
DRAFT
PART ONE

FUNDAMENTAL SUMMARY
TECHNIQUES



DRAFT



DRAFT
2

Summaries for Sets

This chapter studies some fundamental and commonly used summaries
for sets. The input consists of items drawn from a universe U, which
define the set A to be summarized. By definition, a set does not con-
tain duplicated items, but the input to the summary may or may not
contain duplicates. Some summaries are able to remove duplicates au-
tomatically, while others treat each item in the input as distinct from
all others. This will be pointed out explicitly when each summary is
described.

The summaries described in this chapter address the following tasks:

• Approximately large quantities with few bits: the MorrisCounter (Sec-
tion 2.1).

• Maintaining a random sample of unweighted items: the Random-
Sample (Section 2.2).

• Maintaining random samples where items in the set also have (fixed)
weights: the WeightedRandomSample and PrioritySample summaries
(Section 2.3 and Section 2.4).

• Estimating the number of distinct items in a collection: the KMV and
HLL summaries (Section 2.5 and Section 2.6).

• Approximately representing the members of a set in a compact for-
mat: the BloomFilter (Section 2.7)

2.1 Morris Approximate Counter

Brief Summary. The very first question one could ask about a set is its
cardinality. When no duplicates are present in the input, counting the
items in the set A can be trivially done with a counter of log |A| bits. The

31



DRAFT

32 Summaries for Sets

MorrisCounter summary provides an approximate counter using even
fewer bits. Instead of increasing the counter for every item, a random
process determines when to increase the counter, as a function of the
current state of the counter.

Note that the MorrisCounter cannot deal with duplicates in the input;
please use the summaries described in Section 2.5 and 2.6 if this is the
case.

Algorithm 2.1: MorrisCounter: UPDATE ()

1 Pick y uniform over [0, 1];
2 if y < b−c then c← c + 1;

Algorithm 2.2: MorrisCounter: QUERY ()

1 return (bc − 1)/(b − 1);

Operations on the summary. The MorrisCounter summary is simply a
counter c, with a parameter 1 < b ≤ 2, that can be thought of as the
(number) base over which the counter operates. The INITIALIZE (b) op-
eration sets the counter to 0 and locks in the value of b. The UPDATE

operation updates the counter when a new item is added to A. Specif-
ically, UPDATE increases c by 1 with probability b−c, and leaves it un-
changed otherwise. Informally, we expect b items for this counter to go
from 1 to 2, then a further b2 to reach 3, b3 more to reach 4, and so on in a
geometric progression. This justifies the fact that the QUERY operation
shown in Algorithm 2.2 provides an estimated count as bc−1

b−1 .
The analysis of this summary indicates that setting b = 1 + 2ε2δ is

sufficient to provide ε-relative accuracy of counts with probability at
least 1 − δ. When |A| = n, this suggest that the counter c should go up
to log((b − 1)n)/ log b = O( 1

ε2δ
log ε2δn), and therefore requires O(log 1

ε
+

log 1
δ
+log log ε2δn) bits. This can be much more compact than the dlog n+

1e bits required to keep an exact count of up to n items when n is very
large indeed.

Algorithm 2.3: MorrisCounter: MERGE (ca, cb)

1 α = min(ca, cb), β = max(ca, cb) ;
2 for j← 0 to α − 1 do
3 Pick y uniform over [0, 1];
4 if y < b j−β then β← β + 1;

5 return β;

To MERGE together two MorrisCounter summaries that used the same



DRAFT

2.1 Morris Approximate Counter 33

base b, we can pick the larger of the two counters as the primary, and
use the smaller to determine whether to further increase it. Let β de-
note the current count of the larger counter, and α denote the smaller
counter. We perform α tests to determine whether to increment β. We
increment βwith probability bi−β for i from 0 to α−1. This corresponds to
stepping through the α items that prompted increments in the smaller
counter. Algorithm 2.3 details the MERGE algorithm, incrementing the
larger counter based on the appropriate conditional probabilities im-
plied by the smaller counter.

Example. We set b = 2, and consider a stream of 9 items. The below
table shows a sample state of the counter after each of these.

Timestep 1 2 3 4 5 6 7 8 9
c 1 1 1 2 2 3 3 3 3

After 9 items, the counter records 3, which corresponds to an estimate
of 7.

Given two MorrisCounter summaries using base 2 which both con-
tain 3, we MERGE by starting with a counter of 3. We first increment
this with probability 20−3 = 1/8; say this test does not pass. Then we
increment with probability 21−3 = 1/4. Suppose in this example, the test
passes, so we now have a counter of 4. Finally, we increment with prob-
ability 22−4 = 1/4 (note, we use the current value of the counter). In our
example, this test does not pass, so we conclude with a merged counter
with count of 4, representing an estimate of 15.

Implementation Issues. To draw a random value with probability b−c,
it is convenient to choose b based on a power of two, such as b =

1 + 1/(2` − 1) for some integer `. The test with probability 1/b passes
with probability (2` − 1)/2`, which can be done by generating ` uniform
random bits — for example, if not all of the bits are zero. The test with
probability b−c passes if c instances of the previous test pass. This re-
quires a lot of randomness, and so can be approximated using a single
floating-point random value tested against b−c.

Further Discussion. The analysis of the expectation of the esti-
mate bc−1

b−1 under a sequence of UPDATE operations essentially shows
that at each step, the expected change in the estimated count is one.
Formally, let Xn denote the output of the counter after n UPDATE



DRAFT

34 Summaries for Sets

operations, and let Cn denote the value of the stored count c. Then,
inductively,

E[Xn] =
∑

c

Pr[Cn = c]
bc − 1
b − 1

=
∑

c

(
Pr[Cn−1 = c − 1]b−c + Pr[Cn−1 = c](1 − b−c)

) bc − 1
b − 1

=
∑

c

Pr[Cn−1 = c]
(
b−c bc+1 − 1

b − 1
+ (1 − b−c)

bc − 1
b − 1

)
(regrouping the terms)

=
∑

c

Pr[Cn−1 = c]
bc − 1
b − 1

+ 1

= E[Xn−1] + 1.

Therefore, since X0 = 0, we have that E[Xn] = n. For the variance,
we first define Yn = Xn + 1

b−1 and compute

E[Y2
n ] =

∑
c

Pr[Cn = c]
(

bc

b − 1

)2

=
∑

c

Pr[Cn−1 = c]
(
b−c( bc+1

b − 1
)2

+ (1 − b−c)
( bc

b − 1
)2
)

=
∑

c

Pr[Cn−1 = c]
(( bc

b − 1
)2

+
b−c

(b − 1)2 ((bc+1)2 − (bc)2)
)

(regrouping)

=E[Y2
n−1] +

∑
c

Pr[Cn−1 = c]
b−c

(b − 1)2 (bc+1 − bc)(bc+1 + bc)

=E[Y2
n−1] + (b + 1)

∑
c

Pr[Cn−1 = c]
bc

b − 1

=E[Y2
n−1] + (b + 1)E[Yn−1]

=E[Y2
n−1] + (b + 1)(n − 1)

=E[Y2
0 ] + (b + 1)

n−1∑
i=0

i.

Thus, since Y0 = 1
b−1 , we have

E[X2
n] = E[

(
Yn −

1
b − 1

)2

] ≤ E[Y2
n − Y2

0 ] =
1
2

(b + 1)n(n − 1),



DRAFT

2.1 Morris Approximate Counter 35

and so

Var[Xn] ≤
1
2

(b + 1)n2 − n2 =
1
2

(b − 1)n2.

Via the Chebyshev inequality, we then have

Pr[|Xn − n| ≥ εn] ≤
1
2

(b − 1)n2/ε2n2 =
b − 1
2ε2 .

Therefore, if we choose b ≤ 1 + 2ε2δ, we have the desired bound.
Alternately, we can take b ≤ 1+ε2 to have this hold with probability
at most 1

2 . Then taking the median of O(log 1/δ) estimates will re-
duce the error probability to δ, via the Chernoff bounds argument
of Section 1.4.1.

To merge two MorrisCounter summaries, it is helpful to think of
the random decision of whether to update the counter as being de-
termined by a random variable Y which is uniform over the range
[0, 1]. The test at a step with probability b−c is passed when Y < b−c,
i.e., Pr[Y < b−c] = b−c. Associate the ith update with such a random
variable, Yi. Then fix these choices over the series of updates, that
is, imagine that there is a fixed yi value associated with each up-
date. Now imagine taking the sequence of updates associated with
the second (smaller) counter, and applying them as updates to the
first (larger) counter, with this now fixed set of yi values. The result
is an updated counter which reflects the full set of updates, and
has the correct distribution.

We now argue that there is enough information in the smaller
counter that describes the set of yi values observed to exactly sim-
ulate this process, without explicit access to them. First, consider
those UPDATE events which did not change the value of the smaller
counter. These must have been associated with yi values greater
than b−c, where c is the value of the larger counter: since the smaller
counter ended with a value at most c, these updates could not
have had such a small yi value, else they would have changed the
counter. This leaves the UPDATE events that caused the smaller
counter to increase from j to j + 1. Here, the corresponding Y value
must have been less than b− j. Beyond this, we have no informa-
tion. Since the Y random variable is uniform, conditioned on the
fact that yi < b− j, Yi is uniform in the range [0, b− j]. Therefore, the
probability that Yi is below b−c is b−c/b− j = b j−c. It is acceptable to



DRAFT

36 Summaries for Sets

make this randomized test at the time of the merge, by invoking
the principle of deferred decisions.

History and Background. The notion of the approximate counter was
first introduced by Morris in 1977 [182]. It is sometimes regarded as
the first non-trivial streaming algorithm. A thorough analysis was pre-
sented by Flajolet in 1985 [100]. The analysis presented here follows
that of Gronmeier and Sauerhoff [121]. The generalization to addition
of approximate counters does not appear to have been explicitly con-
sidered before. The summary is considered a basic tool in handling
very large data volumes, and can be applied in any scenario where
there are a large number of statistics to maintain, but some inaccuracy
in each count can be tolerated — for example, in maintaining counts
of many different combinations of events that will instantiate a ma-
chine learned model. An early application of the MorrisCounter was
to count the frequencies of combinations of letters in large collections
of text with few bits per counter. Such frequency counts can be used to
give more effective data compression models, even with approximate
counts. Some additional historical notes and applications are described
by Lumbroso [168].

2.2 Random Sampling

Brief Summary. A random sample is a basic summary for a set that can
be used for a variety of purposes. Formally, a RandomSample (without
replacement) of size s of a set A is a subset of s items from A (assuming
|A| ≥ s, and treating all members of A as distinct) such that every subset
of s items of A has the same probability of being chosen as the sample.

The random sampling algorithms described in this section cannot
handle duplicates in the input, i.e., if the same item appears multiple
times, they will be treated as distinct items, and they will all get the
chance to be sampled. If the multiplicities should not matter, please see
distinct sampling in Section 3.9.

Operations on the summary. Let S be the random sample. In order
to UPDATE and MERGE random samples, we also need to store n, the
cardinality of the underlying set A, together with S . To INITIALIZE the
summary with a set A of size s, we set S = A and n = s. To UPDATE the
summary with a new item x (which is not in A yet), we first increment n



DRAFT

2.2 Random Sampling 37

Algorithm 2.4: RandomSample: UPDATE (x)

1 n← n + 1;
2 Pick i uniformly from {1, . . . , n};
3 if i ≤ s then S [i]← x;

by 1. Then, with probability s/n, we choose an item currently in S uni-
formly at random and replace it by x; and with probability 1 − s/n we
discard x. Algorithm 2.4 implements the UPDATE procedure by keeping
the sampled items S in an array indexed from 1 to s. This way, the de-
cision whether to add the new item and which existing item to replace
can be combined by generating one random number. This also ensures
that items in S are randomly permuted (for this to be true, we need to
have randomly permuted S in the INITIALIZE step, too).

Algorithm 2.5: RandomSample: MERGE ((S 1, n1), (S 2, n2))

1 k1 ← 1, k2 ← 1;
2 for i← 1 to s do
3 Pick j uniformly over {1, . . . , n1 + n2};
4 if j ≤ n1 then
5 S [i]← S 1[k1];
6 k1 ← k1 + 1;
7 n1 ← n1 − 1;
8 else
9 S [i]← S 2[k2];

10 k2 ← k2 + 1;
11 n2 ← n2 − 1;

12 return (S , n1 + n2 + s);

Next we describe how to MERGE two random samples S 1 and S 2,
drawn from two sets A1 and A2 of cardinality n1 and n2, respectively. We
proceed in s rounds, outputting one sampled item in each round. In the
i-th round, with probability n1/(n1+n2) we randomly pick an item x in S 1

to the new sample, then remove x from S 1 and decrement n1 by 1; with
probability n2/(n1 + n2) we randomly pick an item x from S 2 to output
to the sample, then remove it from S 2 and decrement n2. Algorithm 2.4
implements the MERGE procedure, assuming that the two samples are
stored in uniformly random order. Then the MERGE simply builds the



DRAFT

38 Summaries for Sets

new sample by picking the next element from either S 1 or S 2 step by
step.

Example. Suppose we are given a sequence of 10 items numbered from
1 to 10 in order. The random sample is initialized to contain the first
three items after random permutation, say, [1, 3, 2]. Further suppose
that the random numbers generated in line 2 of Algorithm 2.4 are 2, 5,
3, 3, 7, 9, 1. Then, the content of the array S will be as follows after each
item has been processed by UPDATE.

After INITIALIZE: [1, 3, 2];
After item 4: [1, 4, 2];
After item 5: [1, 4, 2];
After item 6: [1, 4, 6];
After item 7: [1, 4, 7];
After item 8: [1, 4, 7];
After item 9: [1, 4, 7];
After item 10: [10, 4, 7];

Further Discussion. To see why UPDATE and MERGE draw a ran-
dom sample, we relate random sampling to random shuffling, where
an array A is randomly permuted in a way such that each permu-
tation is equally likely. Then a random sample can be obtained by
picking the first s items in the permutation.

One method for doing random shuffling is the Fisher-Yates shuf-
fle. Given an array A (indexed from 1 to n), the procedure works as
follows.

Algorithm 2.6: Fisher-Yates shuffle

1 for i← 1 to n do
2 Pick j randomly from {1, . . . , i};
3 Exchange A[i] and A[ j];

By an easy induction proof, we can show that every permutation
is possible by the above procedure. On the other hand, the proce-
dure generates exactly n! different sequences of random numbers,
each with probability 1/n!, so every permutation must be equally
likely. Now, we see that if we only keep the first s items of A, each
iteration of the Fisher-Yates shuffle algorithm exactly becomes the
UPDATE algorithm described earlier.



DRAFT

2.2 Random Sampling 39

To see that MERGE is also correct, imagine a process that per-
mutes all the items in A1 and A2 randomly and chooses the first s
of them, which form a random sample of size s from A1∪A2. Using
the principle of deferred decisions, the first item in the permuta-
tion has probability n1/(n1 + n2) of being from A1, and conditioned
upon this, it is a randomly picked item from S 1. This is exactly how
the MERGE algorithm picks the first sampled item for A1 ∪ A2. Car-
rying out this argument iteratively proves the correctness of the
algorithm.

The algorithms above maintain a random sample without re-
placement. If a random sample with replacement is desired, one
can simply run s independent instances of the above algorithm,
each maintaining a random sample of size 1 without replacement.

History and Background. The UPDATE algorithm is referred to as the
reservoir sampling algorithm in the literature, first formalized by Knuth
[153], who attributes it to Alan G. Waterman. The shuffling algorithm
above was first described by Fisher and Yates in 1938, and later formal-
ized by Durstenfeld [90]. The reservoir sampling algorithm has been
frequently rediscovered (and used as an interview question for tech-
nical positions), but the proof being offered often only proves that the
procedure samples each item with probability s/n. This is only a nec-
essary condition for the sample to be a random sample. One can also
use the definition of random sample, that is, every subset of s items is
equally likely to be in the sample, but the correspondence to the Fisher-
Yates shuffle yields the cleanest proof. Vitter [222] made a comprehen-
sive study of reservoir sampling algorithm. In particular he considered
the case where there is a constant-time “skip” operation that can be
used to skip a given number of items in the input, and gave optimal
reservoir sampling algorithms in this setting. The MERGE algorithm for
merging two random samples appears to be folklore.

The applications of random sampling are so broad as to defy a con-
cise summation. Suffice it to say, many statistical applications take a
random sample of data on which to evaluate a function of interest. Ran-
dom samples are used with many computer systems to estimate the
cost of different operations and choose which method will be most ef-
ficient. Many algorithms use random samples of the input to quickly
compute an approximate solution to a problem in preference to the
slower evaluation on the full data.



DRAFT

40 Summaries for Sets

Available Implementations. A version of reservoir sampling is
implemented in the DataSketches library, with discussion at https:
//datasketches.github.io/docs/Sampling/ReservoirSampling.
html. Experiments on commodity hardware show that speeds of
tens of millions of UPDATE operations per second are achievable.
Performing a MERGE depends on the size of the sample, but takes
less than 1ms for samples of size tens of thousands.

2.3 Weighted Random Sampling

Brief Summary. In many situations, each item x ∈ A is associated with
a positive weight wx > 0. Naturally, when we maintain a random sam-
ple of size s over weighted items, we would like to include an item i
in the sample with probability proportional to wi. In this section, we
describe a WeightedRandomSample that achieves this goal. More pre-
cisely, since a probability cannot be greater than 1, item x will be in-
cluded in the sample with probability px = min{1,wx/τ}, where τ is the
unique value such that

∑
x∈A px = s. Note that the value of τ solely de-

pends on the weights of the items. This is assuming s ≤ n, where n is the
size of the underlying set A from which the sample is drawn. If s > n,
we take all elements in A as the sample and set τ = 0. We refer to τ as
the sampling threshold, as all items with weight greater than τ are guar-
anteed to be in the sample. Note that when all weights are 1, we have
τ = n/s, so px = 1/τ = s/n for all x, and the WeightedRandomSample
degenerates into a RandomSample.

Similar to a RandomSample, the WeightedRandomSample cannot
handle duplicates in the input, i.e., each distinct item can be added to
the WeightedRandomSample only once with a given weight, which can
no longer be changed.

The most important QUERY on a WeightedRandomSample is to ask
for the total weight of all items in some subset Q ⊆ A. If Q were given
in advance, the problem would be trivial, as we can check if an item
is in Q when the item is inserted to the summary. In many practical
situations, Q is not known in advance. For example, in Internet traffic
analysis, an item is an IP packet with various attributes like source IP,
source port, destination IP, destination port, etc., while the packet size
is the weight. Very often, many analytical questions are ad hoc and will



DRAFT

2.3 Weighted Random Sampling 41

be asked after the streaming data has passed. For example, a customer
might be interested in the total traffic volume of a certain application,
which uses a specific source port and destination port. He or she might
further narrow down the query to the traffic between two specific net-
work domains. Such exploratory studies require a summary that sup-
ports estimating the total weight of an arbitrary subset.

Operations on the summary. Let S be the random sample. In addition,
for each item x ∈ S , we maintain an adjusted weight w̃x = wx/px. In
fact, the original weight wx and the sampling probability px need not
be maintained; just maintaining w̃x would be sufficient. To INITIALIZE

the summary with a set A of size s, we set S = A and w̃x = wx for all
x ∈ S . We split S into a subset of large items L = {x ∈ S | w̃x > τ} and the
small items T = S \ L. Items in L are sorted by their adjusted weights.
We will maintain the invariant that w̃x = τ for all x ∈ T , so for items in
T , there is no need to record their adjusted weights explicitly. Initially,
the sampling threshold τ is 0, so T = ∅, L = S = A, and w̃x = wx for all
x ∈ L.

The procedure to UPDATE the sample with a new item y with weight
wy is described in Algorithm 2.7. The details are a little more involved
than the unweighted case, since it has more cases to handle based on
whether items have weight above or below τ. The basic idea is to take a
WeightedRandomSample of size s out of the s + 1 items, which consist
of the s items in the summary plus the new one to be inserted. In this
process, for the new item, we use its original weight, while for items
in the current sample, we use their adjusted weights. This ensures that
items survive in the sample with the correct probabilities.

We will build a set X (implemented as an array) with items outside
of T and L whose weights we know are smaller than the new threshold
τ′ > τ. To start, if wy is less than the current threshold τ, we set X ← {y};
otherwise item y is considered large, and so we set X ← ∅ and insert y
into L (lines 3–6). Then, we are going to move items from the current
L to X until L contains only items with weights greater than the new
threshold τ. For that purpose, we will maintain the sum W of adjusted
weights in X ∪ T . The sum of T is known as τ|T | (line 2), to which we
add wy if wy < τ (line 6).

Then we remove items in L in the increasing order of their weights.
Let the current smallest item in L be h. We move h from L to X if setting



DRAFT

42 Summaries for Sets

Algorithm 2.7: WeightedRandomSample: UPDATE (y)

1 X ← ∅, w̃y = wy;
2 W ← τ|T |;
3 if wy > τ then insert y into L;
4 else
5 X ← {y};
6 W ← W + w̃y;

7 while L , ∅ and W ≥ (s − |L|)(minh∈L w̃h) do
8 h← arg minh∈L w̃h;
9 move h from L to X;

10 W ← W + w̃h;

11 τ← W/(s − |L|);
12 generate r uniformly random from [0, 1];
13 i← 1;
14 while i ≤ |X| and r ≥ 0 do
15 r ← r − (1 − w̃X[i]/τ);
16 i← i + 1;

17 if r < 0 then remove X[i − 1] from X;
18 else remove an item from T chosen uniformly at random;
19 T ← T ∪ X;

τ′ = w̃h is not enough to reduce the sample size to s, i.e.,

W/w̃h + |L| ≥ s, (2.1)

which is the same as the condition checked in line 7. Whenever (2.1) is
true, we move h from L to X while adding w̃h to W (lines 9–10). We re-
peat this step until L is empty or (2.1) is violated. Then we can compute
the new threshold so that

W/τ′ + |L| = s,

i.e., τ′ = W/(s − |L|) (line 11).
The remaining task is to find an item to delete so that each item re-

mains in the sample with the right probability. More precisely, items in
L must all remain in the sample, while an item x ∈ T ∪ X should re-
main with probability w̃x/τ

′, i.e., it should be deleted with probability
1 − w̃x/τ

′. Recall that all items in T have the same adjusted weights, so
the implementation can be made more efficient as described in lines 12–



DRAFT

2.3 Weighted Random Sampling 43

18. Here, the value of r chosen uniformly in [0, 1] is used to select one
to delete.

The running time of the UPDATE algorithm can be analyzed quite
easily. Inserting an item in to the sorted list L takes O(log s) time. The
rest of the algorithm takes time proportional to |X|, the number of items
being moved from L to T . Since an item is moved at most once, the
amortized cost is just O(1).

One can see that if all items have weight 1, then L is always empty,
τ = s/n where n is the total number of items that have been added, and
Algorithm 2.7 does indeed degenerate into Algorithm 2.4.

Algorithm 2.8: WeightedRandomSample: MERGE (S 1 =

(τ1,T1, L1), S 2 = (τ2,T2, L2), τ1 ≥ τ2)

1 merge L1 and L2 into L;
2 T ← T1,W ← τ1|T |;
3 for d ← 1 to |L2| do
4 X ← ∅;
5 run lines 7–19 of Algorithm 2.7 replacing s with s + |L2| − d;

6 for d ← 1 to |T2| do
7 X ← {T2[d]};
8 W ← W + τ2;
9 run lines 7–19 of Algorithm 2.7;

10 return S = (τ,T, L);

To merge two samples S 1 = (τ1,T1, L1) and S 2 = (τ2,T2, L2) one can in-
sert items from one sample to the other (using their adjusted weights)
by repeatedly calling UPDATE, which would take O(s log s) time. Ob-
serving that the bottleneck in Algorithm 2.7 is to insert the new item
into the sorted list L (line 3), we can improve the running time to O(s)
by first inserting all items in L2 in a batch, and then inserting the items
in T2 one by one, as described in Algorithm 2.8. To insert all items in
L2, we first merge L1 and L2 into one combined sorted list. Since both
L1 and L2 are already sorted, the merge takes O(s) time. Then we itera-
tively reduce the sample size back to s, following the same procedure
as in the UPDATE algorithm. Next, we insert all items of T2 one by one
using the same UPDATE algorithm. One trick is that if we make sure
τ1 ≥ τ2 (swapping S 1 and S 2 if needed), then the adjusted weight of all
the items to be inserted, which is τ2, is always smaller than the current



DRAFT

44 Summaries for Sets

τ ≥ τ1, so we will never need to insert them into L, saving the O(log s)
cost in the UPDATE algorithm.

For any subset Q ⊆ A, let w(Q) =
∑

x∈Q wx. One can QUERY a Weight-
edRandomSample S for w(Q) for an arbitrary subset Q ⊆ A, by sim-
ply returning w̃(Q) =

∑
x∈S∩Q w̃x, that is, we simply add up all adjusted

weights of the items in the sample that fall in Q. This turns out to be an
unbiased estimator of the true total weight w(Q) with strong guarantees
on the variance, as discussed later.

Example. Suppose we are to maintain a weighted random sample of
size s = 4 over a sequence of 8 items numbered from 1 to 8 in order. The
following example shows one possible execution of the UPDATE algo-
rithm, together with the contents of τ,T, L, and X. We use the notation
x : wx to denote an item x with weight wx or adjusted weight w̃x. Note
that all items in T have the same adjusted weight τ.

INITIALIZE: τ = 0, L = [2 : 1, 3 : 3, 1 : 4, 4 : 8],T = ∅;
UPDATE (5 : 3): Add 5 : 3 to L: L = [2 : 1, 3 : 3, 5 : 3, 1 : 4, 4 : 8]

New τ = 7/2, X = [2 : 1, 3 : 3, 5 : 3]
Deletion probabilities: 2 : 5/7, 3 : 1/7, 5 : 1/7
Suppose item 3 is deleted
T = {2, 5}, L = [1 : 4, 4 : 8];

UPDATE (6 : 5): Add 6 : 5 to L : L = [1 : 4, 6 : 5, 4 : 8]
New τ = 16/3, X = [1 : 4, 6 : 5]
Deletion probabilities: 2 : 11/32, 5 : 11/32, 1 : 1/4, 6 : 1/16
Suppose item 5 is deleted
T = {1, 2, 6}, L = [4 : 8];

UPDATE (7 : 1): Add 7 : 1 to X : X = [7 : 1]
New τ = 17/3, X = [7 : 1]
Deletion probabilities: 1 : 1/17, 2 : 1/17, 6 : 1/17, 7 : 14/17
Suppose item 7 is deleted
T = {1, 2, 6}, L = [4 : 8];

UPDATE (8 : 7): Add 8 : 7 to L : L = [8 : 7, 4 : 8]
New τ = 8, X = [8 : 7, 4 : 8]
Deletion probabilities: 1 : 7/24, 2 : 7/24, 6 : 7/24, 8 : 1/8, 4 : 0
Suppose item 1 is deleted
T = {2, 4, 6, 8}, L = ∅.

Next, suppose we want to merge two weighted samples S 1 = (τ1 =

4,T1 = {1, 2}, L1 = {3 : 5, 4 : 6}) and S 2 = (τ2 = 3,T2 = {5}, L2 = {6 :



DRAFT

2.3 Weighted Random Sampling 45

4, 7 : 4, 8 : 11}). We first merge L1 and L2 into L, and then perform the
deletions iteratively, as follows.

Merge L1, L2: T = {1, 2}, L = [6 : 4, 7 : 4, 3 : 5, 4 : 6, 8 : 11];
s = 6: New τ = 21/4, X = [6 : 4, 7 : 4, 3 : 5]

Deletion probabilities: 1 : 5/21, 2 : 5/21, 6 : 5/21, 7 : 5/21, 3 : 1/21
Suppose item 1 is deleted
T = {2, 6, 7, 3}, L = [4 : 6, 8 : 11];

i = 5: New τ = 27/4, X = [4 : 6]
Deletion probabilities: 2 : 2/9, 6 : 2/9, 7 : 2/9, 3 : 2/9, 4 : 1/9
Suppose item 7 is deleted
T = {2, 6, 3, 4}, L = [8 : 11];

i = 4: New τ = 9, X = ∅

Deletion probabilities: 2 : 1/4, 6 : 1/4, 3 : 1/4, 4 : 1/4
Suppose item 3 is deleted
T = {2, 6, 4}, L = [8 : 11].

Next, we insert items in T2 one by one, each with weight τ2 = 3.

UPDATE (5 : 3): X = [5 : 3],W = 30
New τ = 10, X = [5 : 3]
Deletion probabilities: 2 : 1/10, 6 : 1/10, 4 : 1/10, 5 : 7/10
Suppose item 5 is deleted
T = {2, 6, 4}, L = [8 : 11];

Further Discussion. There is no clear generalization of the classi-
cal random sample definition that “every subset of size s is sam-
pled with equal probability” to the weighted case. Nevertheless,
the WeightedRandomSample described above has the following
nice properties, which are sufficient to derive strong statistical prop-
erties regarding the estimation of an arbitrary subset sum.

(i). Inclusion probabilities proportional to size (IPPS). Each item x
is sampled with probability px = min{1,wx/τ}, where τ is the
unique value such that

∑
x∈A min{1,wx/τ} = s if s < n; otherwise

τ = 0, meaning that all items are sampled. A sampled item is
associated with adjusted weight w̃x = wx/px. Set w̃x = 0 if x is
not sampled. It is easy to see that E[w̃x] = wx, and w̃x is known
as the Horvitz-Thompson estimator.



DRAFT

46 Summaries for Sets

(ii). The sample size is at most s. Together with (i), this means that
the sample size must be min{s, n}.

(iii). No positive covariances, i.e., for any two distinct x, y ∈ A,Cov[w̃x, w̃y] ≤
0.

Let SAMPLEs(I) be a procedure that takes a sample of size s from
a set of weighted items I so that properties (i)–(iii) above are sat-
isfied. It turns out such a SAMPLEs can be constructed recursively,
as follows. Let I1, . . . , Im be disjoint nonempty subsets of I, and let
s1, . . . , sm ≥ s. Then

SAMPLEs(I) = SAMPLEs

 m⋃
i=1

SAMPLEsi (Ii)

 . (2.2)

Here, when running SAMPLE on a sample produced by another call
to SAMPLE, we simply treat the adjusted weights of the items as if
they were their original weights. We omit the correctness proof of
this recurrence, which can be found in [54]. Here, we only show
how it leads to the UPDATE and MERGE algorithms described ear-
lier.

First, the trivial base case of SAMPLEs is when I has at most s
items, in which case SAMPLEs(I) = I. We need another base case
when I has s + 1 items, denoted SAMPLEs,s+1. In this case an item
needs to be deleted at random with appropriate deletion proba-
bilities. To determine the deletion probabilities, we first find the
correct value of τ. Then, item x should be sampled with probabil-
ity px = max{1,wx/τ}, i.e., should be deleted with probability 1− px.
After a randomly chosen item has been dropped, we compute the
adjusted weights of the remaining items as w̃x = wx/px, which is τ
if wx ≤ τ, and wx if wx > τ.

To use this for the UPDATE algorithm, we specialize (2.2) with
m = 2, s1 = s2 = s, I1 = A, I2 = {y}. Note that SAMPLEs(I2) = {y}. Then
the UPDATE algorithm becomes exactly SAMPLEs,s+1, by treating
the adjusted weights of items in SAMPLEs(A) as their weights. To
reduce the running time, we exploit the observation above, main-
taining the items in two lists T and L. All items in T have the same
adjusted weights τ, while items in L have their adjusted weights
equal to their original weights.

To compute a merged sample SAMPLEs(A) from SAMPLEs(A1)
and SAMPLEs(A2), where A = A1 ∪ A2, A1 ∩ A2 = ∅, recurrence (2.2)



DRAFT

2.3 Weighted Random Sampling 47

says that we can simply run SAMPLEs on SAMPLEs(A1)∪SAMPLEs(A2)
treating their adjusted weights as their weights. To do so, we insert
each item in SAMPLEs(A2) into SAMPLEs(A1) one by one by the UP-
DATE algorithm. The MERGE algorithm described above is just a
more efficient implementation of this process.

Now we discuss the statistical properties of the subset sum es-
timator w̃(Q) =

∑
x∈S∩Q w̃x. First, because item x is sampled with

probability px, and when it is sampled, its adjusted weight is set to
wx/px, and to 0 otherwise. Thus, we have

E[w̃x] = px · wx/px = wx,

i.e., w̃x is an unbiased estimator of wx. Because each w̃x is unbiased,
the unbiasedness of w̃(Q) follows trivially. The variance of w̃(Q)
enjoys the following three forms of guarantees.

1. Average variance: Consider all the subsets Q ⊆ A of size m ≤ n.
Their average variance is

Vm =

∑
Q⊆A,|Q|=m Var[w̃(Q)](

n
m

) .

It has been shown that [209]

Vm =
m
n

(
n − m
n − 1

ΣV +
m − 1
n − 1

VΣ

)
,

where

ΣV =
∑
x∈A

Var[w̃x],

VΣ = Var

∑
x∈A

w̃x

 .
It is known [199] that the IPPS property (i) uniquely minimizes
ΣV under a given sample size s. Also, as seen earlier, w̃x is either
τ (when wx ≤ τ and x is sampled) or wx (when wx ≥ τ, in which
case x must be sampled). Since τ is deterministic,

∑
x∈A w̃x is also

deterministic due to property (ii). So VΣ = 0. Therefore we con-
clude that Vm is minimized simultaneously for all values of m,
among all sampling schemes under a given sample size s.



DRAFT

48 Summaries for Sets

2. Expected variance: Let Wp denote the expected variance of a ran-
dom subset Q including each item x ∈ A independently with
some probability p. It is also shown that [209]

Wp = p((1 − p)ΣV + pVΣ).

Thus by the same reasoning, Wp is minimized for all values of
p.

3. Worst-case variance: Combining the IPPS property (i) and the
non-positive covariance property (iii), we can also bound Var[w̃(Q)]
for any particular Q. Since each individual w̃x is wx/px with prob-
ability px and 0 otherwise, its variance is Var[w̃x] = w2

x(1/px − 1).
Observing that τ ≤ w(A)/s, so px = max{1,wx/τ} ≥ min{1, swx/w(A)}.
If px = 1, then Var[w̃x] = 0. Otherwise, we must have px ≥

swx/w(A), and we can give two bounds on Var[w̃x]:

Var[w̃x] < w2
x/px ≤ wxw(A)/s, (2.3)

or

Var[w̃x] < w2
x

(
w(A)
swx

− 1
)

=

(
w(A)

2s

)2

−

(
wx −

w(A)
2s

)2

≤

(
w(A)

2s

)2

.

(2.4)
Combining with the non-positive covariance property, we have

Var[w̃(Q)] ≤
∑

x∈Q Var[w̃x]. Plugging in (2.3) and (2.4) respectively
yields a weight-bounded variance Var[w̃(Q)] ≤ w(Q)w(A)/s, and
a cardinality bounded variance Var[w̃(Q)] ≤ |Q|(w(A)/2s)2.

History and Background. The development of the algorithms and anal-
ysis largely follows that of Cohen et al. [54], where it is referred to
as variance optimal, or VarOpt sampling. The UPDATE algorithm de-
scribed above has an amortized time cost of O(log s). This can be im-
proved to O(log log s) if we assume that the weights are integers or
finite-precision floating point numbers, by storing L in a priority queue
that supports fast updates (see the work of Thorup [213]). It can also be
shown that if the stream is randomly ordered, then the amortized cost
will be O(1). The MERGE algorithm is not explicitly described in [54],
though.

This version of weighted sampling was designed for the problem of
sampling effectively from massive streams of network data. Here, uni-
form sampling of data connections would tend to over-represent the
many small flows and miss the important large flows. Simply picking



DRAFT

2.4 Priority Sampling 49

out the largest flows would not give a full picture of the entire distri-
bution. Weighted sampling allows the range of different flow sizes to
be better represented, and volume-based queries (what fraction of net-
work traffic is of a particular type, or headed to a particular set of desti-
nations) to be answered accurately. Further examples in the networking
domain are discussed by Duffield et al. [88].

Available Implementations. VarOpt sampling is implemented in
the DataSketches library, and is discussed at https://datasketches.
github.io/docs/Sampling/VarOptSampling.html, with rou-
tines implemented for UPDATE and MERGE procedure. The imple-
mentation also provides lower and upper bounds on the estima-
tions of subset sums.

2.4 Priority Sampling

Brief Summary. A PrioritySample is also a random sample over a set
A of weighted items, which can be used to estimate the total weight of
an arbitrary subset, as supported by a WeightedRandomSample. The
variance achievable by a PrioritySample is slightly worse than that of
WeightedRandomSample. However, its simpler implementation often
makes it a preferable choice in practice.

Operations on the summary. For each item x ∈ A with weight wx, we
generate an independent uniformly distributed random number αx ∈

(0, 1), and set its priority to qx = wx/αx. A PrioritySample S of size s
consists of the s items of the highest priority. The threshold τ is the
(s + 1)-st highest priority. The summary simply stores these items, their
weights and priorities, as well as the threshold τ. We can store them in
a priority queue so that new items can be added to the summary easily
in O(log s) time. Merging two such summaries can be also easily done
in O(s) time using the linear-time heap building algorithm [59].

For any subset Q ⊆ A, we can QUERY a PrioritySample S for w(Q) in
a similar way as on a WeightedRandomSample, by returning w̃(Q) =∑

x∈S∩Q w̃x. The only difference is that the adjusted weight w̃x is defined
as w̃x = max{wi, τ}. This is also an unbiased estimator of w(Q), but its
variance is slightly worse than WeightedRandomSample, as discussed
later.



DRAFT

50 Summaries for Sets

threshold

sample

original weight

priority

adjusted weight

Figure 2.1 Priority sampling of size s = 3 from a set of 9 weighted items.

Example. A graphical example of a PrioritySample is shown in Fig-
ure 2.1.

Further Discussion. We now show that for any x, w̃x is an unbi-
ased estimator of wx. In fact, we will prove a stronger result, that
E[w̃x] = wx regardless of the values of all αy, y ∈ A, y , x. Let τ′ be
the s-th highest of the priorities qy, y ∈ A, y , x. More formally, we
will show

E[w̃x | Λ(τ′)] = wx, (2.5)

where Λ(τ′) is the event that τ′ is the s-th highest in {qy : y ∈ A, y ,
x}. Proving (2.5) for any value τ′ implies that E[w̃x] = wx.

We first analyze the probability that item x is picked into the
sample S , conditioned on Λ(τ′). If qx < τ′, there are at least s pri-
orities higher than qx, so x will not be picked. If qx > τ′, then τ′

becomes the (s + 1)-st priority among all priorities, so τ = τ′ and x
will be picked into S . Thus,

Pr[x ∈ S | Λ(τ′)] = Pr[qx > τ
′] = Pr[αx < wx/τ

′] = min{1,wx/τ
′}.



DRAFT

2.5 k Minimum Values (KMV) for set cardinality 51

Therefore, we have

E[w̃x | Λ(τ′)] = Pr[x ∈ S | Λ(τ′)] · E[w̃x | x ∈ S ∩ Λ(τ′)]

= min{1,wx/τ
′} ·max{wx, τ

′}

= wx.

The last equality follows by observing that both the min and the
max take their first value iff wx > τ

′.
Therefore, PrioritySample also returns an unbiased estimator w̃(Q)

for any subset Q ⊆ A, like WeightedRandomSample. In addition to
unbiasedness, a PrioritySample also trivially has property (ii) sam-
ple size at most s, as well as (iii) no positive covariances, which
WeightedRandomSample enjoys as described in Section 2.3. In fact,
a PrioritySample has exactly 0 covariance between any w̃x and w̃y,
for x , y (see [87] for a proof).

However, the variance of PrioritySample is slightly worse than
that of WeightedRandomSample in the following two aspects. First,
PrioritySample does not have property (i) inclusion probabilities
proportional to size (IPPS). Although we have shown that con-
ditioned on Λ(τ′), the probability that x is sampled into S is in-
deed proportional to wx, it does not imply that the overall sam-
pling probability is proportional to wx. Therefore, PrioritySample
does not achieve the minimum ΣV that WeightedRandomSample
achieves. Nevertheless, as shown in [208], a PrioritySample with
sample size s + 1 can achieve a ΣV that is as good as the minimum
ΣV achievable by a WeightedRandomSample with sample size s.
Thus, the difference between the two sampling methods in terms
of ΣV is really negligible.

Second, we know from Section 2.3 that WeightedRandomSam-
ple has VΣ = 0. However, for a PrioritySample, we have VΣ = ΣV
(because the covariances are 0). So, it has larger variances for larger
subsets Q.

2.5 k Minimum Values (KMV) for set cardinality

Brief Summary. Similar to the MorrisCounter, the KMV summary also
counts the number of elements in the set being summarized. But unlike
the MorrisCounter, the KMV summary is able to remove duplicates in
the input automatically. In other words, KMV summarizes a multiset A



DRAFT

52 Summaries for Sets

of items and can be used to report the approximate number of distinct
items observed, i.e., to approximate the size of the support set. The ac-
curacy of the approximation determines the size of the summary, and
there is a small probability (δ) of giving an answer which is outside the
desired approximation guarantee (ε). The summary works by applying
a hash function to the input items, and keeping information about the
k distinct items with the smallest hash values. The size of the summary,
k, is determined by the accuracy parameters ε and δ.

Operations on the summary. One instance of a KMV summary can be
represented as a list of hash values, and corresponding items which led
to those hash values.

Algorithm 2.9: KMV:INITIALIZE (k)

1 Pick hash function h, and store k;
2 Initialize list L = ∅ for k item, hash pairs;

The INITIALIZE operation picks a hash function h mapping onto a
range 1 . . .R, and creates an empty list capable of holding up to k hashes
and items.

Algorithm 2.10: KMV: UPDATE (x)

1 if x < L then
2 L← L ∪ {(x, h(x))};
3 if |L| > k then Remove item x with largest hash value h(x)

from L;

Each UPDATE operation receives an item, and applies the function h
to it. If the item is already present in the list it is dropped, and need
not be stored. If the hash value is among the k smallest hash values,
the item and its hash value are stored in the list, and the list pruned
to retain only the k smallest. We use set notation to refer to the list of
items L, augmented so that we can find the kth largest hash value (Al-
gorithm 2.11). This can be supported with a heap data structure, linked
to a hash table to test for presence of an item.

Algorithm 2.11: KMV: QUERY ()

1 vk ← largest hash value in L;
2 return (k − 1) ∗ R/vk

To QUERY the summary for the estimated number of distinct items
seen, find the kth smallest hash value seen so far, as vk, and compute
the estimate as R(k − 1)/vk. If there are fewer than k values stored, then



DRAFT

2.5 k Minimum Values (KMV) for set cardinality 53

(a) KMV summary after 5 distinct items have been
processed

(b) KMV summary after 9 distinct items have been
processed

Figure 2.2 KMV summary with k = 3

these represent the set of distinct items seen, and so the exact answer
can be given.

To MERGE together two summaries (where, we require that both were
built using the same hash function h), and obtain a summary of the
union of the inputs, the two lists are merged, and the set of distinct
pairs of hashes and items is found. The k pairs corresponding to the k
smallest hash values are retained.

Example. Figure 2.2 shows a schematic representation of the KMV sum-
mary as items are processed, with k = 3. Different items are shown
as different colored balls, with each ball being represented as its hash
value, smallest on the left and largest on the right. Figure 2.2(a) shows
the status after 5 distinct items have been observed. The highlighted
items, corresponding to the 3 smallest hash values, are stored in the
summary. As more items arrive (Figure 2.2(b)), the summary is up-
dated: two new items enter the k smallest, and only information about
the current k smallest are stored. In this example, the ratio R/vk is ap-
proximately 4 (the kth smallest hash value falls about 1/4 of the way
along the range), and so the estimate given is 2 × 4 = 8, which is close
to the true answer of 9.

Further Discussion. The initial properties of KMV can be under-
stood as follows. Suppose that the input domain is the range 1...M,
and the output range R is chosen to be M3. This is large enough
that hash collisions are so unlikely we can discount them. Let the
hash function h be chosen from a family of pairwise independent
hash functions.

We now study the chance that the estimated answer D′ is much



DRAFT

54 Summaries for Sets

larger than the true answer, |A|. Suppose R(k − 1)/vk > (1 + ε)|A|
for some ε < 1. This implies that at least k items from the input
had a hash value that was below a value τ := R(k − 1)/(1 + ε)|A|,
i.e., vk was smaller than it should have been. We prefer to have the
dependence on ε in the numerator rather than the denominator, so
we upper bound this value of τ using the fact that ε < 1:

τ =
R(k − 1)
(1 + ε)|A|

≤
R(k − 1)
|A|

(
1 −

ε

2

)
.

Considering a single item x, the probability that its hash value is
below this threshold τ is at most

1
R
·

(
1 −

ε

2

) (k − 1)R
|A|

=

(
1 −

ε

2

) k − 1
|A|

:= p.

Note that technically, this probability should be slightly increased
by a small amount of 1/M, to account for rounding of the hash val-
ues; however, this does not significantly affect the analysis, so we
gloss over this quantity in the interest of keeping the expressions
clear to read.

For the analysis, we create Bernoulli random variables Xi for
each of the distinct items, indexed from 1 up to |A|, to indicate
the event that the item’s hash value is below τ. Each of these is
1 with probability at most p. Let Y be the sum of these |A| random
variables: a necessary condition for the estimate being too large is
Y ≥ k. We compute

E[Y] = |A|p ≤
(
1 −

ε

2

)
(k − 1).

The variance of Y can be computed as the sum of variances of the
Xis. Each Var[Xi] ≤ p(1 − p), and these are (pairwise) independent,
so

Var[Y] = |A|p(1 − p) ≤
(
1 −

ε

2

)
(k − 1).

We can then apply the Chebyshev inequality, to conclude that

Pr[Y ≥ k] ≤ Pr
[
|Y − E[Y]| >

ε

2
k
]
≤ 4

Var[Y]
ε2k2 ≤

4
ε2k

.

The analysis for the case that the estimate falls below (1 − ε)|A| is



DRAFT

2.5 k Minimum Values (KMV) for set cardinality 55

very similar. This occurs when fewer than k items hash below

(k − 1)R
(1 − ε)|A|

≥ (1 + ε)
(k − 1)R
|A|

.

As before, the probability of this can be bounded using the Cheby-
shev inequality over a summation of Bernoulli random variables
with parameter p′ := (1 + ε)(k − 1)/|A|. The estimate is too small
when more than k of these events occur out of the |A| trials. Thus
we can similarly show that the probability of this undesirable out-
come is bounded by 1

ε2k .
Combining these two probabilities, we have that

Pr[|R(k − 1)/vk − |A|| ≤ ε|A|] ≤
5
ε2k

To make this at most 1/4, we choose k = 20/ε2. To reduce the proba-
bility to δ, we repeat the process 4 log 1/δ times with different hash
functions and take the median estimate (following the argument of
Section 1.4.1). This implies that we need space to store 80/ε2 log 1/δ
items in total.

A tighter analysis was provided by [26]. They study higher mo-
ments of the estimator, under the assumption of fully random hash
functions, and show that the estimator is unbiased. They show
in particular that the variance of this estimator is proportional to
|A|2/k, and so setting k to 1/ε2 guarantees that the standard devi-
ation is proportional to ε|A|, which bounds the expected absolute
error. Thus the asymptotic performance is essentially the same: to
give an ε relative error, a summary of size proportional to 1/ε2 is
needed, but the true constants of proportionality are smaller than
the above basic analysis would indicate.

Unions, Intersections and Predicates. The MERGE operation corre-
sponds to computing a summary of the union of the sets being
combined. The correctness of this process is easy to see: since the
hash values of items can be treated as fixed, the KMV summary of
the union of the sets is defined by the k smallest hash values of
items in the union, which can be found from the k smallest hash
values of the two input sets. These in turn are given by the KMV
summaries of these sets.

For intersections between sets, we can look to the intersection of
their corresponding summary. Specifically, we can count the num-



DRAFT

56 Summaries for Sets

ber of elements in the intersection of the corresponding KMV sum-
maries. Roughly speaking, we expect the fraction of elements in
the intersection of the two summaries to be proportional to the
overall fraction of elements in the intersection. That is, for sets A
and B it should be proportional to |A∩B|

|A∪B| . Let ρ be the observed frac-
tion of elements intersection, i.e., ρ = i/k, where i is the number of
intersecting elements. We use this to scale the estimate obtained for
the size of the union. The variance of this estimator can be shown to
scale according to |A∩B|·|A∪B|/k [26]. That is, if we pick k ∝ 1/ε2, the
error (standard deviation) will be bounded by ε

√
|A ∩ B| · |A ∪ B|.

Since we do not know how big |A ∩ B| will be in advance, this can
be bounded by ε|A ∪ B| in the worst case, i.e., the (additive) error
in estimating an intersection scales at worst in accordance with the
size of the union of the sets.

The idea for the intersection can be applied to other concepts.
Suppose we want to estimate the number of distinct items in the
input that satisfy a particular property (i.e., a predicate). Then we
can see what fraction of items stored in the summary satisfy the
property, and then scale the estimated number of distinct items
by this fraction. Again, the error scales with ε|A ∪ B| in the worst
case, so this will not work well when the desired property is very
rare. This should not be surprising: if the property is rare, then it is
unlikely that any of the items within the summary will possess it,
and hence our estimate will be 0.

Generalization to multisets. We can generalize the summary to track
information about the multiplicity of items in a multiset. The ap-
proach is natural: we additionally keep, for each item stored in the
summary, the number of times it has occurred. This is useful when
we wish to additionally pose queries that involve the multiplicity
of items: for example, we could ask how many items occur exactly
once in the data (this statistic is known as the rarity), and estimate
this based on the fraction of items in the summary which occur
exactly once. This can be addressed using the approach above for
counting the number of items satisfying a given property.

The summary can still operate correctly when the input stream
includes operations which delete an item, as well as just inser-
tions of items. We keep track of the multiplicity of each item in
the summary, and remove any whose count reaches zero after a



DRAFT

2.5 k Minimum Values (KMV) for set cardinality 57

deletion operation. This can have the effect of bringing the size of
the summary down below k. To ensure a correct estimate, we must
keep track of the least value of the kth smallest hash value that
has been maintained, mk. We must ensure that the summary con-
tains information about all items in the input which hash below
mk. Consequently, even when the summary has fewer than k items
in it, we cannot fill it up with elements from the input that hash
above mk. Instead, we must use the summary with the current “ef-
fective” value of k, i.e., the number of items that hash below mk.
This may mean that in a very dynamic situation, where there are
a large number of deletions, the effective value of k may become
very small, meaning that the summary gives poor accuracy. There
are summaries which can cope with such deletions, which are de-
scribed later in Section 2.6, at the cost of using more space.

Implementation Issues. In our description, we have stated that we
should keep the original items in addition to the hashed values. For
the basic uses of the summary, this is not necessary, and we can retain
only the hash values to perform the estimation of set size, and union
and intersection sizes. It is only when applying predicate tests that we
also need to keep the original items, so that the tests can be applied to
them. Thus, the space can be reduced to the size of the hash values,
which should depend on the expected maximum number of distinct
items, rather than the size of the input items. This can be very space
efficient when the input items are very large, e.g., long text strings. Ad-
ditional space efficiency can be obtained based on the observation that
as the number of distinct items increases, the fraction of the hash range
occupied decreases: the hash values of the stored items begin with a
prefix of zero bits. This prefix can therefore be omitted, to reduce the
size of the stored hashes.

History and Background. The KMV summary was introduced in the
work of Bar-Yossef et al. [18]. This paper introduced a selection of al-
gorithms for tracking the number of distinct items in a stream of ele-
ments. Of these, the KMV has had the most impact, as it blends space
efficiency with simplicity to implement. A version of KMV with k = 1
was first proposed by Cohen [52]. The idea can be seen as related to
the work of Gibbons and Tirthapura [109], which also uses the idea of
hash functions to select a set of items from the input based on their
hash value. This in turn is conceptually (though less clearly) related to



DRAFT

58 Summaries for Sets

the earliest work on distinct counting, due to Flajolet and Martin [103].
The tighter analysis of the KMV summary is due to Beyer et al. [26]. This
proposed an unbiased version of the estimator (previous presentations
used a biased estimator), and analyze its higher moments under the as-
sumption of fully random hash functions. A generalization of KMV is
presented by Dasgupta et al. [77] in the form of the theta-sketch frame-
work. This generalizes KMV by considering sketching methods defined
by a threshold θ derived from the stream which is used to maintain a
set of hash values of stream elements below the threshold. It is instan-
tiated by different choices of function to determine the threshold θ. The
framework can naturally handle MERGE (union) operations, as well as
estimate the cardinality of intersections and more general set expres-
sions.

Available Implementations. The DataSketches library provides an
implementation of the KMV summary within the more general frame-
work of θ-sketches. Concurrent versions are also implemented that
can efficiently parallelize the computation. Experiments on com-
modity hardware show that the sketch can process tens of millions
of UPDATE operations per second in a single thread. Evaluation of
standard error shows that a summary with k around ten thousand
is sufficient to obtain relative error of 1% with high probability.

2.6 HyperLogLog (HLL) for set cardinality

Brief Summary. Like KMV, the HLL summary also summarizes a mul-
tiset A of items in order to approximate the number of distinct items
observed, but in a very bit-efficient way. It tracks information about
hashed values of input items, and uses this to build an accurate ap-
proximation of the counts. Different summaries can be combined to es-
timate the size of the union of their inputs, and from this, the size of the
intersection can also be estimated.
Algorithm 2.12: HLL:INITIALIZE (m)

1 Pick hash functions h, g and store m;
2 C[1] . . .C[m]← 0;

Operations on the summary. The HLL summary is stored as an array
of m entries. Each input item is mapped by a hash function to an en-



DRAFT

2.6 HyperLogLog (HLL) for set cardinality 59

try, and a second hash function is applied; the array entry keeps track
of statistics on the hash values mapped there. Specifically, it tracks the
largest number of leading zeros in the binary encoding of evaluations of
the hash function. The INITIALIZE function creates the two hash func-
tions, h to map to entries in the array, and g to remap the items. It ini-
tializes the array of size m to all zeros (Algorithm 2.12).

Algorithm 2.13: HLL: UPDATE (x)

1 C[h(x)]← max(C[h(x)], z(g(x)));

To UPDATE a summary with item x, we make use of the function z(·),
which returns the number of leading zeros in the binary representation
of its argument. For example, z(1010) is 0 (applied to the 4 bit binary
input 1010, corresponding to the integer 12), while z(0001) is 3. The new
item is mapped under h to an entry in the array, and we test whether
z(g(x)) is greater than the current item. If so, we update the entry to
z(g(x)). This is expressed in Algorithm 2.13.

To MERGE two summaries built using the same parameters (h(), g(),
and m), we merge the arrays in the natural way: for each array entry,
take the maximum value of the corresponding input arrays.

Algorithm 2.14: HLL: QUERY ()

1 X ← 0;
2 for j← 1 to m do X ← X + 2−C[ j];
3 return (αmm2/X);

To QUERY the summary for the approximate number of distinct items,
we extract an estimate for the number of distinct items mapped to each
array entry, and then combine these to get an estimate for the total
number. Specifically, for each entry of the matrix, we take 2 raised to
the power of this value, and then take the harmonic mean of these
values. This is shown in Algorithm 2.14. The estimate is then an ap-
propriately rescaled value of this estimate, based on a constant αm =

0.7213/(1 + 1.079/m), discussed below.

Example. We show a small example with m = 3. Consider 5 distinct
items a, b, c, d, e, with the following hash values:

x a b c d e
h(x) 1 2 3 1 3
g(x) 0001 0011 1010 1101 0101



DRAFT

60 Summaries for Sets

From this, we obtain the following array:

3 2 1

Applying the QUERY function, we obtain X = 7/8, and choosing αm =

0.5305, we get an estimate of the number of distinct items as 5.45, which
is close to the true result of 5.

Further Discussion. The central intuition behind the HLL sum-
mary is that tracking the maximum value of z(g(x)) gives infor-
mation about the number of distinct items mapped to that array
entry. If we assume that g appears sufficiently random, then we
expect half the hashed items seen to have 0 as their first bit (and
hence have z(g(x)) = 1). Similarly, we expect a quarter of the items
to have two leading zeros, an eighth to have three, and so on. In-
verting this relationship, if we see a value of ρ in an array entry,
then we interpret this as most likely to have been caused by 2ρ dis-
tinct items. As storing the value ρ only takes O(log ρ) = O(log log n)
bits, where n is the number of distinct elements, this leads to the
“log log” in the name of the summary.

Applying this argument to each of the array entries in turn, we
have an estimate for the number of distinct items mapped to each
entry. The most direct way to combine these would to sum them,
but this has high variability. Instead, we take advantage of the
property of the hash function h as mapping items approximately
uniformly to each array entry. So we can interpret each of the esti-
mates obtained as an estimate of n/m, where n is the number of dis-
tinct items. We could directly average these, but instead we adopt
the harmonic mean, which is more robust to outlying values. The
harmonic mean of m values xi is ( 1

m
∑m

i=1 x−1
i )−1. In Algorithm 2.14,

X computes the needed sum of values, so the harmonic mean is
given by m/X. This is our estimate for n/m, so we scale this by a
further factor of m to obtain m2/X as the estimate. However, this
turns out to be biased, so the factor αm is used to rescale out the
bias.

A full discussion of the analysis of this estimator is beyond the
scope of this presentation (see the original paper [101] for this).
This shows that αm should be picked to be 1

2 ln 2 (1+ 1
m (3 ln 2−1)), i.e.,



DRAFT

2.6 HyperLogLog (HLL) for set cardinality 61

0.7213/(1 + 1.079/m), for m larger than 100. In this case, the bias of
the estimator is essentially removed. The variance of the estimator
is shown to approach 1.08/m as m increases, and is bounded for
all m ≥ 3. Thus the estimator achieves ε relative error with con-
stant probability provided m ≥ 1/ε2, by the Chebyshev inequality.
The probability of exceeding this bound can be driven down to δ

by performing O(log 1/δ) independent repetitions and taking the
median, following the Chernoff bounds argument (Section 1.4.1).
However, it is argued by Flajolet et al. [101] that the central limit
theorem applies, and the estimator follows a Gaussian distribu-
tion; in this case, increasing m by a factor of O(log 1/δ) is sufficient
to achieve the same result. Therefore, the HLL summary takes a to-
tal of O(1/ε2 log(1/δ) log log n) bits. This is more bit-efficient than the
KMV summary, which keeps O(1/ε2 log(1/δ)) hash values, amount-
ing to O(1/ε2 log(1/δ) log n) bits.

Intersections. Since the HLL summary can give an accurate estimate
of the size of the union of two sets, it can also estimate the size of
their intersection. We take advantage of the identity |A ∩ B| = |A| +
|B|− |A∪B|, and form our estimate of |A∩B| from the corresponding
estimates of |A|, |B| and |A ∪ B|. The error then depends on the size
of these quantities: if we estimate |A| and |B| with relative error ε,
then the error in |A ∩ B| will also depend on ε(|A| + |B|). Hence if |A|
or |B| is large compared to |A∩B|, the error will overwhelm the true
answer.

The same principle can be extended to estimate higher order in-
tersections, via the principle of inclusion-exclusion:

|A ∩ B ∩C| = |A ∪ B ∪C| + |A ∩ B| + |A ∩C| + |B ∩C| − |A| − |B| − |C|.

Indeed, arbitrary expressions can be decomposed in terms of unions
alone: |(A∩B)∪C| = |A∪C|+ |B∪C|−|A∪B∪C|. However, the number
of terms in these expressions increases quickly, causing the error to
rise accordingly.

Handling deletions. The HLL summary cannot support deletions di-
rectly as it only keeps the maximum of all the z(g(x))’s ever seen.
However, one can easily support deletions, though at the cost of
using more space. The idea is for each possible value of z(g(x)),
we keep track of the number of x’s that correspond to this value,



DRAFT

62 Summaries for Sets

i.e., we use a two-dimensional array C where C[i, j] = |x : h(x) =

i, z(g(x)) = j|. This makes the summary a linear sketch of the data,
so can support arbitrary deletions. However, the total space needed
increases substantially to O(1/ε2 log(1/δ) log2 n) bits.

Implementation Issues. Due to its wide adoption, the HLL summary
has been subject to much scrutiny, and hence a number of engineering
issues have been suggested to further increase its usefulness.

Hash function issues. We have described the HLL summary in terms of
two hash functions, h and g. However, implementations typically use
a single hash function f , and derive the two values from this. Assume
that m is chosen to be a power of two, and that log2 m = b. Also as-
sume that g is chosen to map onto a domain of 2d bits. Then h(x) can be
taken as the first b bits of a hash function, and g taken as the last d bits,
providing that the single hash function f provides at least b + d bits.
Implementations have tended to look at specific choices of parameters:
Flajolet et al. [101] study d = 32, meaning that each value of z(g(x)) can
be represented in 5 bits. For larger cardinalities, Heule et al. [127] use
d = 64, and so store 6 bits for each array entry. Choosing d = 32 is suffi-
cient to handle inputs with billions of entries (hundreds of billions if m
is large enough that each array entry is unlikely to exceed 32 zeros in the
g hash value), while d = 64 allows accurate counting up to the trillions.
The space of the summary is O(m log log n) bits, but as these implemen-
tations show, log log n can be effectively treated as a constant: choosing
d = 28 (so storing 8-bit values) is enough to count to 2256 = 1077, larger
than most natural quantities.

The analysis of the algorithm requires assuming that the hash func-
tions used are as good as a random function (i.e., fully random). Hence,
simple hash functions (pairwise or k-wise independent) are insufficient
for this purpose. Instead, stronger non-cryptographic hash functions
are used in practice (Section 1.4.2).

High end correction. When dealing with large cardinalities, there is the
possibility of hash collisions under g. That is, assuming that g maps
onto 2d bits, there may be items x , y such that g(x) = g(y). The result is
to underestimate the number of distinct items. One solution is to make
a correction to the estimate, if the estimate is so large that this is a pos-
sibility. The original HLL paper [101] uses the correction that if the esti-
mate E is more than 22d

/4, then the new estimate is log2(1 − E/22d
)/22d

.



DRAFT

2.6 HyperLogLog (HLL) for set cardinality 63

This expression for the correction comes from considering the proba-
bility of such collisions. However, a more direct approach is simply to
increase d to the point where such collisions are unlikely: given n dis-
tinct items, the expected number of collisions is approximately n/21+2d

,
so increasing d by 1 is usually sufficient to eliminate this problem.

Low end correction. The opposite problem can occur with small counts.
This is more significant, since in many applications it is important to ob-
tain more accurate estimates for small counts. However, the HLL sum-
mary shows a notable bias for small counts. In particular, consider an
empty summary with m entries. The harmonic mean of the estimates is
1, and so the estimate is approximately 0.7m, much larger than the true
value. Instead, we can use a different estimator, based on the number
of entries in the summary that are non-zero (indicating that some item
has updated them). After seeing n distinct items, the probability that an
entry in the array is empty is (1 − 1/m)n, assuming a random mapping
of items to entries. This is well-approximated by exp(−n/m). So we ex-
pect a exp(−n/m) fraction of the array entries to be empty. If we observe
that there are V empty entries in the array, then we make our estimator
to be m ln(m/V), by rearranging this expression. This correction can be
used when it is feasible to do so, i.e., when V is non-zero. This estima-
tor is known as LinearCounting, since it works well when the number
of distinct items n is at most linear in m.

More advanced approaches can be used when this correction cannot
be applied but the estimate is still small. Heule et al. [127] empirically
measure the bias, and build a mapping from the estimated value based
on tabulated values, and using these to interpolate a “corrected” esti-
mate. This can be applied when the initial estimate indicates that n is
small, e.g., when it appears to be below 5m. Storing and accessing this
mapping comes at some extra space cost, but this can be less significant
if there are a large number of instances of HLL being run in parallel (to
count different subsets of items), or if this look-up table can be stored
in slower storage (slow memory or disk) and only accessed relatively
rarely.

Sparse representation for small counts. When space is at a high premium,
as may be the case when a large number of HLL summaries are de-
ployed in parallel to count a large number of different quantities, it
is desirable to further compact the summary. Observe that when n is
small, the number of entries of the array that are occupied is corre-
spondingly small. In this case, it is more space efficient to store infor-



DRAFT

64 Summaries for Sets

mation about only the non-empty entries, in a list. Further space re-
ductions are possible by storing the list in sorted order, and encoding
the entries based on differences between subsequent entries in a bit-
efficient variable-length encoding. However, this complicates the im-
plementation, which has to convert between formats (array-based and
list-based), and handle more cases. There is considerable scope for fur-
ther encodings and optimizations here, which are described and evalu-
ated at greater length in the literature.

History and Background. The development of the HLL sketch spans
three decades, and due to its popularity, additional variations and im-
plementation issues continue to be discussed. The central idea, of map-
ping items under a hash function, and looking at the number of lead-
ing zeros in the hash value was introduced by Flajolet and Martin in
1983 [102]. In this early paper, alternate estimators were considered
(such as tracking other statistics of the z function), and taking the usual
arithmetic average of the derived estimators. This process was called
“Probabilistic Counting with Stochastic Averaging”, or PCSA for short.
A simple analysis to show that a similar algorithm gives a constant
factor approximation with bounded independence hash functions is
given by Alon et al. [11]. The work on LogLog counting, nearly 20 years
later, [89] is similar to HLL, but computes the (arithmetic) mean of the
array entries first (with some truncation and restriction to reduce vari-
ance), then raises 2 to this power to obtain the estimate. The variation
of using the hypergeometric mean was introduced by Flajolet, Fusy,
Gandouet and Meunier in 2007 [101], and shown to be very effective.
Further commentary on the evolution of the data structure is given by
Lumbroso [168]. A different branch of this work is due to Lang [159],
who proposed a different approach to compressing the Flajolet-Martin
sketch. The resulting approach is comparable in speed to HLL, while
being very space efficient.

The summary has been used widely in practice, and a subsequent
paper [127] studies multiple engineering optimizations to provide a
more effective implementation. The “low end correction” makes use of
the LinearCounting algorithm, due to Whang et al. [225]. The example
uses of the summary given by Heule et al. [127] include speeding up
database queries that ask for the number of distinct elements in group-
by queries (within the PowerDrill system [123]); and within tools for
analyzing massive log files to apply distinct counting e.g., number of



DRAFT

2.7 Bloom Filters for set membership 65

distinct advertising impressions [196] or distinct viewers of online con-
tent [48].

Available Implementations. Implementations of HLL are avail-
able in various software libraries and systems, such as stream-lib,
the Redis database and Twitter’s Summingbird streaming data pro-
cessing tool. The DataSketches library implements HLL and sev-
eral variants, such as the corrections due to Heule et al. [127], and
with choices of 4, 6 or 8 bits per bucket, to accommodate differ-
ent anticipated cardinalities. Processing speeds of tens of millions
of UPDATE operations per second are easily achievable. An imple-
mentation of Lang’s “Compressed Probabilistic Counting” [159] is
also available in the library for comparison.

2.7 Bloom Filters for set membership

Brief Summary. The BloomFilter summarizes a set A of items in a com-
pact (bit-efficient) format. Given a candidate item as a query, it answers
whether the item is in A or not. It provides a one-sided guarantee: if the
item is in the set, then it will always respond positively. However, there
is the possibility of false positives. The probability of a false positive
can be bounded as a function of the size of the summary and |A|: as the
latter increases, false positives become more likely. The summary keeps
a bit string, entries of which are set to one based on a hash function ap-
plied to the updates. In its simplest form, only insertions are allowed,
but generalizations also allow deletions. The BloomFilter handles du-
plicates in the input automatically.

Operations on the summary. The BloomFilter summary consists of a
binary string B of length m and k hash functions h1 . . . hk, which each
independently map elements of U to {1, 2, . . .m}. The INITIALIZE oper-
ation creates the string B initialized to all zeros, and picks the k hash
functions. If the size of the set A is expected to be n, a good choice of m
and k is m = 10n and k = m/n ln 2 = 7; the analysis below will give more
guidance on how to set these parameters.



DRAFT

66 Summaries for Sets

Algorithm 2.15: BloomFilter: UPDATE (i)

1 for j← 1 to k do
2 B[h j(i)]← 1;

For each UPDATE operation to insert an element i into the set A, the
BloomFilter sets B[h j(i)] = 1 for all 1 ≤ j ≤ k, as shown in Algorithm 2.15.
Hence each update takes O(k) time to process.

Algorithm 2.16: BloomFilter: QUERY (x)

1 for j← 1 to k do
2 if B[h j(x)] = 0 then return false;

3 return true

The QUERY operation on a BloomFilter summary takes an element
x from U, and tries to determine whether it was previously the sub-
ject of an UPDATE operation, i.e., whether x ∈ A. The QUERY operation
inspects the entries B[h j(x)], where x would be mapped to if it were in-
serted. If there is some j ∈ [k] for which B[h j(x)] = 0, then the item is
surely not present: UPDATE would have set all of these entries to 1, and
no other operation ever changes this. Otherwise, it is concluded that
x is in A. Hence, Algorithm 2.16 inspects all the locations where x is
mapped, and returns false if any one of them is 0.

From this description, it can be seen that the data structure guaran-
tees no false negatives, but may report false positives. False positives
occur if a collection of other items inserted into the summary happen
to cause the corresponding entries B[h j(x)] to be 1, but x itself is never
actually inserted.

Algorithm 2.17: BloomFilter: MERGE (Ba, Bb)

1 for i← 1 to m do
2 Ba[i]← max(Ba[i], Bb[i]);

To MERGE two BloomFilter summaries, they must be built with the
same parameters i.e., with the same size m, the same number of hash
functions k, and the same set of hash functions h1 . . . hk. The resulting
BloomFilter is the bit-wise OR of the two bitstrings. That is, the new B
has B[ j] = 1 if this entry was 1 in either of the input summaries, and is 0
if this entry was 0 in both. Algorithm 2.17 takes a pass through the two
input summaries, and merges the second into the first.



DRAFT

2.7 Bloom Filters for set membership 67

00 1 1 0 0 1 1 0 0 0 1

i

Figure 2.3 Bloom Filter with k = 3, m = 12

Example. A simple example is shown in Figure 2.3: an item i is mapped
by k = 3 hash functions to a filter of size m = 12, and these entries are
set to 1.

Further Discussion. A basic rule-of-thumb is that the size of the
BloomFilter in bits should be roughly proportional to the size of
the set S which is to be summarized. That is, the summary cannot
encode a very large set in space dramatically smaller than the in-
nate size of the set. However, the filter can be much smaller than
explicitly representing the set A, either by listing its members, or
storing them in a hash table. This is particularly pronounced when
the identifiers of the elements are quite large, since the BloomFilter
does not explicitly store these. If the size of the set A is expected to
be n, allocating m = 10n (i.e., 10 bits per item stored) and k = 7 gives
a false positive probability of around 1%. To understand the rela-
tion between these parameters in more detail, we present further
detailed analysis below.

Detailed Analysis of BloomFilter. The false positive rate can be an-
alyzed as a function of |A| = n, m and k: given bounds on n and
m, optimal values of k can be set. We follow the outline of Broder
and Mitzenmacher [38] to derive the relationship between these
values. For the analysis, the hash functions are assumed to be fully
random. That is, the location that an item is mapped to by any
hash function is viewed as being uniformly random over the range
of possibilities, and fully independent of the other hash functions.
Consequently, the probability that any entry of B is zero after n



DRAFT

68 Summaries for Sets

distinct items have been seen is given by

p′ =
(
1 −

1
m

)kn

since each of the kn applications of a hash function has a (1 − 1
m )

probability of leaving the entry zero.
A false positive occurs when some item not in A hashes to loca-

tions in B which are all set to 1 by other items. For an arbitrary item
not in A, this happens with probability (1−ρ)k, where ρ denotes the
fraction of bits in B that are set to 0. In expectation, ρ is equal to
p′, and it can be shown that ρ is very close to p′ with high prob-
ability. Given fixed values of m and n, it is possible to optimize k,
the number of hash functions. Small values of k keep the number
of 1s lower, but make it easier to have a collision; larger values of k
increase the density of 1s. The false positive rate is

q =

1 − (
1 −

1
m

)knk

≈ (1 − e−kn/m)k = exp(k ln(1 − ekn/m)). (2.6)

The smallest value of q as a function of k is given by minimizing
the exponent. This in turn can be written as −m

n ln(p) ln(1 − p), for
p = e−kn/m, and so by symmetry, the smallest value occurs for p = 1

2 .
Rearranging gives k = (m/n) ln 2.

This has the effect of setting the occupancy of the filter to be 0.5,
that is, half the bits are expected to be 0, and half 1. This causes the
false positive rate to be q = (1/2)k = (0.6185)m/n. To make this prob-
ability at most a small constant, it is necessary to make m > n. In-
deed, setting m = cn gives the false positive probability at 0.6185c:
choosing c = 9.6, for example, is sufficient to make this probability
less than 1%.

Other operations on BloomFilter summaries. The semantics of the MERGE

operator is to provide a BloomFilter summary of the union of the
two sets summarized by each input summary. It is also possible to
build a summary that corresponds to the intersection of the input
sets, by taking the bitwise-AND of each bit in the bitstrings, in-
stead of the bitwise-OR. That is, if we were to keep the two Bloom-
Filter summaries and test whether x was present in both, we would
check the locations h j(x) in each summary. If there is any such lo-
cation in either summary which is 0, then we would conclude x is



DRAFT

2.7 Bloom Filters for set membership 69

not present in both. This is equivalent to taking the bitwise-AND
of each of these locations, and checking them all. So the BloomFil-
ter summary which is formed as the bitwise-AND of the two input
summaries will give the same response for every query x.

The summary as described so far only allows UPDATE opera-
tions which insert an item into the set A. More generally, we might
like to allow deletions of elements as well. There are two possible
semantics for deletions. If we treat A as a set, then a deletion of ele-
ment x ensures that x is not stored in the set any more. If we treat A
as a multiset, then each element in the set has a multiplicity, such
that insertions increase that multiplicity, and deletions decrement
it (down to 0). In both cases, to handle deletions we will replace
the bit-string B with a collection of counters, but how we use these
counters will differ.

We first consider the set semantics. The data structure looks much
the same as before, except each bit is replaced with a small counter.
Here, an UPDATE operation corresponding to an insert of i first
performs a QUERY to test whether i is already represented in the
summary. If so, nothing changes. Otherwise, the operation incre-
ments the counter B[h j(i)] for h1 . . . hk. Likewise, an UPDATE that
is a deletion of i also checks whether i is stored in the summary.
If so, the operation decrements the counters B[h j(i)]. Otherwise,
nothing changes. Lastly, the QUERY operation remains as shown
in Algorithm 2.16: it checks all locations where i is mapped, and
returns false if any is 0. The interpretation of the summary is that
each counter stores the number of distinct items which have been
mapped there. Insertions increase these counts, while deletions de-
crease these counts. Because multiple insertions of the same item
do not alter the structure, these counters do not need to grow very
large. However, note that it is now possible to have false negatives
from this structure: an insertion of an item that is not present in the
structure may not lead to counter increments if there is a false pos-
itive for it. The subsequent deletion of this item may lead to zero
values, causing false negatives for other items. Analysis shows that
counters with a bit depth of only four bits will suffice to keep ac-
curate summaries without overflow. This analysis is due to Fan et
al. , who dub this variant of the BloomFilter the “counting Bloom
Filter” [97].

The case for the multiset semantics is simpler to describe, but re-



DRAFT

70 Summaries for Sets

quires more space in general. Instead of a bitmap, the Bloom filter
is now represented by an array of counters. When performing an
UPDATE that inserts a new copy of i, we increase the corresponding
counters by 1, i.e., B[h j(i)] ← B[h j(i)] + 1. Likewise, for an UPDATE

that removes a copy of i, we decrease the corresponding counters
by 1. Now the transform is linear, and so it can process arbitrary
streams of update transactions. The number of entries needed in
the array remains the same, but now the entries are counters (rep-
resented with 32 or 64 bits) rather than single bits, and these coun-
ters may now need to represent a large number of elements. This
variation is referred to as a spectral Bloom filter, and is described
by Cohen and Matias, who also discuss space efficient ways to im-
plement the counters [56].

History and Background. The BloomFilter summary, named for its in-
ventor [29], was first proposed in 1970 in the context of compactly rep-
resenting information. One of the first applications was to compactly
represent a dictionary for spell-checking [174]. Its attraction is that it is
a compact and fast alternative to explicitly representing a set of items
when it is not required to list out the members of the set. Interest in the
structure was renewed in the late nineties, in the context of tracking the
content of caches of large data in a network [97]. Subsequently, there
has been a huge interest in using BloomFilter summaries for a wide va-
riety of applications, and many variations and extensions have been
proposed. Broder and Mitzenmacher provide a survey of some of these
uses [38, 177], but there have been many more papers published on this
summary and its variants in the interim.

A common theme of applications of Bloom filters is that they require
a small fraction of false positives must be acceptable, or that it be fea-
sible to double-check a positive report (at some additional cost) using
a more authoritative reference. For example, they can be used to avoid
storing items in a cache, if the item has not been previously accessed.
That is, we use a Bloom filter to record item accesses, and only store an
item if it has been seen at least once before. In this example, the conse-
quence of false positives is just that a small number of unpopular items
ends up being cached, which should have minimal impact on system
performance. This exemplar is now found in practice in many large
distributed databases, such as Google BigTable, Apache Cassandra and
HBase. These systems keep a Bloom filter to index distributed segments
of sparse tables of data. The filter records which rows or columns of the



DRAFT

2.7 Bloom Filters for set membership 71

table are stored, and can use a negative response to avoid a costly look-
up on disk or over the network.

Another example is from web browsers, which aim to protect their
users from malware by warning about deceptive or dangerous sites.
This check requires looking up the web site address (URL) in a database
of known problematic URLs, and reporting if a match is found. This
database is sufficiently large that it is not convenient to keep locally
on the (mobile) device. Instead, the browser can keep a Bloom filter
encoding the database to check URLs against. Most URLs visited do
not trigger the Bloom filter, and so do not affect the behavior. When
the Bloom filter reports a potential positive, it can be checked against
the centralized database with a look-up over the network. This slows
things down, but so long as false positives are sufficiently rare then the
impact is minimal. Thus, the correct response is found for each URL,
while the common case (URL is allowed) is made fast. The space is
kept low, based on a Bloom filter of a few megabytes in size. This ap-
proach has been adopted by browsers including Chrome and Firefox.
Current versions have adopted variant summaries, which trade off a
higher time for queries and reduced capacity to handle updates (since
the sets are not updated more than once a day) for reduced size.

Other examples of Bloom filters in practice range from speeding up
actions in blockchain implementations to providing private collection
of browsing statistics [95]. Given these applications, it is likely that
Bloom filter is the most widely used of the summaries discussed in this
book, after “classical” summaries based on random sampling.

Available Implementations. Given its ubiquity, many implemen-
tations of the BloomFilter are available online, across a wide range
of languages. The code hosting site GitHub lists over a thousand
references to BloomFilter (https://github.com/search?q=bloom+
filter), in languages including Java, JavaScript, C, C++, Go, Python
and more. The implementation from stream-lib (https://github.
com/addthis/stream-lib/tree/master/src/main/java/
com/clearspring/analytics/stream/membership\index{membership})
takes around 100 lines of Java, although the core logic for UPDATE

and QUERY are a handful of lines each.


