
DRAFT
Small Summaries for Big Data

Graham Cormode and Ke Yi

DRAFT

DRAFT
Acknowledgments

We thank the many colleagues and friends who have read drafts of this
volume, and provided feedback and suggestions.

These include Edith Cohen, Gil Einziger, Floris Geerts, Nikolai Kar-
pov, Edo Liberty, Lee Rhodes, Justin Thaler, Andrew Twigg, Pavel Veselý,
and Qin Zhang.

iii

DRAFT
Contents

1 Introduction page 1
1.1 Small Summaries for Big Data 1
1.2 Preliminaries 5
1.3 Summaries in Applications 14
1.4 Computational and Mathematical tools 20
1.5 Organization of the Book 27

PART ONE FUNDAMENTAL SUMMARY TECHNIQUES
29

2 Summaries for Sets 31
2.1 Morris Approximate Counter 31
2.2 Random Sampling 36
2.3 Weighted Random Sampling 40
2.4 Priority Sampling 49
2.5 k Minimum Values (KMV) for set cardinality 51
2.6 HyperLogLog (HLL) for set cardinality 58
2.7 Bloom Filters for set membership 65

3 Summaries for Multisets 72
3.1 Fingerprints for testing multiset equality 73
3.2 Misra-Gries (MG) 77
3.3 SpaceSaving 84
3.4 Count-Min Sketch for frequency estimation 88
3.5 Count Sketch for frequency estimation 97
3.6 (Fast) AMS Sketch for Euclidean norm 104
3.7 Lp sketch for vector norm estimation 107
3.8 Sparse vector recovery 111

iv

DRAFT

Contents v

3.9 Distinct Sampling / `0 Sampling 118
3.10 Lp sampling 122

4 Summaries for Ordered Data 126
4.1 Q-Digest 127
4.2 Greenwald-Khanna (GK) 136
4.3 Karnin-Lang-Liberty (KLL) 142
4.4 Dyadic Count Sketch (DCS) 150

PART TWO ADVANCED SUMMARIES AND EXTEN-
SIONS 157

5 Geometric Summaries 159
5.1 ε-Nets and ε-Approximations 159
5.2 Coresets for Minimum Enclosing Balls 164
5.3 ε-Kernels 169
5.4 k-Center Clustering 175
5.5 The (Sparse) Johnson-Lindenstrauss Transform 178

6 Vector, Matrix and Linear Algebraic Summaries 183
6.1 Vector Computations: Euclidean Norm and Inner

Product Estimation 183
6.2 `p norms and Frequency Moments 186
6.3 Full matrix multiplication 188
6.4 Compressed matrix multiplication 190
6.5 Frequent directions 193
6.6 Regression and Subspace Embeddings 197

7 Graph Summaries 200
7.1 Graph Sketches 200
7.2 Spanners 205
7.3 Properties of Degree Distributions via Frequency

Moments 208
7.4 Triangle Counting via Frequency Moments 208
7.5 All-distances Graph Sketch 210

8 Summaries over Distributed Data 216
8.1 Random Sampling over a Distributed Set 217
8.2 Point Queries over Distributed Multisets 218
8.3 Distributed Ordered Data 225

9 Other Uses of Summaries 228
9.1 Nearest Neighbor Search 228

DRAFT

vi Contents

9.2 Time Decay 235
9.3 Data Transformations 242
9.4 Manipulating Summaries 249

10 Lower Bounds for Summaries 253
10.1 Equality and Fingerprinting 255
10.2 Index and Set Storage 256
10.3 Disjointness and Heavy Hitters 258
10.4 Gap Hamming and Count Distinct, Again 261
10.5 Augmented Index and Matrix Multiplication 263
References 267
Index 281

DRAFT
1

Introduction

“Space,” it says, “is big. Really big. You just won’t believe how vastly, hugely,
mindbogglingly big it is. I mean, you may think it’s a long way down the road
to the chemist’s, but that’s just peanuts to space, listen...”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

1.1 Small Summaries for Big Data

Data, to paraphrase Douglas Adams, is big. Really big. Moreover, it is
getting bigger, due to increased abilities to measure and capture more
information. Sources of big data are becoming increasingly common,
while the resources to deal with big data (chiefly, processor power, fast
memory and slower disk) are growing at a slower pace. The conse-
quence of this trend is that we need more effort in order to capture
and process data in applications. Careful planning and scalable archi-
tectures are needed to fulfill the requirements of analysis and informa-
tion extraction on big data. While the ‘big’ in big data can be interpreted
more broadly, to refer to the big potential that data has to offer, or the
wide variety of data, the focus of this volume is primarily on the scale
of data.

Some examples of applications that generate large volumes of data
include:

Physical Data. The growing development of sensors and sensor de-
ployments have led to settings where measurements of the physical
world are available at very high dimensionality and at a great rate. Sci-
entific measurements are the cutting edge of this trend. Astronomy data
gathered from modern telescopes can easily generate terabytes of data

1

DRAFT

2 Introduction

in a single night. Aggregating large quantities of astronomical data pro-
vides a substantial big data challenge to support the study and discov-
ery of new phenomena. Big data from particle physics experiments is
also enormous: each experiment can generate many terabytes of read-
ings, which can dwarf what is economically feasible to store for later
comparison and investigation.

Medical Data. It is increasingly feasible to sequence entire genomes. A
single genome is not so large—it can be represented in under a gigabyte—
but considering the entire genetic data of a large population represents
a big data challenge. This may be accompanied by increasing growth in
other forms of medical data, based on monitoring multiple vital signs
for many patients at fine granularity. Collectively, this leads to the area
of data-driven medicine, seeking better understanding of disease, and
leading to new treatments and interventions, personalized for each in-
dividual patient.

Activity Data. Human activity data is increasingly being captured and
stored. Online social networks record not just friendship relations but
interactions, messages, photos and interests. Location data is also more
available, due to mobile devices which can obtain GPS information.
Other electronic activities, such as patterns of website visits, email mes-
sages and phone calls can be collected and analyzed. Collectively, this
provides ever-larger collections of activity information. Service providers
who can collect this data seek to make sense of it in order to identify
patterns of behavior or signals of behavioral change, and opportunities
for advertising and marketing.

Business Data. Businesses are increasingly able to capture more and
complex data about their customers. Online stores can track millions
of customers as they explore their site, and seek patterns in purchasing
and interest, with the aim of providing better service, and anticipating
future needs. The detail level of data is getting finer and finer. Previ-
ously, data would be limited to just the items purchased, but now ex-
tends to more detailed shopping and comparison activity, tracking the
whole path to purchase.

Across all of these disparate settings, certain common themes emerge.
The data in question is large, and growing. The applications seek to ex-
tract patterns, trends or descriptions of the data. Scalability and timeli-
ness of response are vital in many of these applications.

DRAFT

1.1 Small Summaries for Big Data 3

In response to these needs, new computational paradigms are being
adopted to deal with the challenge of big data. Large scale distributed
computation is a central piece: the scope of the computation can exceed
what is feasible on a single machine, and so clusters of machines work
together in parallel. On top of these architectures, parallel algorithms
are designed that can take the complex task and break it into indepen-
dent pieces suitable for distribution over multiple machines.

A central challenge within any such system is how to compute and
represent complex features of big data in a way that can be processed by
many single machines in parallel. One answer is to be able to build and
manipulate a compact summary of a large amount of data, modeled as
a mathematical object. This notion of a small summary is the subject
of study of this work. The idea of a summary is a natural and famil-
iar one. It should represent something large and complex in a compact
fashion. Inevitably, a summary must dispense with some of the detail
and nuance of the object which it is summarizing. However, it should
also preserve some key features of the object in an accurate fashion.

There is no single summary which accurately captures all proper-
ties of a data set, even approximately. Thus, at the heart of the study
of small summaries are the questions of what should be preserved? and
how accurately can it be preserved?. The answer to the first question de-
termines which of many different possible summary types may be ap-
propriate, or indeed whether any compact summary even exists. The
answer to the second question can determine the size and processing
cost of working with the summary in question.

Another important question about summaries for big data is how
they can be constructed and maintained as new data arrives. Given
that it is typically not feasible to load all the data into memory on one
machine, we need summaries which can be constructed incrementally.
That is, we seek summaries that can be built by observing each indi-
vidual data item in turn, and updating the partial summary. Or, more
strongly, we seek summaries such that summaries of different subsets
of data built on different machines can be combined together to obtain
a single summary that accurately represents the full data set.

Note that the notion of summarization is distinct from that of com-
pression. In general, lossless compression is concerned with identify-
ing regularity and redundancy in datasets to provide a more compact
exact representation of the data. This is done for the purpose of com-
pactly storing the data, or reducing the data transmission time. How-
ever, in general, there is no guarantee of significant size reduction from

DRAFT

4 Introduction

compression. The compressed form is also typically difficult to analyze,
and decompression is required in order to work with the data. In con-
trast, summarization is intended to provide a very significant reduc-
tion in the size of the data (sometimes several orders of magnitude),
but does not promise to reconstruct the original data, only to capture
certain key properties. Lossy compression methods fall in between, as
they can provide guaranteed size reductions. They also aim to allow
an approximate reconstruction of the original data with some limited
loss of fidelity: typically, based on the human perception of multime-
dia data, such as audio or video. Summarization aims to provide only
small loss of fidelity, but measured along other dimensions; summaries
do not necessarily provide a way to reconstruct even an approximation
of the original input.

As a first example of summarization, consider a data set consisting
of a large collection of temperature readings over time. A suitable sum-
mary might be to keep the sum of all the temperatures seen, and the
count. From this summary given by two numbers, we can extract the
average temperature. This summary is easy to update incrementally,
and can also be combined with a corresponding summary of different
data by computing the overall sum and count. A different summary
retains only the maximum and minimum temperature observed so far.
From this, we can extract the range of temperatures observed. This too
is straightforward to maintain under updates, and to merge across mul-
tiple subsets. However, neither summary is good at retrieving the me-
dian temperature, or some other properties of the statistical distribution
of temperatures. Instead, more complex summaries and maintenance
procedures are required.

This work aims to describe and explain the summaries that have been
developed to deal with big data, and to compare summaries for similar
goals in terms of the forms of data that they accept, and their flexibility
of use. It follows a fairly technical approach, describing each summary
in turn. It lists the type of data that can be summarized, and what opera-
tions can be performed on the summary to include more data in it, and
to extract information about the summarized data. We assume some
familiarity with mathematical and computer science concepts, but pro-
vide some necessary background in subsequent sections.

DRAFT

1.2 Preliminaries 5

1.2 Preliminaries

This section lays down some of the basics of working with summaries:
the kinds of data that they can take as inputs; the operations that may
be performed on the summaries during their use; and the types of guar-
antees they provide over their output.

1.2.1 Data Models

In this volume, we focus on data sets that arise from the aggregation of
many small pieces of data. That is, the challenge arises from the scale
of billions or trillions of simple observations. This matches the moti-
vating applications described above: high frequency sensor readings,
social network activities, transactions and so on all have a moderate
number of different types, but potentially huge quantities of each type.
The summaries we describe will operate on a large number of “tuples”
of a common type, which collectively describe a complex whole.

The types of data we consider are therefore each quite simple, and it
is their scale that presents the challenge for summarization. We describe
the types of data in somewhat abstract terms, with the understanding
that these can be mapped onto the specific applications when needed.

Set Data. The simplest form of data we consider is a set of items. That
is, the input forms a set A, as a subset of some universe of possible
items U. For example, U could be the set of 64-bit integers (denoting,
perhaps, serial numbers of items), and each item x in the data is then
some particular 64-bit integer.

A very basic summary over set data is a random sample. A random
sample is a quite general purpose summary in the sense that it is use-
ful for answering many possible questions about the underlying set
A, although the accuracy may not be satisfactory. For example, a ba-
sic query that we may wish to pose on a set A is whether a particular
item x is present in A, i.e., a membership query; or, for two sets A and B,
how similar (the notion will be made more precise later) they are. Ran-
dom samples can be used in place of the full data sets for answering
these queries, but clearly will frequently make errors. The majority of
the work on data summarization is thus devoted to constructing sum-
maries targeted at certain specific queries, usually with (much) better
accuracies than random samples.

Problems on sets often get more challenging if the same item may be

DRAFT

6 Introduction

fed into the summary multiple times, while A is still considered as a
set, i.e., duplicates should be removed. In this case, even counting the
cardinality of A becomes nontrivial, if we do not want the summary to
store every distinct input item.

Multiset Data. With set data, we typically assume the semantics that
an item is either present or absent from the set. Under the multiset se-
mantics, each item has a multiplicity. That is, we count the number of
occurrences of each item. Again, the input is supported over a set U.
Now, queries of interest relate to the multiplicity of items: how many
occurrences of x are there in the data? which items x occur most fre-
quently?

It is sometimes convenient to think of multiset data as defining a
vector of values, v. Then vx denotes the multiplicity of item x in the
input. Natural queries over vectors include asking for the (Euclidean)
norm of the vector, the distance between a pair of vectors, or the inner-
product between two vectors. The accuracy of such estimators is often
expressed in terms of the `p norm of the vector, ‖v‖p, where

‖v‖p =

∑
i∈U

∣∣∣vi

∣∣∣p1/p

Important special cases include the Euclidean norm, ‖v‖2, and the
Manhattan norm, ‖v‖1 (the sum of absolute values). We may also abuse
notation and make reference to the `0 norm, sometimes called the Ham-
ming norm, which is defined as ‖v‖0 = |{i : vi , 0}|. This counts the num-
ber of non-zero entries in the vector v, i.e., the number of distinct items
in the multiset. When dealing with skewed data, that is, where a few
items have much larger count than others, we sometimes give bounds
in terms of the residual `p norm. This is denoted as ‖v‖res(k)

p , where, if we
re-index v so that vi is the ith largest (absolute) value, then

‖v‖res(k)
p =

 |U |∑
i=k+1

|vi|
p

1/p

.

That is, the `p norm after removing the k largest entries of v.

Weighted Multiset Data. More generally, input describing a multiset
may arrive with corresponding weights. This can represent, for exam-
ple, a customer buying several instances of the same item in a single

DRAFT

1.2 Preliminaries 7

transaction. The multiplicity of the item across the whole input is the
sum of all weights associated with it. The vector representation of the
multiset naturally models the weighted case well, where vi is the sum
of weights of item i processed by the summary. The above queries all
make sense over this style of input—to find the total weight for a given
item, or the items with the largest total weights. Guarantees for sum-
maries may be expressed in terms of vector norms such as ‖v‖2 or ‖v‖1.
Different summaries can cope with different constraints on the weights:
whether the weights should be integral, or can be arbitrary.

Of some concern is whether a summary allows negative weights. A
negative weight corresponds to the removal of some copies of an item.
Some summaries only tolerate non-negative weights (the positive weights
case), while others allow arbitrary positive and negative weights (which
we call the general weights case). Lastly, a few summaries work in the
“strict” case, where positive and negative weights are permitted, pro-
vided that the final weight of every item is non-negative when the sum-
mary is interrogated. By contrast, in the general case, we allow the mul-
tiplicity of an item to be negative. For the positive weights and strict
cases, guarantees may be given in terms of W = ‖v‖1, the sum of the
weights. Some summaries have guarantees in terms of W res(k) = ‖v‖res(k)

1 ,
the weight of the input (in the positive weight or strict case) after re-
moving the k heaviest weights.

Matrices. Going beyond vectors, we may have data that can be thought
of as many different vectors. These can be naturally collected together
as large matrices. We are typically interested in n × d matrices M where
both n and d are considerably large. In some cases, one or other of n and
d is not so large, in which case we have a “short fat matrix” or a “tall
skinny matrix” respectively.

As with the vector case, the constraints on the data can affect what
is possible. Are the entries in the matrix integer or real valued? Is each
entry in the matrix seen once only, or subject to multiple additive up-
dates? Are entries seen in any particular order (say, a row at time), or
without any order? Guarantees may be given in terms of a variety of
matrix norms, including entrywise norms, such as the Frobenius norm,

‖M‖F =

√∑
i, j

M2
i, j

DRAFT

8 Introduction

or the p-norm, taken over unit norm vectors x,

‖M‖p = sup
‖x‖p=1

‖Mx‖p

Ordered Data. When U has a total order—namely, given any two items,
we can compare them and determine which is the greater and which is
the lesser under the order—we can formulate additional queries. For
example, how many occurrences of items in a given range are there (range
queries)?; what is the median of the input? and more generally, what does
the data distribution look like on U?

Some summaries manipulate items only by comparison, that is, given
two items, checking whether one is greater or less than the other, or the
two are equal. These summaries are said to be comparison based. They
thus do not need to assume a fixed universe U beforehand, which is
useful when dealing with, e.g., variable-length strings or user-defined
data types.

Geometric Data. Multidimensional geometric data naturally arise in
big data analytics. Any point on earth is characterized by latitude and
longitude; a point in space has three coordinates. More importantly,
many types of multidimensional data can be interpreted and analyzed
geometrically, although they are not inherently geometric by nature.
For example, we may see readings which include temperature, pres-
sure, and humidity. In data mining, various features can be extracted
from an object, which map it to a high-dimensional point.

Over such data, the summary may support range queries, which
could generalize one-dimensional ranges in different ways such as axis-
parallel rectangles, halfspaces, or simplexes. Moreover, one could ask
for many interesting geometric properties to be preserved by the sum-
mary, for example, the diameter, the convex hull, the minimum enclos-
ing ball, pairwise distances, and various clusterings.

Graph Data. Graph data is a different kind of multidimensional data,
where each input item describes an edge in a graph. Typically, the set of
possible nodes V is known upfront, and each edge is a member of V×V .
However, in some cases V is defined implicitly from the set of edges
that arrive. Over graphs, typical queries supported by summaries may
be to approximate the distance between a pair of nodes, determine the
number of connected components in the graph, or count the number of
a particular subgraph, such as counting the number of triangles.

DRAFT

1.2 Preliminaries 9

1.2.2 Operations on Summaries

For uniformity of presentation, each summary we describe typically
supports the same set of basic operations, although these have differ-
ent meanings for each summary. These basic operations are INITIAL-
IZE, UPDATE, MERGE and QUERY. Some summaries additionally have
methods to CONSTRUCT and COMPRESS them.

INITIALIZE. The INITIALIZE operation for a summary is to initialize a
new instance of the summary. Typically, this is quite simple, just creat-
ing empty data structures for the summary to use. For summaries that
use randomization, this can also involve drawing the random values
that will be used throughout the operation of the summary.

UPDATE. The UPDATE operation takes a new data item, and updates
the summary to reflect this. The time to do this UPDATE should be quite
fast, since we want to process a large input formed of many data items.
Ideally, this should be faster than reading the whole summary. Since
UPDATE takes a single item at a time, the summary can process a stream
of items one at a time, and only retain the current state of the summary
at each step.

Many summaries described in this book support not only adding
a new item to the summary, but also deleting a previously inserted
item. To maintain uniformity, we treat a deletion as an UPDATE op-
eration with a negative multiplicity. Examples include the Count-Min
Sketch (Section 3.4), Count Sketch (Section 3.5), and the AMS Sketch
(Section 3.6). This usually follows from the fact the summary is a lin-
ear transformation of the multiplicity vector representing the input,
and such summaries are often called linear sketches. This concept is dis-
cussed in more detail towards the end of the book (Section 9.3.4).

MERGE. When faced with a large amount of data to summarize, we
would like to distribute the computation over multiple machines. Per-
forming a sequence of UPDATE operations does not guarantee that we
can parallelize the action of the summary, so we also need the ability
to MERGE together a pair of summaries to obtain a summary of the
union of their inputs. This is possible in the majority of cases, although
a few summaries only provide an UPDATE operation and not a MERGE.
MERGE is often a generalization of UPDATE: applying MERGE when
one of the input summaries consists of just a single item usually reduces

DRAFT

10 Introduction

to the UPDATE operation. In general a MERGE operation is slower than
UPDATE, since it requires reading through both summaries in full.

QUERY. At various points we want to use the summary to learn some-
thing about the data that is summarized. We abstract this as QUERY,
with the understanding that the meaning of QUERY depends on the
summary: different summaries capture different properties of the data.
In some cases, QUERY takes parameters, while for other summaries,
there is a single QUERY operation. Some summaries can be used to an-
swer several different types of query. In this presentation, we typically
pick one primary question to answer with the QUERY operation, and
then discuss the other ways in which the summary can be used.

CONSTRUCT. We can always construct a summary by adding items
one by one into the summary using the UPDATE and MERGE opera-
tions. However, for a few summaries, UPDATE is expensive, compli-
cated, or even impossible. In these cases, we will describe how to CON-
STRUCT the summary from the given input in an offline setting.

COMPRESS. Some summaries also provide an additional operation which
seeks to COMPRESS the data structure. This is the case when the effect of
UPDATE and MERGE operations allow the size of the summary to grow.
In this case, COMPRESS will aim to reduce the size of the summary as
much as possible, while retaining an accurate representation. However,
since the time cost for this operation may be higher than UPDATE, it is
not performed with every UPDATE operation, but on a slower schedule,
say after some number of UPDATE operations have been performed.

A Simple Example: Counts, Sums, Means, Variances. We give an il-
lustration of how the operation above apply to the simple case of keep-
ing counts. These give a first example of a summary allowing us to
track the number of events that have been observed. Counters also eas-
ily allow us to track the sum of a sequence of weights; find their mean;
and compute the observed variance/standard deviation.

We will illustrate the use of a counter c, and a sum of weights w, as
well as a sum of squared weights s. The INITIALIZE operation sets all of
these to zero. Given an update of an item i, with a possible weight wi,
we can UPDATE c by incrementing it: c ← c + 1. The sum of weights is
updated as w ← w + wi, and the sum of squared weights as s ← s + w2

i .
To MERGE together two counter summaries, we can simply sum the

DRAFT

1.2 Preliminaries 11

corresponding values: the merge of c1 and c2 is c1 + c2, the merge of
w1 and w2 is w1 + w2, and the merge of s1 and s2 is s1 + s2. We can
apply different QUERY operations to obtain different aggregates: the
total count of all the updates and the total sum of all the weights are
simply the final values of c and w, respectively. The mean weight is
given by w/c, and the variance of the weights is s/w − (w/c)2.

1.2.3 Models of Computation

Traditionally, Computer Science has focused on the random access ma-
chine (RAM) model of computation to study algorithms and data struc-
tures. This abstraction is a good match for single-threaded computation
on a single machine, but other models are required to fit computation
on large volumes of data. The summaries that we describe are flexible,
and can be implemented in a variety of different settings.

The Streaming Model. The streaming model of computation consid-
ers data which arrives as a massive sequence of discrete observations,
which collectively describe the data. For example, we might think of
the data as describing a vector, by giving a list of increments to entries
in the vector (initially zero) in some arbitrary order. Since we require
our summaries to support an UPDATE operation, we can usually make
each piece of information about the data the subject of an UPDATE op-
eration to build a summary of the whole data in the streaming model.
This assumes that there is a single (centralized) observer; variants in-
volving multiple, distributed observers can also be accommodated, as
described below.

Parallel Processing. When data is observed in parallel, we can have
each parallel thread perform UPDATE operations to build their own
summaries of part of the data. Data can be assigned to each thread in
some fashion: round-robin scheduling, or hash partitioning, for exam-
ple. To collect all the observations, we can then MERGE together the
summaries. Some extra effort may be needed to handle synchroniza-
tion and coordination issues, which we assume would be taken care of
within the parallel system.

Distributed Processing. Summaries can likewise be used in systems
that handle data that is distributed over multiple machines. Multiple
UPDATE operations can build a local summary, and these summaries

DRAFT

12 Introduction

can then be combined with MERGE operations by a central entity to
allow QUERY operations on the global summary. This can easily be im-
plemented within various distributed frameworks, such as the MapRe-
duce model within the Apache Hadoop and Spark systems.

1.2.4 Implementations of Summaries

In many cases, the summaries that we describe are relatively simple to
implement. The pseudocode to outline each of the operations is often
only a few lines long. Consequently, they can be implemented with rel-
ative ease from scratch. However, there are some subtleties, such as the
use of suitable random hash functions, or the reliance on lower level
data structures with efficient maintenance operations. It is therefore
preferable to rely on pre-existing implementations for some or all of
the summary functions.

Fortunately, there are many implementations and libraries freely avail-
able online, particularly for the most well-known summaries (such as
BloomFilter). Inevitably, these are of varying quality and reliability, and
adopt a number of different languages and coding styles. Throughout
the main section of the book, we will make reference to the Apache
DataSketches library as a main reference for implementations. This is
a well-established project to provide flexible implementations of the
most important summaries in Java. It includes several carefully engi-
neered features, such as internal memory management to avoid over-
heads from the default heap management and garbage collection rou-
tines. The project was initiated within Yahoo!, then open sourced, and
most recently transitioned to the Apache Software Foundation. The
home for this project is https://datasketches.github.io/. Af-
ter DataSketches, the stream-lib library (also in Java) also has many Java
implementations of summaries, with multiple contributors (https:
//github.com/addthis/stream-lib).

1.2.5 Output Guarantees: Approximation and Randomization

Necessarily, any summary must lose fidelity in its description of the
data. In many cases, we cannot expect a summary to answer every
QUERY with perfect accuracy (unless the summary only supports a few
fixed simple queries like sum and variance as just discussed). If this
were the case, it may be possible to carefully choose a battery of queries
so that we would be able to recover almost every detail of the original

DRAFT

1.2 Preliminaries 13

input. This intuition can be formalized to prove strong lower bounds
on the size of any summary which hopes to provide such strong guar-
antees. More detail on reasoning about the size of a summary to answer
certain queries is given in Chapter 10.4.

Therefore, in order to provide a summary which is more compact
than the original data, we must tolerate some loss of accuracy. There
are two natural ways that this is formalized: approximation, and ran-
domization. Most summaries we describe will include one or both of
these.

Approximation. Often the answer to a QUERY is numerical. Rather
than the exact answer, it is often sufficient to provide some approxi-
mation of the answer. A relative error approximation gives an answer that
is guaranteed to be within a fixed fraction of the true answer. For ex-
ample, a 2-approximation is guaranteed to be at most twice the true
answer. An additive approximation provides an answer that is guaran-
teed to be within some fixed amount of the true answer (this amount
may depend on other properties of the input, such as the total size of
the input). For example, a summary might guarantee to approximate
the fraction of N input items satisfying a particular condition, up to ad-
ditive error 0.01 · N.

Often, the quality of the approximation is a tunable parameter, which
affects the size of the summary, and the time to perform operations on
it. In this case, we may express the quality of approximation in terms of
a parameter ε. This may lead to a (1 + ε) relative error approximation,
or an ε additive error, where the size of the summary is then expressed
as a function of ε.

Randomization. There are many cases where guaranteeing a correct
answer requires a very large summary, but allowing a small probabil-
ity of error means that we create a much smaller summary. This typi-
cally works by making some random choices during the operation of
the summary, and providing some probabilistic analysis to show that
the summary provides a correct answer sufficiently often. Typically, the
quality of a randomized summary is expressed in terms of a parameter
δ, with the understanding that the probability of the summary failing
to provide a correct answer is δ. The space used by the summary, and
the time to perform operations upon it, is then expressed in terms of δ.

For most summaries, it is possible to set δ to be very small, without
significantly increasing the size of the summary. Then this guarantee

DRAFT

14 Introduction

holds except with a vanishingly small probability, say 10−20, compara-
ble to the probability that there is a CPU error sometime during the
processing of the data. Note that the probability analysis will depend
only on the random choices made by the algorithm—there are no as-
sumptions that the input data is “random” in any way.

Approximation and Randomization. In many cases, the summaries
described adopt both randomization and approximation, based on pa-
rameters ε and δ. The interpretation of this guarantee is that “the sum-
mary provides a (1 + ε) approximation, with probability at least 1 − δ”.
With probability δ, this approximation guarantee does not hold.

1.3 Summaries in Applications

In this section, we outline a few examples of data processing, and de-
scribe how summaries with certain properties might be able to help
overcome the resource challenges. We refer to various different types
of summaries that are discussed in detail in later chapters.

1.3.1 Data Center Monitoring

Consider a large data center, supporting millions of users who cause
the execution of billions of processes. Each process consumes a vari-
ety of resources: CPU, bandwidth, memory, disk usage, etc. These pro-
cesses are distributed over tens of thousands of machines, where each
machine has many processors, and each processor has multiple cores.
Each process may be placed over multiple cores throughout the center.
The data center operators would like to build a ‘dashboard’ applica-
tion which provides information on the overall behavior of the center.
It should provide information on the processes that are consuming a
large fraction of resources.

To exactly track the amount of resources used is itself a potentially
costly operation. The total amount of information involved is non-trivial:
for each thread on each core, we will keep at least tens of bytes, enough
to identify the process and to record its resource consumption in multi-
ple dimensions. Multiplied by billions of processes, this is tens to hun-
dreds of gigabytes of state information. Storing this amount of informa-
tion is no great challenge. However, communicating this level of data

DRAFT

1.3 Summaries in Applications 15

potentially incurs an overhead. Suppose we wish to gather statistics ev-
ery second. Then a simplistic approach could communicate a hundred
gigabytes of data a second to a monitoring node. This requires sub-
stantial network bandwidth to support: approaching a terabit, if this
data is to pass over a single link. This speed even taxes memory ac-
cess times, which can comfortably cope with up to only ten gigabytes
per second. Thus, implementing the simple exact tracking solution will
require some amount of effort to parallelize and distribute the monitor-
ing.

An alternative is to adopt a lightweight approximate approach. Here,
we allow a little imprecision in the results in order to reduce the amount
of information needed to be shipped around. This imprecision can eas-
ily be made comparable to the measurement error in tracking the re-
sults. For example, we can adopt a summary such as the Count-Min
Sketch or the SpaceSaving structure to track resource usage accurate
up to 0.01%. The summary can be bounded in size to around 100KB.
We can build a summary of the activity on a single machine, and ship it
up to an intermediate node in the network. This node can collect sum-
maries from a large number of machines, and MERGE these together to
obtain a single summary which combines the results from all the inputs.
These merged summaries can be passed on to the monitor, which can
further MERGE all received summaries to obtain a single 100KB sum-
mary of the whole network. From this compact summary, the processes
with high resource usage can be easily extracted.

The communication costs of this approach are much reduced: if we
have 10,000 machines in the data center, with 100 intermediate nodes,
the maximum bandwidth required is just 10MB/s: each node receives
100 summaries of 100KB each, and combines these to a single sum-
mary; the monitor receives these 100 summaries. Other cost regimes
can be achieved by organizing the data transfer in others ways, or ad-
justing other parameters of the data collection. The cost reductions are
achieved due to the use of summaries, which prune away insignificant
information, and because we are able to perform in-network aggregation:
rather than wait to the end to reduce the information, we can use the
MERGE property of summaries to combine them at intermediate stages.

Another advantage of using summaries in this setting is that it is easy
to reason about their properties, and accuracy: we have the assurance
that the size of the summary remains fixed no matter how many MERGE

operations we perform, and that the accuracy guarantees remain cor-

DRAFT

16 Introduction

respondingly fixed. While it would be possible to design implemen-
tations that apply pruning to the collection of exact counts, it would
require some effort and analysis to understand the tradeoffs between
amount of pruning and the resulting accuracy. By adopting summary
techniques, this tradeoff is already well-understood.

1.3.2 Network Scanning Detection

Consider the operator of a large data network, over which a large amount
of Internet traffic passes. Within this network, it is important to identify
unusual or suspicious behavior, as this can be indicative of an attack or
the spread of unwanted software (viruses, worms etc.). There has been
much study of the signals that can be mined in the networking context
to identify such activity. Here, we focus on a relatively simple case, of
detecting port scan activity.

A port scan is when a single host tries to connect to a large number
of different machines on different ports, in the hope of finding an open
port, which can potentially be used to attack the machine. Although
such scans may represent a large number of distinct connections, in
terms of the total bandwidth or number of packets, they can represent
a very small fraction, and so can be easily lost among the overall traf-
fic. Simple techniques, such as sampling, may be unable to detect the
presence of port scan activity. Keeping logs of the whole traffic for of-
fline analysis is rarely practical: the information is huge, and arrives at
a very high rate (terabytes per hour).

A first approach is to track for each active host on the network the
number of distinct (IP address, port) combinations that it tries to con-
nect to. When this becomes large, it is indicative that the host is per-
forming a port scan. One way to do this is to make use of the Bloom-
Filter data structure. We can keep one BloomFilter for each host, along
with a counter initialized to zero. This allows to compactly store the set
of (IP address, port) combinations that the host has connected to. For
every connection that is seen, we can test whether it is already stored in
the set: if not, then we add it to the set, and increase the counter. If we
want to detect accurately when a host has made more than 1000 distinct
connections, say, then a BloomFilter of size approximately 1KB will suf-
fice. For cases where we see a moderate number of distinct hosts – say,
a few million – then this approach will suffice, consuming only a few
gigabytes of fast memory in total.

However, in cases where we have more limited resources to devote

DRAFT

1.3 Summaries in Applications 17

to the monitoring process, and where there are a greater number of
hosts active in the network, a more compact solution may be required.
A more advanced approach is to combine types of summaries to obtain
accurate identification of port scan activity. We would like to adopt a
summary such as Count-Min Sketch or SpaceSaving, as in the previous
example. However, these are good at identifying those items that have
large absolute weights associated with them: this would find those hosts
which use a large amount of bandwidth, which is distinct from port
scanning. Rather, we would like these summaries to allow us to find
those hosts that have a large amount of distinct connections. This can
be accomplished by modifying the summaries: replacing the counters
in the summaries with distinct counters.

Understanding the impact of combining two summaries is somewhat
complex. However, this approach has been applied successfully in a
number of cases [221, 154, 73], allowing efficient identification of all
hosts that are responsible for more than a given fraction of distinct con-
nections with a summary totalling only megabytes in size. Further dis-
cussion is given in Section 9.4.3.

1.3.3 Service Quality Management

Consider an organization that hosts a large number of services for many
different customers. Each customer has a set of service level agreements
(SLAs) that determine the level of service they are guaranteed by con-
tract. The hosting organization needs to monitor the behavior of all ser-
vices, to ensure that all the SLAs are met. Such agreements are typically
of the form “95% of responses are made within 100ms”. The organiza-
tion would therefore like to track the adherence to these SLAs across
its different customers. While exact tracking may be required in some
cases, it is also helpful to allow lightweight approximate tracking to
identify when there is a danger of not meeting these agreements, and
to respond accordingly by adjusting parameters or deploying more re-
sources.

For SLAs of this form, we need to be able to track the quantiles of
the monitored quantity. That is, for the example above, given the series
of response times, we need to identify what is the 95th percentile of
this series, and how it compares to 100ms. We can maintain a list of all
response times in sorted order, and periodically probe this list to check
this quantile. However, this requires a lot of storage, and can be slow to
update as the list grows.

DRAFT

18 Introduction

Instead, we can make use of summaries which support quantile queries.
Example summaries include the GK and Q-Digest summaries. These
have differing properties. Q-Digest works when the number of possi-
ble values is bounded. So, if we have response times measured to mi-
crosecond accuracy, then it is suitable to use Q-Digest. On the other
hand, if we have a very large range of possible values, GK can be used.
The space of Q-Digest remains bounded, no matter how many items are
summarized by the summary, or how many times we perform MERGE

operations to combine different summaries. Meanwhile, the GK sum-
mary may grow (logarithmically) with the size of its input in the worst
case.

In other situations, we might have additional requirements for the
monitoring. For example, we might want to track not just the full his-
tory of response times, but rather a moving window of response times:
what is the 95th percentile of the responses in the last hour. A crude
approach is to start a fresh summary periodically – say, every five min-
utes – and to maintain multiple summaries in parallel. This imposes a
greater overhead on the monitoring process. A more refined approach
is to partition time into buckets – say, five minute intervals – and track
a summary for each bucket separately. Then we can MERGE the sum-
maries for multiple such buckets to get the summary for a recent win-
dow. However, this still only approximates the desired window size.
More complex solutions can be used to generate a summary for any
window size that gives a stronger guarantee of accuracy – see Sec-
tion 9.2.2.

1.3.4 Query Optimization

In database management systems, data is organized into relations, where
each relation has a number of fields. Queries perform operations on re-
lations, such as selecting records with particular field values, joining
relations based on matching values, and applying aggregates such as
count and sum. For most non-trivial queries, there are multiple ways to
perform a query, and the system wants to pick the one with the lowest
(estimated) cost. Here, the ‘cost’ of a query execution plan may be the
time taken to perform it, the amount of disk access, or other measure.

Summary techniques have been adopted by many different database
systems to allow approximation of the cost of different plans, and hence
the selection of one that is believed to be cheap. Most commonly, ba-
sic summaries, such as a count and sum of numeric values, are main-

DRAFT

1.3 Summaries in Applications 19

tained. For low cardinality attributes (ones taking on a small number of
different values), it is natural to keep a count of the frequency of each
value. For attributes with more possible values, a RandomSample of
items is kept for each field in a relation, to allow simple statistics to
be estimated. A common basic question is to estimate the selectivity of
a particular predicate – that is, to estimate how many records in a re-
lation satisfy a particular property, such as being equal to a particular
constant, being less than some value, or falling in some range. A Ran-
domSample is a natural way to accurately estimate these values; more
sophisticated schemes take account of weights associated with items,
such as WeightedRandomSample.

More recently, database systems have adopted more complex sum-
mary methods. To summarize numeric attributes, a histogram describ-
ing how it is distributed can be useful, and the most common type of
histogram is an equi-depth histogram, where the bucket boundaries are
quantiles of the item distribution. Some systems may simply recom-
pute the quantiles of the field periodically (either exactly, or by making
a summary of the current values); others may maintain a summary as
records are added and deleted to the relation. Other statistics on the
values in the relation, such as the number of distinct values, and es-
timations of the join size between two relations, may be maintained
using appropriate summaries.

1.3.5 Ad Impression Monitoring and Audience Analysis

Online advertising has made it possible for advertisers to obtain more
detailed information about who has seen their adverts, in compari-
son to traditional broadcast media. Each day, billions of adverts are
shown to users of the web and apps by ad publishers, and tracking
these “impressions” presents a substantial data management challenge.
The same ad may be shown to the same user multiple times, but which
should only be counted once (or the count capped). Advertisers also
want to know which demographic have seen their ad – females aged
18-35 working in white collar jobs with a university level education,
say. Current advertising networks have reasonably accurate profiles of
web users based on information gathered and inferred about them. But
allowing questions about different ads and different demographics in
real time stretches the ability of large scale data management systems.

There has been considerable success in using summaries to answer
these kind of queries. This is a situation where an approximate answer

DRAFT

20 Introduction

is acceptable – advertisers want to know with reasonable precision how
many have seen their advert, but the numbers are large enough that er-
ror of 1% or so can be tolerated. For the basic question of tracking the
number of different people who have seen an advert, methods such as
the KMV and HLL summaries answer this directly and effectively, at the
cost of a few kilobytes per advert. Very small space for this tracking is
important when millions of ads may be in rotation from a single pub-
lisher.

A simple way to deal with queries that ask for different subpopu-
lations is to keep a summary for each combination of possible demo-
graphic group and ad. This quickly becomes unscalable as the num-
ber of demographic groups grows exponentially with the number of
features stored on each user. The question to be answered is, for each
ad, to look at the different demographics of viewers (male/female, age
group, education level and so on) and to find the cardinality of the in-
tersection of the desired sets – the female, 18-35 year old, university
educated viewers of the above example. It turns out that it is possible
to estimate the size of these intersections from the aforementioned KMV
and HLL summaries. That is, given a summary for the number of dis-
tinct female viewers and another for the number of distinct university
educated viewers, we can combine these to obtain an estimate for the
number of female, university educated viewers. The accuracy of these
intersection estimates can degrade quickly, particularly when the size
of the intersection is small compared to the total number of distinct
views of the ad. Nevertheless, the results can be effective, and have
formed the technical underpinning of a number of businesses formed
around this question. The benefits are that arbitrary questions can be
answered almost instantaneously from combining a number of small
summaries. This is dramatically faster than any database system that
has to rescan the raw view data, even if indexes are available and pre-
processing is done on the data.

1.4 Computational and Mathematical tools

Throughout, we assume familiarity with basic computational and math-
ematical tools, such as the big-Oh (O(·)) notation to express the asymp-
totic growth behavior of time and space bounds. We also assume fa-
miliarity with standard data structures, such as heaps, queues and lists.
The description of properties of summaries makes use of standard prob-

DRAFT

1.4 Computational and Mathematical tools 21

abilistic analysis and tail bounds. For convenience, we list the forms of
the tail bounds that we make use of (for more details, see the standard
randomized algorithms texts such as [184, 178]).

Fact 1.1 (Markov Inequality) Given a non-negative random variable X
with expectation E[X], we have

Pr[X > kE[X]] ≤
1
k

Further Discussion. Throughout this book, we avoid requiring proofs
to be read in order to understand the ideas introduced. For those
wanting to understand more details, we provide optional material,
marked out from the rest of the text. We begin this optional mate-
rial with a simple proof of the Markov inequality.

The Markov inequality can be proved using some basic rules of
probability. Consider the event that X > c for some constant c > 0.
For any value of x, we have cI(x ≥ c) < x, where I(b) is 1 if b eval-
uates to true, and 0 otherwise. This can be checked by considering
the two cases x ≥ c and x < c. We can apply this to the variable X
to get cI(X ≥ c) < X, and take the expectation of both sides:

cE[I(X ≥ c)] = c Pr[X ≥ c] < E[X].

Rearranging, and substituting c = kE[X], we obtain the inequality
in the quoted form.

The variance of X is

Var[X] = E[(X − E[X])2] = E[X2] − (E[X])2,

while the covariance of two random variables X and Y is

Cov[X,Y] = E[XY] − E[X]E[Y]

The variance satisfies several properties that we make use of:

Fact 1.2 (Properties of variance) Given a random variable X and constants
a, b, we have

Var[aX + b] = a2Var[X]

DRAFT

22 Introduction

Given n random variables Xi, we have

Var[
n∑

i=1

Xi] =

n∑
i=1

Var[Xi] +
∑

1≤i< j≤n

Cov[Xi, X j]

When the n random variables Xi are uncorrelated (have zero covariance),
we have

Var[
n∑

i=1

Xi] =

n∑
i=1

Var[Xi]

Applying the Markov inequality to the variance of X, we obtain the
Chebyshev inequality:

Fact 1.3 (Chebyshev inequality) Given any random variable X, we have

Pr[|X − E[X]| > k] ≤
Var[X]

k2

Chernoff bounds arise from applying the Markov inequality to expo-
nential functions of variables. We use two forms of Chernoff bounds,
the (additive) Chernoff-Hoeffding bound, and the relative Chernoff bound.

Fact 1.4 (Additive Chernoff-Hoeffding bound) Given n independent ran-
dom variables X1 . . . Xn such that there are bounds ai ≤ Xi ≤ bi for each Xi, we
write X =

∑n
i=1 Xi. Then

Pr[|X − E[X]| > k] ≤ 2 exp
(

−2k2∑n
i=1(bi − ai)2

)
A Bernoulli random variable X with a single parameter p is such that

Pr[X = 1] = p,Pr[X = 0] = (1 − p). Hence, E[X] = p.

Fact 1.5 (Multiplicative Chernoff bound) Given independent Bernoulli
random variables X1 . . . Xn, such that X =

∑n
i=1 Xi and E[X] =

∑n
i=1 E[Xi] = µ,

then, for 0 < β ≤ 1, and 0 ≤ ρ ≤ 4,

Pr[X ≤ (1 − β)µ] ≤ exp
(
−β2µ

2

)

Pr[X ≥ (1 + ρ)µ] ≤ exp
(
−ρ2µ

4

)

Further Discussion. We do not provide detailed proofs of all Cher-
noff bounds, but for a flavour, we describe one case to show how

DRAFT

1.4 Computational and Mathematical tools 23

the proof builds on basic ideas such as the Markov inequality above.
Let Pr[Xi = 1] = pi so that E[X] =

∑n
i=1 pi = µ. We seek to bound

Pr[X > (1 + ρ)µ]. We introduce a (positive) parameter t, and apply
an exponential function to both sides of the inequality. This does
not change the probability, so

Pr[X > (1 + ρ)µ] = Pr[exp(tX) > exp(t(1 + ρ)µ)]

By the Markov inequality, we have

Pr[exp(tX) > exp(t(1 + ρ)µ)] ≤ E[exp(tX)]/ exp(t(1 + ρ)µ) (1.1)

The rest of the proof aims to simplify the form of this expression.
Observe that, from the definition of X and by the independence of
the Xis,

E[exp(tX)] = E[exp(t
n∑

i=1

Xi)] =

n∏
i=1

E[exp(tXi)]

The expectation of exp(tXi) is a summation of two cases: Xi is zero
with probability 1 − pi, giving a contribution of exp(0) = 1; or Xi is
one with probability pi, giving a contribution of exp(t). Thus,

n∏
i=1

E[exp(tXi)] =

n∏
i=1

((1 − pi) + piet)

Using the usual expansion of the exponential function and the fact
that t > 0,

exp(pi(et − 1)) = 1 + (pi(et − 1)) + . . . > 1 − pi + piet

so we can write
n∏

i=1

(1− pi + piet) ≤
n∏

i=1

exp(pi(et−1)) = exp(
n∑

i=1

pi(et−1)) = exp(µ(et−1)

Substituting this back into (1.1), we obtain

Pr[X > (1+ρ)µ] ≤ exp(µ(et−1)−µt(1+ρ)) ≤ exp(µ(−ρt+t2/2+t3/6+. . .))

At this point, we can choose the value of t to give the final form of
the bound. In this case, we can pick t = 2

5ρ. One can verify that for
this choice of t in the range 0 ≤ ρ < 4, we have exp(µ(−ρt + t2/2 +

t3/6 + . . .)) < exp(ρ2µ/4).

Last, we sometimes make use of a simple bound, which allows us to
reason about the probability of any one of multiple events.

DRAFT

24 Introduction

Fact 1.6 (Union bound)

Pr[A ∪ B] ≤ Pr[A] + Pr[B]

Note that we do not require the events A and B to be independent.
This fact follows immediately from the fact that Pr[A ∪ B] = Pr[A] +

Pr[B] − Pr[A ∩ B]. We often use this fact to argue about the probability
of success of an algorithm that relies on many events being true. That
is, if there are n “bad events”, B1 . . . Bn, but each one is very unlikely,
we can argue that the probability of any bad event happening is at most
Pr[∪n

i=1Bi] ≤
∑n

i=1 Pr[Bi], by repeated application of Fact 1.6. If each Pr[Bi]
is sufficiently small – say, Pr[Bi] = 1/n2, then the probability of any of
them happening is still very small, in this case, at most

∑n
i=1 1/n2 = 1/n.

Another idea often used in arguing for the correctness of a random-
ized algorithm is the principle of deferred decisions. A simple application
of this principle, as used in Section 2.2, is to sample an item uniformly
at random from two sets S 1 and S 2, of sizes n1 and n2, respectively. The
direct way of doing is to simply sample an item from all the n1 + n2

items uniformly at random. However, we could also do it in two steps:
We first decide which one of the two sets to choose the sample from: S 1

should be picked with probability n1
n1+n2

while S 2 picked with probabil-
ity n2

n1+n2
. In the second step, which the algorithm may choose to do at

a later time, is to pick an item from the chose set uniformly at random.
The correctness of this principle follows easily from the fact that, for
any two events A and B,

Pr[A ∩ B] = Pr[A] Pr[B | A].

1.4.1 A Chernoff bounds argument

A standard application of the Chernoff bound is to take multiple es-
timates of a quantity, and combine them to pick an estimate which
is good with high probability. Specifically, we have estimates, each of
which is a “good” estimate of a desired quantity with at least a con-
stant probability. However, it’s not possible to tell whether or not an
estimate is good just by looking at it. The goal is to combine all these to
make an estimate which is “good” with high probability. The approach
is to take the median of enough estimates to reduce the error. Although
it is not possible to determine which estimates are good or bad, sorting
the estimates by value will place all the “good” estimates together in
the middle of the sorted order, with “bad” estimates above and below

DRAFT

1.4 Computational and Mathematical tools 25

(too low or too high). Then the only way that the median estimate can
be bad is if more than half of the estimates are bad, which is unlikely.
In fact, the probability of returning a bad estimate is now exponentially
small in the number of estimates.

The proof makes use of the Chernoff bound from Fact 1.5. Assume
that each estimate is good with probability at least 7/8. The outcome of
each estimate is an independent random event, so in expectation only
1/8 of the estimates are bad. Thus the final result is only bad if the num-
ber of bad events exceeds its expectation by a factor of 4. Set the number
of estimates to be 4 ln(1/δ) for some desired small probability δ. Since
whether each estimate is ‘good’ or ‘bad’ can be modeled by a Bernoulli
random variable with expectation 1/8, then this setting is modeled with
ρ = 3 and E[X] = 1

2 ln(1/δ). Hence,

Pr[X ≥ 2 log(1/δ)] ≤ exp(−9/8 ln(1/δ)) < δ

This implies that taking the median of O(log(1/δ)) estimates reduces the
probability of finding a bad final estimate to less than δ.

1.4.2 Hash Functions

Many summaries make use of hash functions , which are functions picked
at random from a family F containing many possible hash functions,
where each maps onto some range R. In order to provide the guaran-
tees on the summary, we typically require that the family of functions
satisfies some properties. The most common property is that the family
is t-wise independent. This means that (over the random choice of the
hash function), the probability of seeing any t values appears uniform:
given any t distinct items x1, . . . xt, and any t values in the output of the
function y1, . . . yt ∈ Rt, we have

Pr
f∈F

[f (x1) = y1, f (x2) = y2, f (xt) = yt] =
1
|R|t

A simple family of functions that meets this requirement1 is the fam-
ily of polynomials,

1 Strictly speaking, the above probability for this family can be very
slightly larger than 1

|R|t , but this does not affect the analysis or
practical use in any significant way.

DRAFT

26 Introduction

F =

 t∑
i=1

cixi−1 mod p mod |R|

where p is a (fixed) prime number and ci range over all (non-zero) val-
ues modulo p. Thus, to draw a function from this family, we simply
pick the t coefficients c1 to ct uniformly from the range 1 . . . p−1. Further
discussion and code for efficient implementations of these functions is
given by Thorup and Zhang [212, 214].

The reason for this analysis of the degree of independence of hash
functions is to quantify the “strength” of the functions that is required.
In many cases, it is shown that summaries require only 2-wise (pair-
wise) or 4-wise independent hash functions. In other cases, the analysis
makes the assumption that the hash functions are “fully independent”
for convenience of analysis, even though this assumption is technically
unrealistic: hash functions which guarantee to act independently over
very many items require a lot of space to represent. In practice, func-
tions without this strict guarantee are used, without any reported prob-
lem.

Where fully independent hash functions are needed, some widely
adopted hash function (without full independence) is typically used.
Cryptographic hash functions are ones that are designed to provide hash
values that are very difficulty to invert: given the hash value, it should
be impossible to find what input it was applied to, short of trying all
possibilities. Well-known examples include MD5, SHA-1 and SHA-3.
However, such functions tend to be much slower than pairwise inde-
pendent hash functions, as they apply multiple rounds of expensive op-
erations to their inputs in order to mask the contents. This can be a bot-
tleneck in high-performance systems. Instead, non-cryptographic hash
functions may be most suitable. These do not aim to provide the level
of non-invertibility of the cryptographic counterparts; rather they seek
to ensure that the output appears random given the input. They are
constructed based on combining parts of their input through fast op-
erations (such as exclusive-or and bit shifts) with carefully chosen con-
stants. A popular example is the murmurhash function2 which can be
implemented using a small number of fast low-level bit-manipulation
operations, and has been found to be very effective for applications
such as those discussed here.

2 https://github.com/aappleby/smhasher

DRAFT

1.5 Organization of the Book 27

As a rough guide, the simplest pairwise independent hash functions
are the fastest, and can be evaluated many hundreds of millions of
times per second on a single processor core. Four-wise independence is
about half the speed of pairwise. Murmurhash is of comparable speed,
while SHA-1 and MD5 are about four times slower. Some example
numbers from experiments on a commodity CPU indicate that pairwise
hash functions can easily process in excess of 500 million 32-bit keys
in 1 second, while fourwise hash functions can manage 250 million,
murmurhash 200 million, and SHA-1/MD5 around 50 million. This in-
dicates that cryptographic hash functions can be 10 times slower than
simple pairwise hashing.

1.5 Organization of the Book

This book is primarily intended as an introduction and reference for
both researchers and practitioners whenever the need of some kind of
data summarization arises. It is broken into two main parts. The first
part of the book introduces the principle examples of the algorithms
and data structures which form the summaries of interest. For each
summary described in detail in the main text, we provide description
under several standard headings. We first provide a Brief Summary of
the summary to describe its general properties and operation. The bulk
of the description is often in describing the details of the Operations
on the summary (such as INITIALIZE, UPDATE and QUERY). These are
illustrated with an Example and described in pseudocode where ap-
propriate, to give a more formal outline of the key operations. Some-
times Implementation Issues and Available Implementations are also
discussed. More detailed analysis, including technical explanations of
summary properties, is given under Further Discussion, with the in-
tention that the reader can achieve a basic understanding and be able
to use the summary without reading this part. Finally, some History
and Background is outlined with links to further reading and alterna-
tive approaches.

The second part of the book looks at more complex summary tech-
niques for specific kinds of data (such as geometric, graph or matrix
data), which combine or build upon the fundamental summaries. It
also describes how to modify summary techniques to accommodate
weights and time-decay. Here, we relax the constraints on the presen-
tation, and provide more general high-level descriptions of the sum-

DRAFT

28 Introduction

maries, and their applications. We also discuss lower bounds, which
provide limitations on what it is possible to summarize within a cer-
tain amount of memory space.

