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Overview
� Recent applications of compression

� Define “substring compression problems”

� Give exact and approximate algs for substring 
compression problems under Lempel-Ziv

� Run out of time

� Stop abruptly



Introduction
Text compression is part of most algorithms 

courses

Basic problem: given text T, produce C(T),
compressed version of T, which can be 
decompressed: D(C(T)) = T

Some variations have been studied, eg, searching 
compressed texts, compressed text indexes.

A variety of recent applications…



Use 1: Kolmogorov Complexity
Compression programs used as a surrogate for 

Kolmogorov Complexity:

� Kolmogorov Complexity of a string is smallest 
possible algorithmic description.  

� But this is uncomputable. 

� Compressed version of a string attempts to be 
smallest possible efficiently computable 
description. 

� So in practice use compressed size.  
[Li and Vitanyi]



Use 2: Biological Sequences
In Bioinformatics, people have designed 

compression methods for DNA sequences etc.

Different parts show different compressibility: 
coding regions are hard to compress, “junk DNA” 
more compressible. 

Methods are either off-the-shelf compressors, or 
extensions of these to add plausible operations 
(reverse-copies etc.)



Use 3: Sequence Comparison
A heuristic idea: given sequences X and Y, 

compute |C(XY)| - |C(X)| as a measure of 
similarity of X & Y (Y compressed in context of X) 

Applied in practice with some success. 
[Benedetto, Caglioti, Loreto 02]

Explained in terms of relative Kolmogorov 
complexity [Li, Chen, Li, Ma, Vitanyi 03] and 
approximation of combinatorial distances 
[Ergun, Muthukrishnan, Sahinalp 03]

Proposed by physicists, used by biologists, 
explained by computer scientists



Substring Applications
In most previous applications, compression has 

been applied at whole string level, but can also 
be used for substrings:

� Estimate Kolmogorov complexity of substrings 
(find most complex substring)

� Compute compressed version of substrings of 
Biological sequences (find subsection of interest)

� Find compressed size of substring using another 
as initial dictionary (gives distance between 
substrings)



Substring Compression
Gives a new direction in stringology: substring

compression problems.  

Fix a compression method C, and given string S, 
we can ask a variety of questions:



Substring Compression Query
After efficient preprocessing of string S:

Substring Compression Query (SCQ):
Given (i, j) compute the compressed 
representation of S[i, j], C(S[i,j]).

Substring Compression Size Query (SCSQ):
Given (i, j), compute |C(S[i,j])|

Generalized Substring Compression Query 
(GCSQ): Given (α, β, i, j) compute the 
compressed version of S[i, j] in the context of 
S[α, β]. 



Substring Compression Query
Two trivial solutions for SCQ: 

(1) Preprocess all (i, j) pairs and store answer.  
Preprocessing O(|S|2), query time O(|C(S[i,j])|). 

(2) Compute compressed version on demand.   
Preprocessing: O(1), Query time O(|S|). 

Queries need Ω(|C(S[i,j])|) time to output result

Goal is therefore o(|S|2) preprocessing, and o(|S|)
time for queries. 



Least Compressible Substring
Given string S and value λ:

Least Compressible Substring (LCS): Find i so 
|C(S[i, i+λ-1])| = maxj |C(S[j, j+λ-1)|

Generalized Least Compressible Substring 
(GLCS): Given α, β find least compressible 
substring in context of S[α, β]. 

Most Compressible Substring is similar. 



Compression Method
Choice of compression method is vital.

Simple methods eg Run Length Encoding, Huffman 
Encoding, have mostly trivial solutions. 

We will focus on Lempel-Ziv and variants: 

LZSS: Given string S, greedily parse left-to-right 
the longest substring that occurs earlier in string 
(or single character). 

Compressed size counts the number of phrases.



Our Results
� Exact algorithms for SCQ.

O(|S| log |S|) preprocessing, poly-log time to 
produce each phrase in C(S[i,j]).

� Constant factor approximation of LCS
in time O(|S| λ / log λ). 

� Poly-log factor approximation of LCS and SCSQ
O(|S| log2 |S|) preprocessing, O(1) per query



Exact Solutions for SCQ
Build the suffix tree for S$. 

Note that there is a bijection between suffixes Sj = 
S[j, |S|] and the leaves of the suffix tree. 

Label the leaf for Sj with j and its position in the 
lexicographic order.
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Interval Longest Common Prefix
We define the Interval Longest Common Prefix

(ILCP) as the longest common prefix of Sk and 
suffixes Sl … Sm (l < m)

Using ILCP repeatedly, answer SCQ(i,j): 

k=i; 
repeat

ILCP = ILCP(k,i,k-1)
output ILCP
k ← k + |ILCP|

until k>j

i k j

ILCP(k,i,k-1)



Reduction
Split ILCP into two parts:

� ILCP that is (lexicographically) greater than Sk

� ILCP that is smaller than Sk

Focus on the latter, since former is symmetric. 

Suppose Sk is labeled (k,p).  The longest matching 
suffix is the one labeled (a, b) where a ∈ [l, m]
and b is as large as possible but < p.

Range searching: query for pairs ∈ ([l, m], [b, p]), 
binary search on b to find greatest. Use least 
common ancestor (LCA) in tree to find length.



Example
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65321

ILCP(5,2,4) answered by range searching 
for pair (x, y) with y < 5, x ∈ [2, 4].

Solution is (2, 4) whose LCA with (5,5) is 
ba = S2[2].
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Cost
Preparing data structures for ILCP:

Build Suffix Tree, LCA O(|S| log |Σ|)
Range search structure O(|S| log |S|)

Each ILCP costs O(log |S|) range queries.

Total number of ILCPs = |C(S[i,j])|.

Overall cost per SCQ:
O(|C(S[i,j])| log|S| log log|S|)

ie poly-log factor over optimal 
(for small |C(S[i,j])| )



Approximate Solutions
We can find approximate solutions to substring 

compression problems: either approximating the 
length of SCQ, or finding a substring which is 
approximately the LCS. 

Techniques rely on relating compressed size of 
substrings to other combinatorial measures 
which are easier to manipulate. 



Parsing Methods
Preprocess S by generating a tree parsing using 

methods based on Deterministic Coin Tossing 
[Sahinalp, Vishkin 96, Muthukrishnan Sahinalp 
00, Cormode Muthukrishnan 02].

Any substring induces a subtree of the parse tree: 

a   b   a   a   a   b   a   b  a b   a   a



Parsing Methods for LCS
The number of unique nodes in the induced 

subtree (nodes representing substrings) 
approximates LZ compressed size of substring. 

Approximate Least Compressible Substring by 
walking over tree, adding and removing nodes to 
represent sliding substring. 

Result: Approximate LCS in time O(|S| log |S|)
up to factor of O(log |S| log* |S|).

Naïve alg costs O(|S| λ). 



Parsing Methods for SCSQ
Compute number of unique nodes for all 

substrings of length 2a. Represent any substring 
by two overlapping substrings of length 2a. 

Compute estimate of SCSQ by summing number 
of distinct nodes (giving 2-factor approx). 

Result: O(|S| log2 |S|) preprocessing. 

Approximate SCSQ to O(log |S| log*|S|) in time 
O(1) per query
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i j
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Approximation of GLCS
From [Ergun, Muthukrishnan, Sahinalp 03], can 

show compressed size of concatenated 
substrings approximates “block edit distance” 
between them. 

Bounding the change in block edit distance allows 
us to “skip over” substrings with similar 
compressed size, and only compute compression 
of small number of substrings.

Result: O(1) approximation of GLCS in time 
O(|S| λ / log λ).  Naïve alg costs O(|S| λ). 



Open Problems
Consider other compression techniques: 

� Prediction by Partial Matching (PPM) ?

� Grammar-based compression methods

Can Burrows-Wheeler transform be analyzed? 

� Some results possible for eg BWT+RLE.  

� Other combinations still unstudied 
eg. BWT+MTF (+HUFFMAN / +ARITHMETIC)

Stop abruptly.


