
DRAFT
10

Lower Bounds for Summaries

The focus of this volume so far has been on what is possible to effec-
tively summarize. Yet it should come as no surprise that there are some
questions for which no summary exists. In this chapter, we look at cases
where it is not simply that no summary is known to exist, but rather
where it is mathematically impossible for any summary to be made
that is less than some size. The intuition underlying these results are
that certain settings require a large amount of information to be stored
in order to allow a range of queries to be answered accurately. Where
this information is comparable to the size of the data being stored, it
effectively precludes the possibility of a useful summary for that prob-
lem. In other cases, summaries are possible, and the lower bounds tell
us how small we can hope the summary to be.

Computational complexity is the area of computer science devoted
to understanding the fundamental limits of what can be computed ef-
fectively. Most Computer Science degrees cover the time complexity of
solving problems based on classes such as P and NP. P is the class
of problems that can be solved in a standard model of computation in
time that is bounded by a polynomial in the input size, denoted n. NP
is the class of problems (informally) where a conjectured solution can
be verified in time polynomial in n. The notion of hardness in this set-
ting is to show that a given problem is as hard as another, in the sense
that a polynomial time algorithm for the former problem would yield
a polynomial time algorithm for the latter.

These notions of complexity do not translate to the world of sum-
maries for a number of reasons. Primarily, summaries are often rele-
vant when bounds that are polynomial would be considered too lax.
For the most part, the summaries described in this book address prob-
lems which can be easily solved in time polynomial in the input size n.

253

DRAFT

254 Lower Bounds for Summaries

Rather, we look for summaries which use time and space resources that
are smaller than n, ideally strictly sublinear in n.

Techniques that provide lower bounds for summaries tend to be de-
rived from the area of communication complexity. These study the cost
of communication between two parties (traditionally, anthropomorphized
as Alice and Bob) who each hold part of the input, and wish to collab-
orate to compute a function of it. For example, suppose Alice and Bob
hold strings x and y, and wish to compute whether x = y or x , y. We
refer to this as the EQUALITY problem. In this setting, a trivial protocol
is for Alice to send her part of the input to Bob, which would take O(n)
communication. Therefore, the way to show bounds on summary size
is to derive bounds on communication, up to linear in n.

There is a very natural mapping from bounds on communication to
bounds on summaries. We can view the communication between Alice
and Bob as a communication from the past to the present. That is, sup-
pose we had a summary that addressed a particular problem that maps
onto a particular communication problem. We could have Alice run the
summary algorithm on her portion of the input to build the summary
data structure in memory. This could then be communicated to Bob,
who could subsequently put his portion of the input into the summary,
either by performing a MERGE with a summary of his data, or apply-
ing repeated UPDATE operations. If the summary provides an answer
via a QUERY operation which can be interpreted as an answer to the
communication problem, then we have a communication protocol.

Therefore, any lower bound on the communication needed to solve
the communication problem provides a corresponding lower bound on
the size of a summary to solve the relevant summarization problem.
We will see several examples of this outline being instantiated over the
course of this chapter. The application of data summarization (partic-
ularly in the context of streaming data processing) has stimulated the
area of communication complexity, and led to many novel techniques
being developed in order to prove new lower bounds for summaries.
The lower bounds tend to be on the size of the summary, rather than
on the time necessary to UPDATE or QUERY them: this is a result of
the focus on communication size from communication complexity. In
other words, the techniques we have for proving hardness most natu-
rally provide lower bounds on summary size; proving bounds on the
time costs associated with data summarization would also be very im-
portant, but has proved to be more challenging with the tools currently
available.

DRAFT

10.1 Equality and Fingerprinting 255

We will not provide proofs of the communication complexity lower
bounds, which warrant a volume of their own to define (as a starting
point, see the text of Kushilevitz and Nisan [157]). Rather, we focus
on the ways that hard communication problems provide lower bounds
on summary sizes. These tend to be reductions: for a given summary
problem, we identify a suitable communication problem that would be
solved if a small summary existed. For the remainder of this chapter,
we describe some of the commonly used hard problems in communi-
cation complexity, and give examples of the summaries for which they
provide lower bounds. An important concept is whether the communi-
cation bounds are one round (for protocols where Alice sends a single
message to Bob), or multi-round (the bounds still hold when Alice and
Bob are allowed to have a conversation with many messages back and
forth).

10.1 Equality and Fingerprinting

The most basic communication complexity problem is the EQUALITY

problem. Here, Alice and Bob both possess binary strings of length n,
denoted as x and y respectively. The problem is to determine whether
or not x = y. It is straightforward to see that if Alice is to send a single
message to Bob, then it must contain n bits, if Bob is to be guaranteed to
give the correct answer. Suppose the contrary: Alice sends a message of
b < n bits in length. Alice has 2n possible inputs, but only 2b < 2n possi-
ble messages to choose from. So by the pigeonhole principle, there must
be two different inputs x and x′ that Alice could have which would
cause her to send the same message to Bob. Then Bob cannot guarantee
to succeed, as he may have y = x as his string, and be uncertain whether
Alice held x (requiring a ‘yes’ answer) or x′ (requiring a ‘no’ answer).
Therefore the problem must require a communication of at least n bits.
Applying the above template, this also means that any summary that
claims to answer the corresponding problem — summarizing two in-
puts to determine whether or not they are equal — must also require
Ω(n) bits

Connection to Fingerprinting. On first glance, this hardness may appear
to cause a contradiction. We have studied a summary (Fingerprint) which
claims to solve exactly this problem using a summary size that is much
smaller than n bits. This apparent contradiction is resolved by observ-

DRAFT

256 Lower Bounds for Summaries

ing that the argument above required Alice and Bob to be deterministic
in their operation. That is, we have successfully shown that any deter-
ministic summary must be linear in the input size if it allows equality
to be tested and verified with certainty. However, if Alice and Bob are
allowed to make random choices, and tolerate some small probability
of error, then a much smaller summary is possible, as witnessed by the
Fingerprint method. This serves to highlight the importance of random-
ization: for the majority of problems we consider, randomization is re-
quired to evade strong lower bounds on deterministic summaries. The
subsequent examples we consider provide lower bounds on commu-
nication schemes which allow randomization, which therefore provide
lower bounds on randomized summary techniques.

10.2 Index and Set Storage

The INDEX problem in communication complexity is defined as fol-
lows:

Definition 10.1 (INDEX problem) Alice holds a binary string x of n bits in
length, while Bob holds an index y in [n]. The goal is for the players to follow
a protocol to output x[y], i.e., the y’th bit from the string x.

If the players are allowed multiple rounds of communication be-
tween them, then there is a trivial protocol for INDEX: Bob communi-
cates y to Alice, who then emits x[y], requiring dlog ne + 1 total bits of
communication. However, under the constraint that Bob does not com-
municate to Alice, the problem becomes much harder. That is, in the
‘one-way’ communication complexity model, Alice sends a message
to Bob, who must then output the answer. It is hard to imagine that
one can find any solution appreciably better than Alice sending her en-
tire string to Bob, who can then read off the required bit. Indeed, it is
straightforward to adapt the above proof for EQUALITY to show that no
deterministic algorithm for this problem can communicate fewer than
Ω(n) bits of information.

It is more involved to show that this remains the case when Alice
and Bob are allowed to use randomization. Intuitively, it is not clear
how randomization would help here, but a formal lower bound must
rule out the possibility of some clever summary that encodes Alice’s
string in some non-obvious way. Such a proof was first shown in the
early 1990s by Razborov [197]. A compact proof of this fact which uses

DRAFT

10.2 Index and Set Storage 257

the method of information complexity is provided by Jayram [137]. For-
mally, these results show that even when the randomized communica-
tion protocol is required to succeed only with some constant probability
(say, 2

3), the players still need to communicate Ω(n) bits.
It is natural to apply this result to summary techniques. The con-

straint that Bob is not allowed to communicate his index y to Alice is
a natural one: we can think of Alice as observing the data, from which
she must construct her summary (message). Bob then receives the sum-
mary and wants to answer some query. However, if the answer to Bob’s
query could reveal the value of any one of n bits encoded into the sum-
mary by Alice, then we know that the summary must have size Ω(n).

Lower bound for Set Storage. A direct application of this is to show a size
bound for any summary that encodes a set, such as a BloomFilter (Sec-
tion 2.7). The argument proceeds as follows. Suppose we had a sum-
mary that could very compactly encode a set A of items from n possibil-
ities. Now, take an instance of INDEX. Alice could store her bitstring in
the set summary, by storing each element i such that x[i] = 1. After the
summary is sent to Bob, Bob looks up y in the summary. If y is present
in the set, then Bob asserts that x[y] = 1, else he concludes x[y] = 0.
Therefore, any summary that encodes a set in this way would provide
a solution to the INDEX problem, and hence must use at least Ω(n) bits.
In particular, this argument shows that the BloomFilter must use Ω(n)
bits to represent sets whose size is proportional to n.

Lower bound for Count Distinct. A slightly more elaborate argument can
show a lower bound on the size of summaries to estimate the number
of distinct members of a set, such as KMV and HLL. Consider again an
instance of the INDEX problem, and a summary which claims to allow
the estimation of the number of distinct elements in a set, up to an ap-
proximation factor of 1± ε. Alice performs a similar reduction to above:
she performs an UPDATE operation on the distinct elements summary
with each index i such that x[i] = 1. On receiving the summary, Bob first
performs a QUERY operation to estimate the size of Alice’s set, as m. Bob
then performs an UPDATE with his index y, and makes a second QUERY

to the summary, to obtain a second estimate m′. These two answers are
compared as follows: if (1 − ε)m′ > (1 + ε)m, then Bob concludes that
the number of distinct elements has increased following the insertion
of y. That is, y was not previously in the set, and so x[y] = 0; otherwise,
Bob concludes that x[y] = 1. This argument works if the parameter ε is
small enough so that a change of 1 in the size of the sets must lead to a

DRAFT

258 Lower Bounds for Summaries

different answer. That is, εn < 1, for a set size of n. The lower bound of
Ω(n) then implies a lower bound in terms of ε as Ω(1/ε) on the size of
the summary.

Observe that this lower bound is somewhat unsatisfying, since both
KMV and HLL are shown to have a space cost that depends on O(1/ε2).
A reduction to a stronger lower bound below (Section 10.4) removes
this gap.

Lower bound for Counting Triangles. The hardness of INDEX can also be
used to show the hardness of the problem of counting triangles in a
graph. Upper bounds for this problem are discussed in Section 7.4.
Here, we formalize the problem of counting triangles as a problem
parametrized by a scalar T . We are asked to distinguish between graphs
that have no triangles at all, and those which have at least T < n trian-
gles. Given a summary technique which claims to solve this problem,
we show how to use it to solve INDEX. We construct the graph over
three sets, X, Y , and Z, where Z is chosen to be of size T . The bitstring x is
encoded into the adjacency pattern between X and Y : index i is mapped
in some canonical fashion to a pair of indices j and k, and edge (X j,Yk)
is placed in the graph by Alice if the corresponding bit xi = 1. This en-
coding allows Bob to probe for the value of a bit in x, as follows. Bob
similarly finds the indices j and k from his index y, and inserts edges
(X j,Z`) and (Yk,Z`) for all 1 ≤ ` ≤ T . Then, if there is the edge (X j,Yk)
in the graph (corresponding to xi = 1), there are a total of T triangles,
whereas there are no triangles otherwise. This shows that the triangle
counting problem requires space Ω(|X| · |Y |). A nice feature of this reduc-
tion (due to Braverman, Ostrovsky and Vilenchik [37]) is that the sizes
of X and Y can be chosen to generate an arbitrary number of edges as a
function of n, so the problem is hard, whether the graph is sparse (has
only O(n) edges) or dense (has Ω(n2) edges), or anywhere in between.
The number of edges, m, is O(nT), for an INDEX instance of size n, so the
summary size lower bound in terms of m is Ω(m/T).

10.3 Disjointness and Heavy Hitters

The DISJOINTNESS problem is defined as follows:

Definition 10.2 (DISJOINTNESS problem) Alice holds a binary string x of
n bits in length, while Bob holds a binary string y, also of n bits in length. The

DRAFT

10.3 Disjointness and Heavy Hitters 259

goal is for the players to determine whether there exists an index i such that
x[i] = y[i] = 1, or that no such index exists.

The problem may appear tractable, but it is hard. Formally, any com-
munication protocol for DISJOINTNESS requires the players to commu-
nicate a total of Ω(n) bits, even if randomization is allowed. This holds
even when the players are allowed to have multiple rounds of interac-
tion: Alice and Bob can send multiple messages. This relaxation does
not help in proving stronger lower bounds for summary construction,
but is useful for places where multiple rounds of communication could
be allowed, such as in the distributed setting (Chapter 8). The hard-
ness of the DISJOINTNESS problem is shown by a similar argument. It
was first demonstrated by Kalyanasundaram and Schnitger [145], and
simplified by Razborov [197].

Note that if we change the problem to ask whether there exists any
index i such that x[i] = y[i] (i.e., we remove the requirement that the bit
at the index is 1), then the new problem becomes much simpler. If we
have a ‘no’ instance of this new problem then we must have x[i] , y[i]
for all locations i. That is, x[i] = (1 − y[i]). Then we can compare finger-
prints of x and the string y′ formed by flipping every bit of y, and output
‘no’ if these fingerprints match. This protocol has communication cost
O(log n). Thus, the asymmetry in the problem definition is required to
make it a difficult problem.

Lower bound for Multiset frequency. A first application of the DISJOINT-
NESS problem is to show the hardness of estimating the highest fre-
quency in a multiset. That is, the input defines a multiset v, and the ob-
jective is to estimate maxi vi, the largest frequency in the multiset. Again,
assume we had a compact summary for this problem, and we will show
how it could be used to solve DISJOINTNESS. Given the instance of DIS-
JOINTNESS, Alice takes her string x, and encodes it so that vi = x[i], i.e.,
inserts i into the summary if x[i] = 1. This summary is sent to Bob, who
similarly encodes his string. This means that vi = x[i] + y[i]. Suppose
we could find F = maxi vi. Then F = 2 if and only iff there is some i
such that x[i] = y[i] = 1, and F ≤ 1 otherwise. Hence, we can’t hope
to solve this maximum frequency problem with a summary of size less
than Ω(n), even if we allow an approximate answer1. This explains why
the various summaries that address this problem (MG, SpaceSaving,

1 That is, even if we only approximate F up to a constant factor less
than 2.

DRAFT

260 Lower Bounds for Summaries

Count-Min Sketch and Count Sketch) offer a different guarantee: they
approximate frequencies not with relative error, but with an error that
depends on ‖v‖1 or ‖v‖2.

Lower bound for inner product estimation. Section 6.1 shows how sketches
can be used to estimate inner-products between pairs of vectors u and v,
with an error that is proportional to ‖u‖2‖v‖2. In many applications, we
would prefer to have error that scales proportional to the inner prod-
uct u · v itself. This is not feasible in general for arbitrary inputs, by a
reduction to the DISJOINTNESS problem.

Suppose that we had a summary that promised to answer inner prod-
uct queries with error ε(u · v). Then we could use it to solve DISJOINT-
NESS quite directly: simply set u = x and v = y for binary vectors x and
y. Then observe that (x · y) = 0 iff x and y are disjoint (a no instance of
the problem), but (x · y) ≥ 1 iff x and y have any point of intersection.
That is, the result counts the number of points of intersection. Then the
space required by any summary must be Ω(n), else it could be used as
the basis of a DISJOINTNESS communication protocol. In particular, this
rules out any constant factor approximation of (x · y), since this would
allow us to distinguish between the x · y = 0 and x · y ≥ 1.

This argument also allows us to argue that error terms like ε‖u‖2‖v‖2
are reasonable. Consider the same interpretation of bitstrings from DIS-
JOINTNESS as vectors. Then ‖u‖2, ‖v‖2 = Ω(

√
n) in general, where n de-

notes the length of the bitstrings. Estimating their inner-product with
sufficient accuracy to distinguish a 0 from a 1 result would require
the additive error to satisfy ε‖u‖2‖v‖2 = εΩ(n) < 1

2 , i.e., ε = O(1/n), or
n = Ω(1/ε). This implies that the size of the summary must be Ω(1/ε).

Multi-pass lower bound for triangle counting. In Section 10.2, we used
the hardness of the INDEX problem to show that counting the num-
ber of triangles in a graph requires a summary of size propor-
tional to the number of edges. Here, we describe a stronger lower
bound [65], under the more demanding scenario that we are al-
lowed to access the input data multiple times. This corresponds to
a communication problem where Alice and Bob can exchange mul-
tiple messages. Note that INDEX is not helpful to us here: if Alice
and Bob can have multiple rounds of communication, then we can
easily solve INDEX instances with few bits: Bob just has to send
the index to Alice, who can reply with the target value. Instead,

DRAFT

10.4 Gap Hamming and Count Distinct, Again 261

we rely on problems like DISJOINTNESS, which remain hard even
when multiple rounds of communication are allowed.

As before, we focus on the problem of distinguishing a graph
G with no triangles from one with T or more triangles. We will
construct a graph on θ(n) vertices with Ω(n

√
T) edges and 1 ≤ T ≤

n2 triangles by encoding an instance of DISJOINTNESS. We define
three sets of nodes, A with n nodes, and B and C which each have
√

T nodes. Given the binary string y over n bits, Bob creates edges
from each ai such that yi = 1 to all nodes in B. Alice creates every
edge (b, c) between b ∈ B and c ∈ C. Last, she inserts edges from
each ai such that xi = 1 to all nodes in C.

Observe from this construction that if strings x and y are disjoint,
then there are no triangles in the graph, since there is no node ai

with an edge to B and an edge to C. However, for every intersection
i between x and y there are triangles on nodes (ai, b j, ck) for all

√
T

values of j and k, giving a total of T triangles. The bound T ≤ n2

ensures that the number of nodes is O(n), and the number of edges
is T + (|x| + |y|)

√
T ≤ 3n

√
T (using

√
T ≤ n from the assumption).

From the hardness of DISJOINTNESS, we know that any sum-
mary for this problem must use Ω(n) space. Rewriting the bound
in terms of the number of edges, m, we obtain a bound of Ω(m/

√
T).

This is stronger than the corresponding bound of Ω(m/T) by using
a reduction from INDEX.

10.4 Gap Hamming and Count Distinct, Again

To prove stronger bounds for some problems, a different problem is de-
fined, based on the notion of Hamming distance: the number of places
where a pair of binary strings differ.

Definition 10.3 (GAP-HAMMING problem) Alice holds a binary string
x of n bits in length, and Bob holds a binary string y of n bits in length. The
Hamming distance, H(x, y) is defined as |{i : xi , yi}|. We are promised that
either H(x, y) ≤ n/2−

√
n or H(x, y) ≥ n/2 +

√
n. The goal is for the players to

determine which case their input falls in.

Note that we could solve this problem using summary techniques
we have seen already. If we treat the binary strings x and y as vectors,
then the vector (x − y) has squared Euclidean norm equal to H(x, y).
That is, H(x, y) = ‖x − y‖22. We can obtain an estimate of the Euclidean

DRAFT

262 Lower Bounds for Summaries

norm (and hence the squared Euclidean norm) with relative error ε us-
ing space O(1/ε2). We can answer the GAP-HAMMING problem if this
relative error is small enough to distinguish the two cases. This requires
ε ≤

√
n/H(x, y) ∝ 1/

√
n. That is, we can solve this problem using a

method like AMS Sketch with ε chosen so that the space is O(n). How-
ever, this is no significant improvement on the trivial approach which
simply has Alice send x to Bob, using O(n) bits of communication.

Indeed, this is the best that can be done for this problem: GAP-HAMMING

requires Ω(n) communication from Alice to Bob in the one-round com-
munication complexity model. This result was shown by Woodruff [226],
with a simplified proof due to Jayram, Kumar and Sivakumar [138],
who reduced the problem to an instance of INDEX.

Lower bound for count distinct and frequency moments. The GAP-HAMMING

problem allows a stronger lower bound to be shown for Count Dis-
tinct than the direct reduction from INDEX. Given an instance of GAP-
HAMMING, Alice and Bob both code up their inputs in the natural way.
Alice creates a set as follows: if xi = 0, she inserts an item correspond-
ing to the tuple (i, 0), otherwise she inserts a tuple (i, 1). Bob similarly
encodes his set. We can observe that this encoding generates 2H(x, y)
tuples that occur once over the full input, and a further n − H(x, y) that
occur twice. In total, there are n+H(x, y) distinct tuples generated. In one
case, the total number of distinct elements is at least 3n/2 +

√
(n), and in

the other it is at most 3n/2 −
√

n. Thus, choosing ε for an approximate
distinct counter to be ∝ 1/

√
n would be sufficient to distinguish these

two cases. This implies a space requirement of Ω(1/ε2) for the count dis-
tinct problem, and hence KMV and HLL are optimal in their dependence
on ε.

We note that a similar construction and analysis also shows the same
Ω(1/ε2) space requirement to estimate ‖v‖p vector norms for constant
values of p. The hardness for estimating ‖v‖2 in turn shows the corre-
sponding hardness for estimating inner product, due to the close con-
nection of these problems: Euclidean norm (‖v‖2) is a special case of
inner product since v · v = ‖v‖22. Hence, inner product u · v is shown to
require Ω(1/ε2) space in order to estimate with additive error propor-
tional to ε‖u‖2‖v‖2.

DRAFT

10.4 Gap Hamming and Count Distinct, Again 263

10.5 Augmented Index and Matrix Multiplication

The problem of AUGMENTEDINDEX is used to prove stronger bounds
for summaries which allow items to be deleted, also referred to as
‘negative updates’.

Definition 10.4 (AUGMENTEDINDEX problem) Alice holds a binary
string x of n bits in length, while Bob holds a string y of 0 ≤ i < n bits
in length, with the promise that x j = y j for all j ≤ i. The goal is for the
players to follow a protocol to output x[i + 1], the i + 1st bit from the
string x.

We can view this as equivalent to INDEX with the additional help
that Bob knows the prefix of x up to (but not including) the vital bit
of interest. As with the basic INDEX problem, the hardness derives
from the fact that Alice does not know anything about the critical
index i + 1, and Bob cannot communicate it to her. It turns out that
the extra information available to Bob does not help: the communi-
cation complexity of this problem remains Ω(n). However, the ex-
tra information does allow us to encode slightly more complex in-
stances of other problems, and hence show stronger lower bounds
on summaries that allow deletions or negative updates.

Lower bound for Matrix multiplication. We now describe a lower bound
for the matrix multiplication using a reduction to AUGMENTED IN-
DEX, based on an approach of Clarkson and Woodruff [51]. Con-
sider an instance of the Matrix multiplication (Section 6.3). We are
given matrices A and B, both of n rows and c columns, specified
with incremental updates to their entries. We suppose that we have
a summary to estimate the product AT B with error at most ε‖A‖F‖B‖F ,
where ‖·‖F denotes the Frobenius (entrywise) norm, ‖A‖F =

√
(
∑

i, j A2
i, j).

We use the supposed summary to allows us to solve an instance
of AUGMENTEDINDEX. Alice will encode her string x into the ma-
trix A by filling it with entries in some canonical fashion, say top
to bottom and right to left. The sign of an entry is positive if the
corresponding bit in x is 1, and negative if it is 0. The magnitude
of the entries are increased from left to right. We set the parameter
r = log(cn)/(8ε2). In the first r/ log(cn) columns, the magnitude of

DRAFT

264 Lower Bounds for Summaries

all entries is 1; the next r/ log(cn) columns, it is 2; and in the k’th
group of r/ log(cn) columns, the magnitude of all entries is 2k. The
remaining n − r columns in A are set to all zeros.

On receiving the summary from Alice, Bob uses his knowledge
of the prefix of x to ‘remove’ all the information in the matrix A
corresponding to this prefix. That is, Bob subtracts the quantity in
each entry of A that Alice added which corresponds to a bit value
that he knows about, since Alice’s transformation is completely de-
terministic. Recall that Bob wants to retrieve the bit corresponding
to x[i + 1]. Let (i∗, j∗) denote the coordinates in matrix A which cor-
respond to x[i+1]. Bob then instantiates a matrix B which is entirely
0, except for a single entry of weight 1 in row j∗. Observe that the
product AT B essentially ‘reads off’ the j∗th column of AT , which
includes the target element.

The permitted error in the reconstruction of AT B is ε‖A‖F‖B‖F .
By construction, ‖B‖F = 1. Meanwhile, let k be such that the largest
entry in A is 2k (after Bob has removed the larger entries). Then
‖A‖2F ≤ (cr/ log(cn)·(1+4+. . .+22k), the size of each ‘block’ of A, times
the squared weights for each block. Then ‖A‖2F ≤

4
3 cr22k/ log(cn).

Based on the choice of r = log(cn)/(8ε2), the permitted squared er-
ror is ε2‖A‖2F‖B‖

2
F ≤ c4k/6.

We now consider the reconstructed column of AT found via AT B,
which has c entries. We say that an entry is ‘bad’ if its sign is incor-
rect in the reconstruction compared to in the original. Observe that
since each entry has squared magnitude 4k, an error in sign con-
tributed at least 4k to the total squared error. The bound on error
from above means that at most a one-sixth fraction of entries can be
bad without violating the promise. We can assume that the index
of interest is chosen independently of other choices, so the proba-
bility that the correct sign is found, and hence the correct value of
the bit of interest, is at least 5/6.

This is sufficient to ensure that the instance of AUGMENTEDIN-
DEX is solved with sufficient probability. The size of the instance
encoded is the number of non-zero entries in A, which is O(rc =

(c/ε2) log(cn)). This means that any summary for approximate Ma-
trix Multiplication on matrices of size r×c must use space Ω(cε−2 log(cn)).

The impact of using AUGMENTEDINDEX is that it allows us to
introduce the additional factor of log(cn) into the hardness bound.
If we were to try a similar reduction with an instance of INDEX,

DRAFT

10.4 Gap Hamming and Count Distinct, Again 265

the bound would emerge as Ω(cε−2). The reduction would involve
a matrix A with fewer rows, and all entries with magnitude 1.

DRAFT

