Sketch Data Structures and Concentration Bounds

Graham Cormode
University of Warwick
G.Cormode@Warwick.ac.uk
“Big” data arises in many forms:

- **Physical Measurements**: from science (physics, astronomy)
- **Medical data**: genetic sequences, detailed time series
- **Activity data**: GPS location, social network activity
- **Business data**: customer behavior tracking at fine detail

Common themes:

- Data is large, and growing
- There are important patterns and trends in the data
- We don’t fully know how to find them
Making sense of Big Data

- Want to be able to interrogate data in different use-cases:
 - **Routine Reporting**: standard set of queries to run
 - **Analysis**: ad hoc querying to answer ‘data science’ questions
 - **Monitoring**: identify when current behavior differs from old
 - **Mining**: extract new knowledge and patterns from data

- In all cases, need to answer certain basic questions quickly:
 - Describe the distribution of particular attributes in the data
 - How many (distinct) X were seen?
 - How many $X < Y$ were seen?
 - Give some representative examples of items in the data
Data Models

- We model data as a collection of simple tuples.
- Problems hard due to scale and dimension of input.
- Arrivals only model:
 - Example: \((x, 3), (y, 2), (x, 2)\) encodes the arrival of 3 copies of item \(x\), 2 copies of \(y\), then 2 copies of \(x\).
 - Could represent eg. packets on a network; power usage.
- Arrivals and departures:
 - Example: \((x, 3), (y, 2), (x, -2)\) encodes final state of \((x, 1), (y, 2)\).
 - Can represent fluctuating quantities, or measure differences between two distributions.
Sketches and Frequency Moments

- Frequency distributions and Concentration bounds
- Count-Min sketch for F_∞ and frequent items
- AMS Sketch for F_2
- Estimating F_0
- Extensions:
 - Higher frequency moments
 - Combined frequency moments
Frequency Distributions

- Given set of items, let f_i be the number of occurrences of item i
- Many natural questions on f_i values:
 - Find those i’s with large f_i values (heavy hitters)
 - Find the number of non-zero f_i values (count distinct)
 - Compute $F_k = \sum_i (f_i)^k$ – the k’th Frequency Moment
 - Compute $H = \sum_i (f_i/F_1) \log (F_1/f_i)$ – the (empirical) entropy

“Space Complexity of the Frequency Moments”
Alon, Matias, Szegedy in STOC 1996
- Awarded Gödel prize in 2005
- Set the pattern for many streaming algorithms to follow
Concentration Bounds

- Will provide randomized algorithms for these problems
- Each algorithm gives a (randomized) estimate of the answer
- Give confidence bounds on the final estimate X
 - Use probabilistic concentration bounds on random variables
- A concentration bound is typically of the form
 $$\Pr[|X - x| > \varepsilon y] < \delta$$
 - At most probability δ of being more than εy away from x
Markov Inequality

- Take *any* probability distribution X s.t. $\Pr[X < 0] = 0$
- Consider the event $X \geq k$ for some constant $k > 0$
- For any draw of X, $kI(X \geq k) \leq X$
 - Either $0 \leq X < k$, so $I(X \geq k) = 0$
 - Or $X \geq k$, lhs = k
- Take expectations of both sides: $k \Pr[X \geq k] \leq \mathbb{E}[X]$
- **Markov inequality**: $\Pr[X \geq k] \leq \mathbb{E}[X]/k$
 - Prob of random variable exceeding k times its expectation $< 1/k$
 - Relatively weak in this form, but still useful
Sketch Structures

- **Sketch** is a class of summary that is a linear transform of input
 - $\text{Sketch}(x) = Sx$ for some matrix S
 - Hence, $\text{Sketch}(\alpha x + \beta y) = \alpha \text{Sketch}(x) + \beta \text{Sketch}(y)$
 - Trivial to update and merge

- Often describe S in terms of hash functions
 - If hash functions are simple, sketch is fast

- Aim for limited independence hash functions $h: [n] \rightarrow [m]$
 - If $\Pr_{h \in H} [h(i_1) = j_1 \land h(i_2) = j_2 \land \ldots \land h(i_k) = j_k] = m^{-k}$,
 then H is k-wise independent family ("h is k-wise independent")
 - k-wise independent hash functions take time, space $O(k)$
Sketches and Frequency Moments

- Frequency distributions and Concentration bounds
- Count-Min sketch for F_∞ and frequent items
- AMS Sketch for F_2
- Estimating F_0
- Extensions:
 - Higher frequency moments
 - Combined frequency moments
Count-Min Sketch

- Simple sketch idea relies primarily on Markov inequality
- Model input data as a vector x of dimension U
- Creates a small summary as an array of $w \times d$ in size
- Use d hash function to map vector entries to $[1..w]$
- Works on arrivals only and arrivals & departures streams

Array: $\text{CM}[i,j]$
Count-Min Sketch Structure

- Each entry in vector x is mapped to one bucket per row.
- Merge two sketches by entry-wise summation
- Estimate $x[j]$ by taking $\min_k CM[k, h_k(j)]$
 - Guarantees error less than εF_1 in size $O(1/\varepsilon \log 1/\delta)$
 - Probability of more error is less than $1-\delta$

[C, Muthukrishnan '04]
Approximation of Point Queries

Approximate point query $x'[j] = \min_k \text{CM}[k,h_k(j)]$

- **Analysis:** In k'th row, $\text{CM}[k,h_k(j)] = x[j] + X_{k,j}$
 - $X_{k,j} = \sum_i x[i] \cdot I(h_k(i) = h_k(j))$
 - $E[X_{k,j}] = \sum_{i \neq j} x[i] \cdot \Pr[h_k(i) = h_k(j)]$
 $\leq \Pr[h_k(i) = h_k(j)] \cdot \sum_i x[i]$
 $= \varepsilon F_1 / 2$ – requires only pairwise independence of h
 - $\Pr[X_{k,j} \geq \varepsilon F_1] = \Pr[X_{k,j} \geq 2E[X_{k,j}]] \leq 1/2$ by Markov inequality

- So, $\Pr[x'[j] \geq x[j] + \varepsilon F_1] = \Pr[\forall k. X_{k,j} > \varepsilon F_1] \leq 1/2^{\log 1/\delta} = \delta$

- **Final result:** with certainty $x[j] \leq x'[j]$ and with probability at least $1-\delta$, $x'[j] < x[j] + \varepsilon F_1$
Applications of Count-Min to Heavy Hitters

- Count-Min sketch lets us estimate f_i for any i (up to εF_1)
- Heavy Hitters asks to find i such that f_i is large ($> \phi F_1$)
- Slow way: test every i after creating sketch
- Alternate way:
 - Keep binary tree over input domain: each node is a subset
 - Keep sketches of all nodes at same level
 - Descend tree to find large frequencies, discard ‘light’ branches
 - Same structure estimates arbitrary range sums
- A first step towards compressed sensing style results...
Application to Large Scale Machine Learning

- In machine learning, often have very large feature space
 - Many objects, each with huge, sparse feature vectors
 - Slow and costly to work in the full feature space
- “Hash kernels”: work with a sketch of the features
 - Effective in practice! [Weinberger, Dasgupta, Langford, Smola, Attenberg ‘09]
- Similar analysis explains why:
 - Essentially, not too much noise on the important features
Sketches and Frequency Moments

- Frequency distributions and Concentration bounds
- Count-Min sketch for \(F_\infty \) and frequent items
- AMS Sketch for \(F_2 \)
- Estimating \(F_0 \)
- Extensions:
 - Higher frequency moments
 - Combined frequency moments
Chebyshev Inequality

- Markov inequality is often quite weak
- But Markov inequality holds for any random variable
- Can apply to a random variable that is a function of X
- Set $Y = (X - E[X])^2$
- By Markov, $Pr[Y > kE[Y]] < 1/k$
 - $E[Y] = E[(X-E[X])^2] = Var[X]$
- Hence, $Pr[|X - E[X]| > \sqrt{k Var[X]}] < 1/k$
- **Chebyshev inequality**: $Pr[|X - E[X]| > k] < Var[X]/k^2$
 - If $Var[X] \leq \varepsilon^2 E[X]^2$, then $Pr[|X - E[X]| > \varepsilon E[X]] = O(1)$
F_2 estimation

- AMS sketch (for Alon-Matias-Szegedy) proposed in 1996
 - Allows estimation of F_2 (second frequency moment)
 - Used at the heart of many streaming and non-streaming applications: achieves dimensionality reduction
- Here, describe AMS sketch by generalizing CM sketch.
- Uses extra hash functions \(g_1 \ldots g_{\log \frac{1}{\delta}} \{1 \ldots U\} \rightarrow \{+1, -1\} \)
 - (Low independence) Rademacher variables
- Now, given update \((j, +c)\), set \(CM[k, h_k(j)] += c^*g_k(j) \)
F₂ analysis

- Estimate $F₂ = \text{median}_k \sum_i \text{CM}[k,i]^2$
- Each row’s result is $\sum_i g(i)^2 x[i]^2 + \sum_{h(i)=h(j)} 2 g(i) g(j) x[i] x[j]$
- But $g(i)^2 = -1^2 = +1^2 = 1$, and $\sum_i x[i]^2 = F₂$
- $g(i)g(j)$ has $1/2$ chance of $+1$ or -1: expectation is 0 ...

$w = 4/\varepsilon^2$

d = $8\log 1/\delta$
F₂ Variance

- Expectation of row estimate $R_k = \sum_i CM[k,i]^2$ is exactly F_2
- Variance of row k, $\text{Var}[R_k]$, is an expectation:
 - $\text{Var}[R_k] = E[(\sum_{\text{buckets } b} (CM[k,b])^2 - F_2)^2]$
 - Good exercise in algebra: expand this sum and simplify
 - Many terms are zero in expectation because of terms like $g(a)g(b)g(c)g(d)$ (degree at most 4)
 - Requires that hash function g is *four-wise independent*: it behaves uniformly over subsets of size four or smaller
 - Such hash functions are easy to construct
F₂ Variance

- Terms with odd powers of $g(a)$ are zero in expectation
 - $g(a)g(b)g^2(c)$, $g(a)g(b)g(c)g(d)$, $g(a)g^3(b)$

- Leaves
 \[
 \text{Var}[R_k] \leq \sum_i g^4(i) x[i]^4 + 2 \sum_{j \neq i} g^2(i) g^2(j) x[i]^2 x[j]^2 + 4 \sum_{h(i)=h(j)} g^2(i) g^2(j) x[i]^2 x[j]^2 - (x[i]^4 + \sum_{j \neq i} 2x[i]^2 x[j]^2) \leq F₂^2/w
 \]

- Row variance can finally be bounded by $F₂^2/w$
 - Chebyshev for $w=4/\varepsilon^2$ gives probability $\frac{1}{4}$ of failure:
 \[
 \text{Pr}[|R_k - F₂| > \varepsilon^2 F₂] \leq \frac{1}{4}
 \]
 - How to amplify this to small δ probability of failure?
 - Rescaling w has cost linear in $1/\delta$
Tail Inequalities for Sums

- We achieve stronger bounds on tail probabilities for the sum of independent Bernoulli trials via the Chernoff Bound:
 - Let $X_1, ..., X_m$ be independent Bernoulli trials s.t. $\Pr[X_i=1] = p$ ($\Pr[X_i=0] = 1-p$).
 - Let $X = \sum_{i=1}^{m} X_i$, and $\mu = mp$ be the expectation of X.
 - $\Pr[X > (1+\varepsilon)\mu] = \Pr[\exp(tX) > \exp(t(1+\varepsilon)\mu)] \leq \frac{E[\exp(tX)]}{\exp(t(1+\varepsilon)\mu)}$
 - $E[\exp(tX)] = \prod_i E[\exp(tX_i)] = \prod_i (1-p + pe^t) \leq \prod_i \exp(p (e^t - 1))$
 $= \exp(\mu(e^t - 1))$
 - $\Pr[X > (1+\varepsilon)\mu] \leq \exp(\mu(e^t - 1) - \mu t(1+\varepsilon)) = \exp(\mu(-\varepsilon t + t^2/2 + t^3/6 + ...) \leq \exp(\mu(t^2/2 - \varepsilon t))$
 - Balance: choose $t=\varepsilon/2$
 $\leq \exp(-\mu \varepsilon^2/2)$
Applying Chernoff Bound

- Each row gives an estimate that is within ε relative error with probability $p' > \frac{3}{4}$
- Take d repetitions and find the median. Why the median?
 - Because bad estimates are either too small or too large
 - Good estimates form a contiguous group “in the middle”
 - At least $d/2$ estimates must be bad for median to be bad
- Apply Chernoff bound to d independent estimates, $p=1/4$
 - $\Pr[\text{More than } d/2 \text{ bad estimates }] < 2\exp(-d/8)$
 - So we set $d = \Theta(\ln 1/\delta)$ to give δ probability of failure
- Same outline used many times in summary construction
Applications and Extensions

- F_2 guarantee: estimate $\|x\|_2$ from sketch with error $\varepsilon \|x\|_2$
 - Since $\|x + y\|_2^2 = \|x\|_2^2 + \|y\|_2^2 + 2x \cdot y$
 - Can estimate $(x \cdot y)$ with error $\varepsilon \|x\|_2 \|y\|_2$
 - If $y = e_j$, obtain $(x \cdot e_j) = x_j$ with error $\varepsilon \|x\|_2$:
 - L_2 guarantee (“Count Sketch”) vs L_1 guarantee (Count-Min)

- Can view the sketch as a low-independence realization of the Johnson-Lindenstrauss lemma
 - Best current JL methods have the same structure
 - JL is stronger: embeds directly into Euclidean space
 - JL is also weaker: requires $O(1/\varepsilon)$-wise hashing, $O(\log 1/\delta)$ independence [Kane, Nelson 12]
Sketches and Frequency Moments

- Frequency Moments and Sketches
- Count-Min sketch for F_∞ and frequent items
- AMS Sketch for F_2
- Estimating F_0
- Extensions:
 - Higher frequency moments
 - Combined frequency moments
F_0 Estimation

- F_0 is the number of distinct items in the stream
 - a fundamental quantity with many applications
- Early algorithms by Flajolet and Martin [1983] gave nice hashing-based solution
 - analysis assumed fully independent hash functions
- Will describe a generalized version of the FM algorithm due to Bar-Yossef et. al with only pairwise indendence
 - Known as the “k-Minimum values (KMV)” algorithm
F₀ Algorithm

- Let m be the domain of stream elements
 - Each item in data is from $[1...m]$

- Pick a random (pairwise) hash function $h: [m] \rightarrow [m^3]$
 - With probability at least $1-1/m$, no collisions under h

- For each stream item i, compute $h(i)$, and track the t distinct items achieving the smallest values of $h(i)$
 - Note: if same i is seen many times, $h(i)$ is same
 - Let $v_t = t$'th smallest (distinct) value of $h(i)$ seen

- If $F₀ < t$, give exact answer, else estimate $F₀' = tm^3/v_t$
 - $v_t/m^3 \approx$ fraction of hash domain occupied by t smallest
Analysis of F_0 algorithm

- Suppose $F'_0 = \frac{tm^3}{v_t} > (1+\varepsilon) F_0$ [estimate is too high]

So for input = set $S \in 2^m$, we have

- $|\{ s \in S \mid h(s) < \frac{tm^3}{(1+\varepsilon)F_0} \}| > t$
- Because $\varepsilon < 1$, we have $\frac{tm^3}{(1+\varepsilon)F_0} \leq (1-\varepsilon/2)\frac{tm^3}{F_0}$
- $\Pr[h(s) < (1-\varepsilon/2)\frac{tm^3}{F_0}] \approx \frac{1}{m^3} * (1-\varepsilon/2)\frac{tm^3}{F_0} = (1-\varepsilon/2)t/F_0$

- (this analysis outline hides some rounding issues)
Chebyshev Analysis

- Let Y be number of items hashing to under $tm^3/(1+\varepsilon)F_0$
 - $E[Y] = F_0 \times Pr[h(s) < tm^3/(1+\varepsilon)F_0] = (1-\varepsilon/2)t$
 - For each item i, variance of the event $= p(1-p) < p$
 - $Var[Y] = \sum_{s \in S} Var[h(s) < tm^3/(1+\varepsilon)F_0] < (1-\varepsilon/2)t$
 - We sum variances because of pairwise independence

- Now apply Chebyshev inequality:
 - $Pr[Y > t] \leq Pr[|Y - E[Y]| > \varepsilon t/2]$
 - $\leq 4Var[Y]/\varepsilon^2 t^2$
 - $< 4t/(\varepsilon^2 t^2)$
 - Set $t=20/\varepsilon^2$ to make this $Prob \leq 1/5$
Completing the analysis

- We have shown
 \[\Pr[F'_0 > (1+\varepsilon) F_0] < \frac{1}{5} \]
- Can show \(\Pr[F'_0 < (1-\varepsilon) F_0] < \frac{1}{5} \) similarly
 - too few items hash below a certain value
- So \(\Pr[(1-\varepsilon) F_0 \leq F'_0 \leq (1+\varepsilon)F_0] > \frac{3}{5} \) [Good estimate]

- Amplify this probability: repeat \(O(\log \frac{1}{\delta}) \) times in parallel with different choices of hash function \(h \)
 - Take the median of the estimates, analysis as before
F₀ Issues

- **Space cost:**
 - Store t hash values, so $O(1/\varepsilon^2 \log m)$ bits
 - Can improve to $O(1/\varepsilon^2 + \log m)$ with additional tricks

- **Time cost:**
 - Find if hash value $h(i) < v_t$
 - Update v_t and list of t smallest if $h(i)$ not already present
 - Total time $O(\log 1/\varepsilon + \log m)$ worst case
Engineering the best constants: Hyperloglog algorithm
- Hash each item to one of $1/\varepsilon^2$ buckets (like Count-Min)
- In each bucket, track the function $\max \lfloor \log(h(x)) \rfloor$
 - Can view as a coarsened version of KMV
 - Space efficient: need $\log \log m \approx 6$ bits per bucket

Can estimate intersections between sketches
- Make use of identity $|A \cap B| = |A| + |B| - |A \cup B|$
- Error scales with $\varepsilon \sqrt{|A| \cdot |B|}$, so poor for small intersections
- Higher order intersections via inclusion-exclusion principle
Bloom Filters

- **Bloom filters** compactly encode set membership
 - k hash functions map items to bit vector k times
 - Set all k entries to 1 to indicate item is present
 - Can lookup items, store set of size n in $O(n)$ bits

- Duplicate insertions do not change Bloom filters
- Can *merge* by OR-ing vectors (of same size)
Bloom Filter analysis

- How to set k (number of hash functions), m (size of filter)?
- False positive: when all k locations for an item are set
 - If ρ fraction of cells are empty, false positive probability is $(1-\rho)^k$
- Consider probability of any cell being empty:
 - For n items, $\Pr[\text{cell j is empty}] = (1 - 1/m)^{kn} \approx \rho \approx \exp(-kn/m)$
 - False positive prob $= (1 - \rho)^k = \exp(k \ln(1 - \rho))$
 $= \exp(-m/n \ln(\rho) \ln(1-\rho))$
- For fixed n, m, by symmetry minimized at $\rho = \frac{1}{2}$
 - Half cells are occupied, half are empty
 - Give $k = (m/n)\ln 2$, false positive rate is $\frac{1}{2}^k$
 - Choose $m = cn$ to get constant FP rate, e.g. $c=10$ gives < 1% FP
Bloom Filters Applications

- Bloom Filters widely used in “big data” applications
 - Many problems require storing a large set of items
- Can generalize to allow deletions
 - Swap bits for counters: increment on insert, decrement on delete
 - If representing sets, small counters suffice: 4 bits per counter
 - If representing multisets, obtain sketches (next lecture)
- Bloom Filters are an active research area
 - Several papers on topic in every networking conference...
Frequency Moments

- Intro to frequency distributions and Concentration bounds
- Count-Min sketch for F_∞ and frequent items
- AMS Sketch for F_2
- Estimating F_0
- Extensions:
 - Higher frequency moments
 - Combined frequency moments
Higher Frequency Moments

- F_k for $k > 2$. Use a sampling trick [Alon et al 96]:
 - Uniformly pick an item from the stream length $1 \ldots n$
 - Set $r = \text{how many times that item appears subsequently}$
 - Set estimate $F'_k = n(r^k - (r-1)^k)$

- $E[F'_k] = \frac{1}{n} n \ast \left[f_1^k - (f_1-1)^k + (f_1-1)^k - (f_1-2)^k + \ldots + 1^k - 0^k \right] + \ldots$
 = $f_1^k + f_2^k + \ldots = F_k$

- $\text{Var}[F'_k] \leq \frac{1}{n} n^2 \ast \left[(f_1^k-(f_1-1)^k)^2 + \ldots \right]$
 - Use various bounds to bound the variance by $k \, m^{1-1/k} \, F_k^2$
 - Repeat $k \, m^{1-1/k}$ times in parallel to reduce variance

- Total space needed is $O(k \, m^{1-1/k})$ machine words
 - Not a sketch: does not distribute easily. See part 2!
Combined Frequency Moments

- Let $G[i,j] = 1$ if (i,j) appears in input.
 E.g. graph edge from i to j. Total of m distinct edges
- Let $d_i = \sum_{j=1}^{n} G[i,j]$ (aka degree of node i)
- Find aggregates of d_i’s:
 - Estimate heavy d_i’s (people who talk to many)
 - Estimate frequency moments:
 number of distinct d_i values, sum of squares
 - Range sums of d_i’s (subnet traffic)
- **Approach**: nest one sketch inside another, e.g. HLL inside CM
 - Requires new analysis to track overall error
Range Efficiency

- Sometimes input is specified as a collection of ranges $[a,b]$
 - $[a,b]$ means insert all items $(a, a+1, a+2 ... b)$
 - Trivial solution: just insert each item in the range

- Range efficient F_0 [Pavan, Tirthapura 05]
 - Start with an alg for F_0 based on pairwise hash functions
 - Key problem: track which items hash into a certain range
 - Dives into hash fns to divide and conquer for ranges

- Range efficient F_2 [Calderbank et al. 05, Rusu,Dobra 06]
 - Start with sketches for F_2 which sum hash values
 - Design new hash functions so that range sums are fast

- Rectangle Efficient F_0 [Tirthapura, Woodruff 12]
Current Directions in Streaming and Sketching

- **Sparse representations** of high dimensional objects
 - Compressed sensing, sparse fast fourier transform
- **Numerical linear algebra** for (large) matrices
 - k-rank approximation, linear regression, PCA, SVD, eigenvalues
- **Computations on large graphs**
 - Sparsification, clustering, matching
- **Geometric (big) data**
 - Coresets, facility location, optimization, machine learning
- **Use of summaries in** distributed computation
 - MapReduce, Continuous Distributed models