

show compressed size of concatenated
substrings approximates “block edit distance”
between them.

Bounding the change in block edit distance allows
us to “skip over” substrings with similar
compressed size, and only compute compression
of small number of substrings.

Result: O(1) approximation of GLCS in time
O(|S| λ / log λ). Naïve alg costs O(|S| λ).

Open Problems
Consider other compression techniques:

� Prediction by Partial Matching (PPM) ?

� Grammar-based compression methods

Can Burrows-Wheeler transform be analyzed?

� Some results possible for eg BWT+RLE.

� Other combinations still unstudied
eg. BWT+MTF (+HUFFMAN / +ARITHMETIC)

Stop abruptly.

