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Summaries for Multisets

This chapter turns to multisets, namely, each item in the set A to be
summarized is associated with a multiplicity representing its number
of occurrences, and queries to the multiset relate to the multiplicity of
items. Recall from Section 1.2.1 that a convenient way to represent a
multiset is to use a vector v, where vx denotes the multiplicity of x. In
this chapter, we assume that the input consists of (x,w) pairs, where x
is an item drawn from a universe U, and w is the weight. For simplicity,
we assume the weights are integers, but generalization to real num-
bers is often possible. Some summaries only allow positive weights,
while others allow both positive and negative weights, where negative
weights correspond to deletion of items from the multiset. The multi-
plicity of x, vx, is thus the sum of all the weights of x in the input. We
assume every vx to be non-negative whenever the summary is queried.

Error guarantees for queries over a multiset often depend on ‖v‖p, the

`p-norm of the vector v, where ‖v‖p =
(∑

i vp
i

)1/p
. The most commonly

used norms are the `1-norm (which is simply the total weight of all
items) and the `2-norm.

The summaries covered in this chapter solve the following problems:

• Testing whether two multisets contain the exact same set of items and
frequencies: the Fingerprint summary (Section 3.1).

• Tracking the high frequency items over weighted positive updates:
the MG and SpaceSaving summaries (Section 3.2 and 3.3).

• Estimating the frequencies of items over weighted positive and neg-
ative updates under different error guarantees: the Count-Min Sketch
and Count Sketch summaries (Section 3.4 and 3.5).
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• Estimating the Euclidean norm of the vector of frequencies of a mulit-
set: the AMS Sketch (Section 3.6).

• Estimating arbitrary Minkowski (`p) norms of a multiset: the `p sketch
(Section 3.7).

• Exactly recovering the items and (integer) frequencies for a multiset
that has a bounded number of elements after a sequence of insertions
and deletions: the SparseRecovery summary (Section 3.8).

• Sampling near-uniformly from the set of distinct items in a multiset
with (integer) frequencies: the `0-sampler structure (Section 3.9).

• Sampling near-uniformly from a multiset with arbitrary weights, ac-
cording to a class of weighting functions: the `p-sampler structure
(Section 3.10).

3.1 Fingerprints for testing multiset equality

Brief Summary. A Fingerprint summary represents a large multiset of
items as a very compact hash value. Given two Fingerprint summaries,
if the summaries are different then the corresponding multisets must
differ, while if the summaries are identical then with high probability
we conclude that the corresponding multisets are identical. The prob-
ability of a false positive – of erroneously concluding that two distinct
sets are identical – is governed by the size of the summary, and can be
made vanishingly small. Fingerprint summaries of two multisets can
be combined to generate a Fingerprint of the sum of the multisets, i.e.,
where multiplicities of the same item are added.

Algorithm 3.1: Fingerprint: UPDATE (x,w)

1 f ← ( f + wαx) mod p;

Operations on the summary. For now we assume that the universe U
from which items are drawn is the integer domain U = [u] = {0, 1, . . . , u−
1}. The Fingerprint summary can be thought of as a (possibly large) in-
teger number f in the range 0 to p− 1, where p is a fixed prime number
greater than u. It also requires a randomly chosen value α. To INITIAL-
IZE an empty summary, we fix a prime number p > u and set f to 0. We
also choose α uniformly at random in the range 1 to p − 1. To UPDATE

the summary with a new item x, we set f ← ( f + αx) mod p. If x has
an associated weight w (which can be either positive or negative), then
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this UPDATE becomes f ← ( f + wαx) mod p. Algorithm 3.1 shows how
to UPDATE the Fingerprint summary with an item x of weight w.

Algorithm 3.2: Fingerprint: MERGE ( fa, fb)

1 return ( fa + fb) mod p;

To MERGE two Fingerprint summaries, fa and fb, with the same pa-
rameters (i.e., both have the same p and α values), the merged sum-
mary is given by ( fa + fb) mod p. Thus, the MERGE operation shown
in Algorithm 3.2 simply has to return the sum, modulo p. As indicated
above, to QUERY whether two summaries represent the same multiset,
we report true if the corresponding summaries are identical, and false
otherwise.

Example. For a simple example, we pick p = 13 and α = 3. Given input
of the item 4, we compute the Fingerprint summary as 34 mod 13 = 3.
Consider the input consisting of the set {1, 2}. The Fingerprint summary
of this input is 31 + 32 mod 13 = 12, which is different to the previous
Fingerprint summary, as desired. However, the input {5, 10} also has the
Fingerprint summary 35 + 310 mod 13 = 12, a collision. This is due in
part to the small value of p: choosing larger p values makes such colli-
sions increasingly unlikely.

Implementation Issues. Computing αx can be done efficiently by the
method of exponentiation by squaring, that is, we first compute α, α2, α4, α8,
. . . , in succession, and then pick the right collection of terms to make up
αx, depending on the location of 1’s in the binary representation of x. All
computations are done modulo p, so that the intermediate results can
be kept no larger than p2.

Alternative Fingerprint Construction. If the weight w is usually small,
there is another fingerprint construction that is more efficient. We sim-
ilarly pick some prime p > u and a random number α in the range 1
to p − 1. The operations, however, are slightly different. To INITIALIZE

an empty summary, we set f to 1 (as opposed to 0). To UPDATE the
summary with an item x with weight w, we set f ← f · (α + x)w mod p.
Using the exponentiation by squaring technique, this fingerprint thus
requires O(log w) time to update. In particular, if each update only adds
a single item, this fingerprint can be updated in O(1) time.

However, if w is negative (i.e., deleting items from the summary),
things become a bit tricky as we need to set f ← f ·(α+x)w mod p. Here,
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the exponentiation should be done in the finite field [p]. More precisely,
we first need to compute (α + x)−1, which is the value y ∈ [p] such that
(α+x)·y mod p = 1. This can be done using Euclid’s gcd algorithm [152]
in O(log p) time. Then we use exponentiation by squaring to compute
y−w.

Finally, to MERGE two such fingerprints fa and fb, we simply com-
pute fa · fb mod p.

Further Discussion. To understand the properties of the Finger-
print summary, consider the frequency vector representation of the
multiset. For a frequency vector v, the Fingerprint summary is given
by

f (v) =
∑
i∈U

viα
i mod p.

The analysis of this summary relies on the fact that it can be
viewed as a polynomial in α of degree at most u. Such a polyno-
mial can have at most u roots (values of α where it evaluates to
zero). Technically, we are evaluating this polynomial over the fi-
nite field [p]. Testing whether two multisets D and D′ are equal,
based on the fingerprints of their corresponding frequency vectors,
f (v) and f (v′), is equivalent to testing the identity f (v) − f (v′) = 0.
Based on the definition of f , if the two multisets are identical then
the fingerprints will be identical. But if they are different and the
test still passes, the fingerprint will give the wrong answer. Treat-
ing f () as a polynomial in α, f (v) − f (v′) has degree no more than
u: so there can only be u values of α for which f (v) − f (v′) = 0. Ef-
fectively, the fingerprint is the evaluation of this polynomial at a
randomly chosen value of α; it can only result in 0 when we are
unlucky and choose an α which happens to be a root of this poly-
nomial. But we can bound the probability of this event. Specifically,
if p is chosen to be at least u/δ, the probability (based on choosing
a random α) of having picked a root is at most δ, for a parame-
ter δ. This requires the modular arithmetic operations to be done
using O(log u + log 1/δ) bits of precision, which is feasible for most
reasonable choices of U and δ. This analysis also assumes that the
coefficients of the polynomial f are representable within the field,
i.e., all vi are less than p. This means that p should be chosen such
that p ≥ max{u/δ, vi, i ∈ [u]}.
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Viewing the Fingerprint summary through the lens of polyno-
mials, it is then clear why the UPDATE and MERGE operations are
as stated: an UPDATE computes the change in f (v) caused by the
change in v, while MERGE takes advantage of the fact that the Fin-
gerprint of the sum of two vectors is the sum of the corresponding
Fingerprint summaries.

The above analysis also applies to the second fingerprint, by ob-
serving that it evaluates the following polynomial

f (v) =
∏
i∈U

(α − i)vi mod p.

This polynomial has degree
∑

i vi. Thus if we choose p ≥
∑

i vi/δ,
then the probability that this fingerprint fails is at most δ.

So far, we have assumed that the input item identifiers x are in-
tegers, since the argument is all based on evaluating polynomi-
als over the finite field [p]. However, it is natural to allow x to be
drawn from an arbitrary domain U. We just require a suitable hash
function which will map U to a large enough integer domain. Ide-
ally, the size of the integer domain should be polynomial in the
number of distinct items seen. That is, if there are n different input
items, then mapping to a domain of size n3 means that with high
probability there will be no hash collisions. This affects the choice
of p, but only by a constant factor in terms of bit length.

The Fingerprint summary does require that all the item frequen-
cies vi are integral. Fractional values can be tolerated, if these can
be rescaled to be integral. Arbitrary real values are not allowed,
since these conflict with the analysis over finite fields.

History and Background. The idea of a compact hash function to test
equality or inequality of sets or vectors has been used many times in
computer science. Many different forms of hash function are possible,
but we adopt this form to define the Fingerprint summary due to its
ability to support both UPDATE and MERGE operations quite efficiently.
Note that while these appear similar to the family of hash functions de-
scribed in Section 1.4.2, they are distinct: in Section 1.4.2, we compute
a polynomial of degree t, where the coefficients are chosen randomly
(then fixed), and the variable x is the single data item; here, we com-
pute a polynomial of potentially much higher degree, where the data
determines the coefficients, and the variable x is chosen randomly (then
fixed). The form of hash used here is inspired by the style of ‘rolling
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hash’ function used in the Karp-Rabin string matching algorithm [150],
and its generalization by Lipton [166]. Applications are broad: finger-
prints can be used anywhere that a checksum would be useful, to check
correct storage or transmission of data. They can also be applied to find
large matching pieces of data in files that have changed, and so reduce
the communication cost of sending the new version, such as in the rsync
protocol [218], also used by systems like Dropbox and Amazon S3. Fin-
gerprints are also used by some of other summary constructions, such
as SparseRecovery (Section 3.8).

3.2 Misra-Gries (MG)

Brief Summary. The Misra-Gries (MG) summary maintains a subset of
items from a multiset v, with an associated weight for each item stored.
It answers point queries approximately: the answer to a query x is the
weight associated with x in the summary, if x is stored, and 0 otherwise.
Given a parameter ε, the summary stores 1/ε items and weights, and
guarantees that for any point query x, the additive error from its true
weight vx is at most ε‖v‖1. This summary only supports updates with
positive weights.

Operations on the summary. The MG summary is represented as a col-
lection of pairs: items drawn from the input x and associated weights
wx, which will be an approximation of its true weight vx. To INITIAL-
IZE an empty MG summary, it suffices to create an empty set of tuples,
with space to store k = 1/ε. Each UPDATE operation of an item x with
weight w (which must be positive) tries to include x in the summary. If
x is already stored with weight wx, then UPDATE increases this weight
to wx + w. If not, provided there is room in the summary (i.e., there are
fewer than k distinct items stored with non-zero weights), then a new
tuple (x,w) is added to the summary. Else, there are already k tuples in
the summary. Let m be the smallest weight among all these tuples and
w itself. Then, the UPDATE operation reduces all weights in the sum-
mary by m. If w − m is still positive, then it can add the tuple (x,w − m)
to the summary: some tuple in the summary must have had its weight
reduced to 0, and so can be overwritten with x.
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Algorithm 3.3: MG: UPDATE((x,w))

1 if i ∈ T then
2 wx ← wx + w;
3 else
4 T ← T ∪ {x};
5 wx ← w;
6 if |T | > k then
7 m = min({wx : x ∈ T }) ;
8 forall j ∈ T do
9 w j ← w j − m;

10 if w j = 0 then T ← T\{ j} ;

Pseudocode to illustrate the UPDATE operation is given in Algorithm 3.3,
making use of set notation to represent the operations on the set of
stored items T : items are added and removed from this set using set
union and set subtraction respectively, and we allow ranging over the
members of this set (thus implementations will have to choose appro-
priate data structures which allow the efficient realization of these op-
erations). We also assume that each item j stored in T has an associated
weight w j. For items not stored in T , we define w j to be 0 and does
not need to be explicitly stored. Lines 6 to 10 handle the case when we
need to find the minimum weight item and decrease weights by this
much. The inner for-loop performs this decrease, and removes items
with weight 0.

The MERGE of two MG summaries is a generalization of the UPDATE

operation. Given two summaries constructed using the same parame-
ter k, first merge the component tuples in the natural way: If x is stored
in both summaries, its merged weight is the sum of the weights in each
input summary. If x is stored in only one of the summaries, it is also
placed in the merged summary with the same weight. This produces
a new MG summary with between k and 2k tuples, depending on the
amount of overlap of items between the two input summaries. To re-
duce the size back to k, we sort the tuples by weight, and find the k +1st
largest weight, wk+1. This weight is subtracted from all tuples. At most k
tuples can now have weight above zero: the tuple with the k+1st largest
weight, and all tuples with smaller weight, will now have weight 0 or
below, and so can be discarded from the summary. The above UPDATE

procedure can therefore be seen as the case of MERGE where one of the
summaries contains just a single item.
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Algorithm 3.4: MG: MERGE(Ta,Tb)

1 T ← Ta;
2 forall j ∈ Tb do
3 if j ∈ T then w j ← w j + wb, j ;
4 else
5 T ← T ∪ { j} ;
6 w j ← wb, j;

7 if |T | > k then
8 wk+1 ← k + 1st largest weight ;
9 forall j ∈ T do

10 w j ← w j − wk+1 ;
11 if w j ≤ 0 then T ← T \ { j};

Algorithm 3.4 shows the pseudocode to MERGE two MG summaries
Ta and Tb together. Line 3 captures the case when j is present in both,
and computes the new weight as the sum of the two weights. Lines 7–11
then reduce the size of the merged summary to k by reducing weights
and removing items with non-positive weights.

To QUERY for the estimated weight of an item x, we look up whether
x is stored in the summary. If so, QUERY reports the associated weight
wx as the estimate, otherwise the weight is assumed to be 0. Compar-
ing the approximate answer given by QUERY, and the true weight of
x (the sum of all weights associated with x in the input), the approx-
imate answer is never more than the true answer. This is because the
weight associated with x in the summary is the sum of all weights for
x in the input, less the various decreases due to MERGE and UPDATE

operations. The MG summary also ensures that this estimated weight
is not more than εW below the true answer, where W is the sum of all
input weights. A tighter guarantee provided is that this error is at most
(W −M)/(k +1), where M is the sum of the counters in the structure, and
k is the number of counters.

Example. Consider the input sequence
a, b, a, c, d, e, a, d, f, a, d

interpreted as a sequence of items of weight 1. If we UPDATE each
item in turn into a MG summary of size k=3, we obtain at the end

a d -
2 1 0
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There are two points where counts are decremented: on the UPDATE

for the first d, and on the UPDATE for the f. Our final estimate of a is
2, which underestimates the true count by 2, which meets the bound of
(W − M)/(k + 1) = (11 − 3)/4 = 2.

If we MERGE this summary with the MG summary

b c d
3 1 2

the final MG summary we obtain is

a b d
1 2 2

Further Discussion. To understand the guarantees of the MG sum-
mary, we study the effect of each operation in turn. First, consider
a summary subject to a sequence of UPDATE operations alone. Let
W be the sum of the input weights, and let M denote the sum of the
weights stored by the summary. Consider the impact of decreasing
the m value during an UPDATE operation. This impacts the weight
of k + 1 items: the k items in the summary, and the new item that
is the subject of the UPDATE. Consequently, we can “spread” the
impact of this reduction across k +1 items. The total impact is to in-
crease the difference between W and M (the sum of stored weights)
by (k + 1) · m. Thus, at any point, the error in the estimated weight
of an item is at most (W − M)/(k + 1). This is because this differ-
ence, (W −M), arises only from reductions in count to items during
the UPDATE operations. Even if one item lost weight during all of
these, the same weight loss was shared by k others (possibly differ-
ent each time). So no item can suffer more than a 1/(k + 1) fraction
of the total weight loss, (W − M).

A similar argument holds in the case of MERGE operations. Let
Wa and Wb denote the total weights of inputs summarized by the
two MG summaries to be merged, and Ma, Mb represent the cor-
responding sum of weights stored in the summary. Following the
MERGE operation, the new weight of the summary is Mab, which at
most the sum Ma + Mb. The MERGE operation means that the differ-
ence (Ma + Mb)−Mab is at least (k +1)wk+1: we subtract wk+1 from the
k + 1 largest weights (ignoring the impact on the smaller weights).
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Rearranging, we have wk+1 ≤
1

k+1 (Ma +Mb−Mab). The amount of ad-
ditional error introduced by the MERGE into each estimated weight
is at most wk+1. If we assume (inductively) that the prior error from
the two summaries is (Wa−Ma)/(k + 1) and (Wb−Mb)/(k + 1) respec-
tively, then the new error is at most

1
k + 1

((Wa − Ma) + (Wb − Mb) + (Ma + Mb − Mab))

=
1

k + 1
(Wa + Wb − Mab) = (Wab − Mab)/(k + 1).

Consequently, the MERGE operation also preserves the property
that the query error is bounded by at most a 1/(k + 1) fraction of
the difference between the sum of true weights, and the sum of
weights stored in the summary. Even in the worst case, when the
weight of items stored in the summary is zero, this guarantees er-
ror of at most W/(k+1) ≤ εW. In general, the bound can be stronger.
Let W res(t) denote the residual weight of the input after removing the
t heaviest items (as defined in Section 1.2.1). We can show a bound
on the error in terms of W res(t) for t < k. Let ∆ denote the largest er-
ror in estimating the weight of any item. By the above analysis, we
have that ∆ ≤ (W−M)/(k+1), and so M ≤ W−∆(k+1). Let wi denote
the (true) weight of the ith heaviest item. The estimated weight of
this item is at least wi − ∆, so considering just the t heaviest items,∑t

i=1(wi − ∆) ≤ M. Combining these two results, we have
t∑

i=1

(wi − ∆) ≤ W − ∆(k + 1).

Rearranging, we obtain

∆ ≤ W res(t)/(k + 1 − t).

In other words, for skewed distributions (where W res(t) is small com-
pared to W), the accuracy guarantee is stronger.

Implementation Issues. A limitation of the MG summary is that the
weight stored for an item may be considerably lower than the true
count, due to weight reductions caused by many other items. A simple
adjustment which can improve the accuracy at the expense of increas-
ing the space used, is to retain two weights for each item: the estimated
weight as described above, and a second observed weight, which is in-
creased in accordance with the procedures above, but which is never
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decreased. This too is a lower bound on the true weight, but can be
higher than the estimated weight that is used to determine when to
retain the item. Note that this can still underestimate the true weight,
since the item might be ejected from the summary at various points,
and then the accrued weight of the item is lost.

The estimates provided are lower bounds. To turn these to upper
bounds, we can add on a sufficient amount. It is straightforward to
track W, the total weight of the whole input. Trivially, adding W/(k + 1)
to any estimated count provides an upper bound over any input. We
can give a better bound in some cases by using (W − M)/(k + 1) where
M is the sum of the weights stored in the summary, as described above.

There has been much discussion in the research literature about how
best to implement the MG summary to ensure that operations on the
structure can be performed very quickly. When processing large se-
quences of UPDATE operations, we need to quickly determine whether
x is currently stored in the structure (and if so, retrieve and modify its
count); and also quickly find the minimum weight item, and reduce
all items by this amount. The question of tracking whether an item
is currently stored is a standard dictionary data structure question. It
can be addressed deterministically, by keeping the current set of items
T in a search-tree data structure, or via a randomized hash-table data
structure. The former supports insertion, deletion and look up of items
in worst case time O(log k), the latter supports these operations in ex-
pected time O(1).

Tracking the minimum value and modifying all the others is a less
standard step. The simplest solution is just to iterate among all the
stored counts to find the minimum, and then a second time to reduce
them by this amount. This however takes time O(k), which would slow
down UPDATE operations. Instead, we can optimize this step (at the
cost of slowing down QUERY operations) by storing the items in sorted
order of their weights, and representing their weights in terms of the
difference in weight between the next heaviest item. That is, we store
the lightest weight item first, then the next lightest and the amount by
which it is heavier, and so on. To reduce the weights by the m value, it
suffices to modify the weight of the lightest item, or remove it entirely.
However, to insert a new item means stepping through this sorted list
to find where the item belongs—which requires linear time O(k) in the
worst case. We can reduce this time cost, since we do not strictly require
that the items are kept in sorted order of weight, only that we can find
(and possibly remove) the item of least weight. As a result, it is possible
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to adopt a min-heap data structure for this purpose. In the heap, we still
store weights in terms of differences between the item and its parent in
the heap. Using this representation, the heap operations to add a new
item, modify the weight of an existing item, or remove the minimum
weight item (and, implicitly, reduce the weights of the other items in
the heap) can all be performed efficiently. In particular, these can all be
done in time O(log k), proportional to the height of the heap. However,
these are typically not supported in standard heap implementations,
and so need to be implemented specially for this purpose. When we
present the closely related SpaceSaving algorithm in Section 3.3, we
will see how this summary can be implemented using an off-the-shelf
heap structure.

In the special case when the updates are always 1 (so we are just
counting the number of occurrences of each item), it is possible to re-
duce the UPDATE cost to constant time. In this case, we again represent
the weight of items in terms of the difference between their weight and
lighter items. However, we also group together all items which have
the same weight, and arrange the groups in order of increasing weight.
Now observe that when we increase the weight of an item, due to an
arrival of weight 1, then the item must move from its current group, to
the next group if this has a weight difference of 1, or to a new group
in between the current group and the next group, if the weight differ-
ence to the next group is greater than 1. Working through all the stages
in UPDATE, all these steps can be preformed in O(1) time, if we main-
tain the items in groups via doubly-linked lists. However, the number
of cases to handle is quite large, and many pointer operations are re-
quired. Careful use of hash tables and arrays can simplify this logic,
and give a more compact representation [21].

History and Background. The history of this summary spans at least
three decades. Initial interest arose from the question of finding the ma-
jority choice from a collection of votes. This problem and a candidate
solution was described by Boyer and Moore [33]. The technical core of
the solution is essentially the MG summary with k = 1 and all input
weights set to 1, which therefore finds if there is one item that occurs
more than half the time (a strict majority).

A generalization of this approach to process sequences of items with
unit weight, and find all those that occur more than a 1/k fraction of
the time, was first proposed by Misra and Gries [176]. The time cost of
their algorithm is dominated by the O(1) dictionary operations per up-
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date, and the cost of decrementing counts. Misra and Gries described
the use of a balanced search tree, and argued that the decrement cost
is amortized O(1). Refinements of this approach emerged two decades
later, due to renewed interest in efficient algorithms for processing large
streams of data. Karp et al. proposed a hash table to implement the dic-
tionary [149]; and Demaine et al. show how the cost of decrementing
can be made worst case O(1) by representing the counts using offsets
and maintaining multiple linked lists [81]. Bose et al. [32] observed that
executing this algorithm with k = 1/ε ensures that the count associated
with each item on termination is at most εW below the true value.

The extension to allow a MERGE operation, in addition to UPDATE,
was made more recently [25], where the bounds in terms of W res(k) were
also shown. The strong bounds on the effect of MERGE are due to Agar-
wal et al. [2]. Additional historical context for this summary is provided
in [64]. An optimized implementation of MG is discussed by Anderson
et al. [12], with particular attention paid to handling weighted updates
and MERGE operations efficiently.

Available Implementations. The MG summary forms the basis
of the Frequent Items implementation within the DataSketches li-
brary, https://datasketches.github.io/docs/Frequency/
FrequentItemsOverview.html. Items within the summary are
stored in a hash table, and the compression of the summary to
decrement counts is performed with a linear pass through the cur-
rent structure. Optimizations due to Anderson et al. [12] are in-
cluded. These ensure that the implementation is easily capable of
processing over ten million UPDATE operations per second.

3.3 SpaceSaving

Brief Summary. The SpaceSaving summary retains a subset of items
from a multiset v, with an associated weight for each. It answers point
queries approximately: the answer to a query x is the weight associ-
ated with x in the summary, if x is stored, and 0 otherwise. Given a
parameter ε, the summary stores 1/ε items and counts, and answers
point queries with additive error at most ε‖v‖1. It only supports updates
with positive weights. Conceptually, the SpaceSaving summary is very
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Algorithm 3.5: SpaceSaving:UPDATE (x,w)

1 if x ∈ T then
2 wx ← wx + w;
3 else
4 y← arg min j∈T w j;
5 wx ← wy + w;
6 T ← T ∪ {x}\{y};

similar to the MG summary (Section 3.2), with a few operational differ-
ences, and in fact the two structures can be considered almost identical.

Operations on the summary. Like the MG summary, the SpaceSaving
summary is represented as a collection of pairs of items drawn from the
input x, and associated weights wx. To INITIALIZE an empty summary,
an empty set of k = 1/ε tuples is created. It is sometimes convenient
to think of these tuples being initialized to k distinct (dummy) values,
each with associated count zero.

Each UPDATE operation of an item x with weight w tries to include
x in the summary. If x is already stored with weight wx, the UPDATE

increases this weight to wx + w. Otherwise, the operation identifies the
stored tuple with the smallest weight, say y, and replaces it with the
new item x. The corresponding weight is set to wy + w. When there are
multiple items stored in the summary with the same, least weight, an
arbitrary one can be selected for replacement.

Algorithm 3.5 presents pseudocode for the UPDATE operation, where
the set T holds the currently monitored items. This assumes that the
summary is initialized with k ‘dummy’ entries, so that each UPDATE

preserves the size of the summary at k elements.
A MERGE operation is quite simple, and proceeds in the natural way,

given two SpaceSaving summaries of the same size. The merged sum-
mary initially contains all items which occur in either of the input sum-
maries. If an item x is stored in both summaries, then its weight in the
new summary is the sum of its weights in the previous summaries.
Otherwise, its weight is the weight from whichever summary it was
stored in. The intermediate result may have more than k tuples, so to
reach a summary of bounded size, we retain only the k tuples with the
largest weights (breaking any ties arbitrarily). Algorithm 3.6 shows the
MERGE operation for the SpaceSaving summary. A subtlety not ex-
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Algorithm 3.6: SpaceSaving: MERGE(Ta,Tb)

1 T ← Ta;
2 forall j ∈ Tb do
3 if j ∈ T then w j ← w j + wb, j ;
4 else
5 T ← T ∪ { j} ;
6 w j ← wb, j;

7 if |T | > k then
8 wk+1 ← k + 1st largest weight ;
9 forall j ∈ T do

10 if w j ≤ wk+1 then T ← T \ { j};

plicitly addressed in the pseudocode is when multiple items share the
same weight wk+1, the algorithm should remove just the right number
of them so that the resulting size of the summary is k.

To QUERY for the estimated weight of an item x, we look up whether
x is stored in the SpaceSaving summary. If so, QUERY reports the as-
sociated weight as the estimate. This approximate answer is an over-
estimate of the true weight, as explained within the further discussion
section. If x is not stored in the summary, then the QUERY operation can
report the smallest weight value stored in the summary, n, as an upper
bound on the true weight, or 0 as a lower bound on the true weight.

Example. Consider (again) the input sequence
a, b, a, c, d, e, a, d, f, a, d

interpreted as a sequence of items of weight 1. If we UPDATE each
item in turn into a SpaceSaving summary of size k=4, we may obtain
at the end

a d e f
4 3 2 2

Other instances of the summary are possible, depending on how we
break ties when there are multiple items achieving the smallest fre-
quency. For concreteness, in this example, we break ties by overwriting
the lexicographically smallest item.
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Further Discussion. An important observation which simplifies
the study of this summary is that, despite differences in the de-
scription of the operations, it is essentially identical to the MG sum-
mary (Section 3.2). More precisely, an MG summary with size pa-
rameter k and a SpaceSaving summary with size parameter k + 1,
subject to the same sequence of UPDATE and MERGE operations
over the same input, contain the same information. The correspon-
dence between the two summaries is that the estimated weight of
x in the MG summary is the estimated weight of x in the Space-
Saving summary, less the weight of the smallest item in the sum-
mary, which we denote by n. For instance, comparing the example
(SpaceSaving with k = 4), with the corresponding example in the
previous section (MG with k = 3), we see that after subtracting the
minimum value of 2 from the SpaceSaving example, we retain a
with weight 2, and d with weight 1, the same information as in the
MG examples.

The proof that this holds in general proceeds inductively. The
correspondence is certainly true initially, since all estimated weights
in both summaries are zero. Now consider the effect of an UPDATE

operation when the minimum value is denoted n, assuming that
the correspondence holds prior to this operation. If x is stored in
both summaries, then the correspondence holds after the UPDATE,
since both estimated weights increase by w. If x is not stored in the
MG summary, but there is room to store it, then its old estimated
weight was 0 and its new estimated weight is w. This means its es-
timated weight in SpaceSaving is n. Then either it is stored in the
SpaceSaving summary with weight n, or it is not stored, and some
item with weight n is overwritten. Either way, its new estimated
weight becomes n + w, preserving the correspondence. Lastly, if x
is not stored in the MG summary, and there is no room to store
it, then all the estimated weights there are reduced by the amount
m. Using the assumed correspondence, this means that there is a
unique item with weight n in the SpaceSaving summary, which is
overwritten by x, and whose new weight becomes n + w. Note that
this has the effect of changing the smallest weight in the SpaceSav-
ing summary to either n + w or the smallest of the other estimated
weights. Thus, the amount deducted from the counts in MG, m, is
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exactly the amount by which the new smallest count in SpaceSav-
ing differs from the old smallest count. Hence, the correspondence
is preserved. By similar case-based reasoning, it follows that the
MERGE operations also preserve this correspondence.

Thus the information provided by both summaries is essentially
the same. The upper bound estimate stored by SpaceSaving can
be transformed to the lower bound estimate, by subtracting n, the
smallest of the stored counts.

Implementation Issues. The duality between the SpaceSaving and MG
structures means that the same implementation issues affect both. How-
ever, the form of the SpaceSaving summary means that it is clearer to
see an efficient way to process updates to the summary. Specifically, for
an UPDATE we now only need to be able to find the smallest weighted
item. This can be done using a standard min-heap data structure, with
operations taking time O(log k). Merge operations requires summing up
to k corresponding weights, and merging the structures, and so requires
time O(k).

History and Background. The SpaceSaving summary was first pro-
posed as such by Metwally et al. for unit weight updates [175]. The
generalization to weighted updates was given later by [25]. The ob-
servation of the correspondence between SpaceSaving and MG was
made in [2], and used to provide an efficient MERGE operation. Efficient
implementations of SpaceSaving with optimizations to allow constant
time (amortized or worst-case) UPDATE operations is given by Basat et
al. [23, 22]. These are based on using the (approximate) median weight
element in the data structure to prune elements, similar to the concur-
rent work of Anderson et al. [12] – see the historical notes on the MG
summary in the previous section. Parallel implementations have also
been considered [76]. The summary was introduced in the context of
counting clicks within Internet advertising, and more generally applies
where we want to count popular items out of a very large number of
possibilities.

3.4 Count-Min Sketch for frequency estimation

Brief Summary. Like the MG and the SpaceSaving summary, the Count-
Min Sketch summary also summarizes a multiset v and answers point
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queries with error at most ε‖v‖1. But it is a linear sketch, in the sense
that it can be written as the action of matrix on a vector (expanded in
more detail in Section 9.3.4). It thus supports updates with both positive
and negative weights. The Count-Min Sketch summary maintains an
array of counts, which are updated with each arriving item. It answers
point queries approximately by probing the counts associated with the
item, and picking the minimum of these. It is a randomized algorithm.
Given parameters ε and δ, the summary uses space O(1/ε log 1/δ), and
guarantees with probability at least 1 − δ that any point query is an-
swered with additive error at most ε‖v‖1. A variant of the summary
uses O(1/ε2 log 1/δ) space and has error at most ε‖v‖2 with probability
at least 1 − δ.

Operations on the summary. The Count-Min Sketch summary is rep-
resented as a compact array C of d × t counters, arranged as d rows of
length t. For each row a hash function h j maps the input domain U uni-
formly onto the range {1, 2, . . . , t}. To INITIALIZE a new summary, the
array of counters is created based on the parameters t and d, and every
entry is set to 0. At the same time, a set of d hash functions is picked
from a pairwise independent family (see Section 1.4.2). Algorithm 3.7
shows how to INITIALIZE the summary given parameters t and d, and
randomly chooses the d hash functions (based on a suitable prime p).

Algorithm 3.7: Count-Min Sketch: INITIALIZE (t, d, p)

1 C[1, 1] . . .C[d, t]← 0;
2 for j← 1 to d do
3 Pick a j, b j uniformly from [1 . . . p];

For each UPDATE operation to item i with weight w (which can be
either positive or negative), the item is mapped to an entry in each
row based on the hash functions, and the update applied to the cor-
responding counter. That is, for each 1 ≤ j ≤ d, h j(i) is computed, and w
is added to entry C[ j, h j(i)] in the sketch array. Processing each update
therefore takes time O(d), since each hash function evaluation takes con-
stant time. The pseudocode for UPDATE computes the hash function for
each row of the update i, and updates the corresponding counter with
the weight w (Algorithm 3.8).
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Figure 3.1 Count-Min sketch data structure with t = 9 and d = 4

Algorithm 3.8: Count-Min Sketch: UPDATE (i,w)

1 for j← 1 to d do
2 h j(i) = (a j × i + b j mod p) mod t ;
3 C[ j, h j(i)]← C[ j, h j(i)] + w;

The Count-Min Sketch gets its name due to the two main operations
used during a QUERY operation: counting of groups of items, and tak-
ing the minimum of various counts to produce an estimate. Specifically,
we find all the locations where the queried item x is mapped, and re-
trieve the count from each such location. In the basic version of the
summary, the estimated count is just the smallest of these counts. So
the QUERY time is the same as the UPDATE time, O(d). The procedure
for QUERY in Algorithm 3.9 is quite similar to that for UPDATE: again,
there is an iteration over the locations where x is mapped. A value e is
maintained as the smallest of the values encountered, and returned as
the final estimate.

Algorithm 3.9: Count-Min Sketch: QUERY (x)

1 e← ∞;
2 for j← 1 to d do
3 h j(x) = (a j × x + b j mod p) mod t ;
4 e← min(e,C[ j, h j(x)]) ;

5 return e

To MERGE two Count-Min Sketch summaries, they must be built us-
ing the same parameters. That is, they must share the same t and d
values, and use the same set of d hash functions. If this is the case, then
we can merge two summaries directly by summing the corresponding
entries in the arrays.
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Example. Figure 3.1 shows the UPDATE process: an item i is mapped
to one entry in each row j by the hash function h j, and the update of c is
added to each entry. It can also be seen as modeling the QUERY process:
a query for the same item i will result in the same set of locations being
probed, and the smallest value returned as the answer.

Further Discussion. Let v denote the characteristic vector of the
multiset, so vi is the total weight of all updates to entry i. The en-
tries of the sketch C then obey

C[ j, k] =
∑

1≤i≤M:h j(i)=k

vi

That is, the kth entry in the jth row is the sum of frequencies of all
items i which are mapped by the jth hash function to value k.

The effect of QUERY is to recover an estimate of vi, for any i. Ob-
serve that for it to be worth keeping a sketch in place of simply
storing v exactly, it must be that td is much smaller than the size
of the input domain, U, and so the sketch will necessarily only ap-
proximate any vi. The estimation can be understood as follows: in
the first row, it is the case that C[1, h1(i)] includes the current value
of vi. However, since t � U, there will be many collisions under
the hash function h1, so that C[1, h1(i)] also contains the sum of all
v` for ` that collides with i under h1. Still, if the sum of such v`s is
not too large, then this will not be so far from vi. In fact, we can
state a bound in terms of W =

∑
1≤`≤M v`, the sum of all frequencies.

Fact 3.1 The error in the estimate of vi from a Count-Min Sketch is at
most εW with probability 1 − δ for a sketch with parameters t = 2/ε and
d = log 1/δ.

We demonstrate this fact under the assumption that every en-
try in v is non-negative (below, we discuss the case when this is
not so). Then C[1, h1(i)] is an overestimate for vi. The same is true
for all the other rows: for each j, C[ j, h j(i)] gives an overestimate
of vi, based on a different set of colliding items. Now, if the hash
functions are chosen at random, the items will be distributed uni-
formly over the row. So the expected amount of “noise” colliding
with i in any given row is just

∑
1≤`≤U,`,i v`/t, a 1/t fraction of the

total weight W. Moreover, by the Markov inequality (Fact 1.1 in
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Section 1.4), there is at least a 50% chance that the noise is less than
twice this much.

Expressing this in probability terms, we have

Pr
[
C[ j, h j(i)] − vi >

2W
t

]
≤

1
2

Here, the probabilities arise due to the random choice of the hash
functions. If each row’s estimate of vi is an overestimate, then the
smallest of these will be the closest to vi. By the independence of the
hash functions, it is now very unlikely that this estimate has error
more than 2

∑
1≤`≤U v`/t: this only happens if every row estimate is

“bad”, which happens with probability at most 2−d. That is,

Pr
[
min

j
C[ j, h j(i)] − vi >

2W
t

]
≤

(
1
2

)d

Rewriting this, if we pick t = 2/ε and d = log 1/δ, then our esti-
mate of vi has error at most εW with probability at least 1 − δ. The
value returned by QUERY is simply mind

j=1 C[ j, h j(i)].
For this analysis to hold, the hash functions are required to be

drawn from a family of pairwise independent functions (Section 1.4.2).
That is, over the random choice of the hash functions, for any i, `
and values x, y, Pr[h j(i) = x ∧ h j(`) = y] = 1

t . However this turns
out to be quite a weak condition: such functions are very simple
to construct, and can be evaluated very quickly indeed [44, 212].
Hash functions of the form ((ax + b) mod p) mod t where p is a
prime, and a, b are chosen randomly in the range 1 to p − 1 meet
these requirements.

Residual bound. The above analysis can be tightened to give a bound
in terms of ‖v‖res k

1 , the residual L1 norm after removing the k largest
entries. Consider the estimate of vi for a row j. With probability
1 − 1/t, the heaviest item is not mapped to h j(i). Taking a union
bound over the k heaviest items, they all avoid h j(i) with probabil-
ity 1−k/t. Picking k = t/8, say, ensures that this holds with constant
probability. Conditioned on the event that all k avoid colliding with
i, then we can apply the same expectation-based argument on the
weight of the other colliding items, and show that this is ‖v‖res(k)

1 /t
in expectation. Therefore, with constant probability, we have that
none of the k heaviest items collide, and that the weight of items
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that do collide is at most a constant times ‖v‖res(k)
1 /t. Repeating over

the d hash functions and taking the minimum estimate improves
the probability of getting an estimate within ε‖v‖res(k)

1 to 1 − δ.

Unbiased estimator. The estimator C[ j, h j(i)] is technically biased, in
the statistical sense: it never underestimates but may overestimate,
and so is not correct in expectation. However, it is straightforward
to modify the estimator to be unbiased, by subtracting an appropri-
ate quantity from the estimate. Specifically, we modify the QUERY

procedure to compute

v̂i, j = C[ j, h j(i)] −
1

t − 1

∑
k,h j(i)

C[ j, k] =
tC[ j, h j(i)] −W

t − 1
,

where W is the total weight of all updates. Since we have that the
expectation of C[ j, h j(i)] = vi + (W − vi)/t, it follows that the expec-
tation of this quantity is vi, i.e., it is an unbiased estimator.

However, there is no way to preserve this unbiasedness across
the d rows: ideas such as taking the median of estimators turn out
not to work. One workaround is to convert the Count-Min Sketch
to a Count Sketch, which produces an unbiased estimator across
multiple rows — this is covered when we discuss the Count Sketch
structure in Section 3.5.

L2 bound. The Count-Min Sketch can also produce an estimator
whose error depends on ‖v‖2, the `2-norm of v. We use the unbi-
ased estimator v̂i, j as described above. Its variance can be bounded
as follows, using standard properties of the variance (Section 1.4):

Var
[
tC[ j, h j(i)] −W

t − 1

]
= Var

[ t
t − 1

C[ j, h j(i)]
]

=

( t
t − 1

)2
Var

vi +
∑

k,i,h j(k)=h j(i)

vk


=

( t
t − 1

)2 ∑
k,i

Var[vkI(h j(k) = h j(i))]

=

( t
t − 1

)2 ∑
k,i

v2
k

(
1
t

) (
1 −

1
t

)

=
1

t − 1

∑
k,i

v2
k ≤
‖v‖22
t − 1

,
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where I(E) is an indicator random variable for the event E. This
analysis relies on the fact that whether two items are mapped to
h j(i) can be treated as independent, over the choice of the hash
function, and so the covariance of corresponding random variables
is zero. We can apply the Chebyshev bound to this estimator (Fact 1.3
from Section 1.4), and obtain

Pr
[
|v̂i, j − vi| >

2‖v‖2
√

t − 1

]
≤

1
4
,

i.e., the estimate is within two standard deviations from its expec-
tation, which is vi, with probability at least 3/4. Then we take the
median of all the estimates (one from each row of the sketch), and
return it as the final estimate. Note that the median of multiple un-
biased estimators is not necessarily unbiased, but we can still ob-
tain an (ε, δ) guarantee via the standard Chernoff bound argument
(Section 1.4.1):

Fact 3.2 The error in the (unbiased) estimate of vi from a Count-Min
Sketch with parameters t = O(1/ε2) and d = O(log 1/δ) is at most ε‖v‖2
with probability at least 1 − δ.

To better contrast the two forms of guarantees from Fact 3.1 and
Fact 3.2, we may rewrite Fact 3.2 by substituting ε with

√
ε, so that

the sketch size is the same t = O(1/ε), d = O(log 1/δ). Then the L2

error bound becomes
√
ε‖v‖2. Note that this is in general incompa-

rable to the L1 error bound of ε‖v‖1. When the frequency vector v
is highly skewed, say with only one or two nonzero entries, then
‖v‖1 = ‖v‖2 and the L1 bound is better. But when v is quite flat, say
v1 = v2 = · · · = 1, then ‖v2‖ =

√
‖v‖1 � ‖v‖1, and the L2 bound will

be much better.

Negative frequencies. The same sketch can also be used when the
items have both positive and negative frequencies when the sketch
is queried. In this case, the sketch can be built in the same way, but
now it is not correct to take the smallest row estimate as the overall
estimate: this could be far from the true value if, for example, all the
vi values are negative. However, an adaptation of the above argu-
ment shows that the error still remains bounded. Consider instead
the sum of the absolute values of items that collide with i when es-
timating vi. This is a positive quantity, and so can still be bounded
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by the Markov inequality (Fact 1.1) to be at most ‖v‖1/t with con-
stant probability, where ‖v‖1 denotes the 1-norm (sum of absolute
values) of v. If this is the case, then the error in the estimate must lie
between −‖v‖1/t (if all the colliding items are negative) and +‖v‖1/t
(if all the colliding items are positive). So with constant probability,
each estimate of vi is within 2‖v‖1/t additive error. To improve this
to hold with high probability, we can take the median of the row
estimates, and apply the Chernoff bounds argument described in
Section 1.4 to obtain an accurate estimate. Then it follows that:

Fact 3.3 The error in the estimate of vi from a Count-Min Sketch over
a multiset with both positive and negative frequencies is at most ε‖v‖1
with probability 1 − δ, for a sketch with parameters t = O(1/ε) and d =

O(log 1/δ).

Conservative update. The conservative update method can be applied
on a Count-Min Sketch when there are many UPDATE operations
in sequence. It tries to minimize overestimation by increasing the
counters by the smallest amount possible given the information
available. However, in doing so it breaks the property that the sum-
mary is a linear transform of the input, so it can no longer support
updates with negative weights. Consider an update to item i in a
Count-Min Sketch. The update function maps i to a set of entries in
the sketch. The current estimate of vi is given by the least of these,
as v̂i: this has to increase by at least the amount of the update u
to maintain the accuracy guarantee. But if other entries are larger
than v̂i + u, then they do not need to be increased to ensure that the
estimate is correct. So the conservative update rule is to set

C[ j, h j(i)]← max(v̂i + u,C[ j, h j(i)])

for each row j. The MERGE and QUERY operations under conserva-
tive update remain the same. However, to enjoy the maximum ben-
efit from conservative update, we must expect a large amount of
UPDATE operations: if the sketch is obtained from mostly MERGE

operations rather than UPDATE operations, then the final sketch
will be no different to the sketch obtained under the usual UPDATE

operation.

History and Background. The central concept of the Count-Min Sketch
is quite fundamental, and variations of the idea have appeared in sev-
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eral contexts. Variations of Bloom Filters (see Section 2.7) have used
the idea of hashing to counters to deal with set updates [97] and more
specifically for count estimation [56]. In the context of networking, Es-
tan and Varghese’s multistage filters are a data structure which corre-
spond to sketches, under assumptions of fully-independent hash func-
tions [96]. This work pioneered the idea of conservative update. The
sketch was formally introduced with strong guarantees from weak hash
functions in 2003 [69, 72], building on earlier work on retrieving heavy
hitter items [70]. Kirsch and Mitzenmacher discuss how the hashing
can be made faster, by performing arithmetic on combinations of hash
values [151].

Several variations and extensions have been suggested. The approach
of taking the minimum value as the estimate from Count-Min Sketch is
appealing for its simplicity. But it is also open to criticism: it does not
take full account of all the information available to the estimator. Lee et
al. studied using a least-squares method to recover estimated frequen-
cies of a subset of items from a Count-Min Sketch [161]. That is, us-
ing the fact that the sketch is a linear transform of the input, write the
sketch as a multiplication between a version of the sketch matrix and a
vector of the frequencies of the items of interest. Lu et al. use Message
Passing, which also tries to find a distribution of counts which is consis-
tent with the values recorded in the sketch of the observed data [167].
Jin et al. empirically measure the accuracy of an instance of a Count-
Min sketch [141]. They estimate the frequency of some items which are
known to have zero count, say U + 1,U + 2 . . . etc. The average of these
estimates is used as τ, the expected error, and all estimated counts are
reduced by τ. This was sometimes referred to as “Count-Mean-Min”
(CMM), by [82, 50]. Bianchi et al. [27] and Einziger and Friedman [92]
both give an analysis of the conservative update method. A line of sub-
sequent work has studied tighter bounds on estimation for Count-Min
Sketch. Ting [215] provides new estimators with tight error bounds; Cai
et al. [43] adopt a Bayesian perspective to analyze the sketch.

The sketch has been used for a variety of different tasks. Some ex-
amples include counting the frequency of particular strings in long ge-
netic sequences [233]; tracking the popularity of different passwords,
and warning if a chosen password is too common [200]; and a general
technique to speed up machine learning in high-dimensional feature
spaces [203]. The sketch has been used by Twitter to track the popular-
ity of individual tweets across the web [28], and by Apple to reduce the
size of information gathered under its private data collection tool [211].
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Available Implementations. Many implementations of the Count-
Min Sketch are available. Typically these are quite simple and straight-
forward: one example https://github.com/rafacarrascosa/
countminsketch implements all methods in a few dozen lines of
python. Other implementations listed on GitHub implement in C,
C++, Java, JavaScript, Go, Juia and Clojure. The stream-lib imple-
mentation (https://github.com/addthis/stream-lib/tree/
master/src/main/java/com/clearspring/analytics/stream/
frequency) includes both the basic and conservative update vari-
ants.

3.5 Count Sketch for frequency estimation

Brief Summary. The Count Sketch summary is very similar to Count-
Min Sketch. It also summarizes a multiset v and answers point queries
approximately. It has asymptotically the same guarantees as the Count-
Min Sketch, but with slightly worse hidden constant factors: Given pa-
rameters ε and δ, the summary uses space O(1/ε log 1/δ), and guaran-
tees with probability at least 1−δ that any point query is answered with
additive error at most ε‖v‖1. Alternatively, with space O(1/ε2 log 1/δ), it
has error at most ε‖v‖2 with probability at least 1 − δ. The benefit of
the Count Sketch is that it produces an unbiased estimator, which is
important in certain applications (see, for example, Section 4.4).

Algorithm 3.10: Count Sketch: INITIALIZE (t, d, p)

1 C[1, 1] . . .C[d, t]← 0;
2 for j← 1 to d do
3 Pick a j, b j uniformly from [1 . . . p];
4 Pick c j, d j uniformly from [1 . . . p];

Operations on the summary. The Count Sketch summary is repre-
sented as a compact array C of d × t counters, arranged as d rows of
length t. It can be described as being similar in nature to the Count-
Min Sketch summary, but with some key differences. For each row j
a hash function h j maps the input domain U uniformly onto the range
{1, 2, . . . , t}. A second hash function g j maps the input domain U uni-
formly on the range {−1,+1}. To INITIALIZE a new summary, the array
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of counters is created based on the parameters t and d, and every entry
is set to 0. The two sets of d hash functions, g and h are picked at the
same time. Algorithm 3.10 shows the procedure to INITIALIZE a Count
Sketch: the array is set to zero, and the parameters for the hash function
are chosen randomly based on the prime p.

Algorithm 3.11: Count Sketch: UPDATE (i,w)

1 for j← 1 to d do
2 h j(i) = (a j × i + b j mod p) mod t ;
3 g j(i) = 2 × ((c j × i + d j mod p) mod 2) − 1 ;
4 C[ j, h j(i)]← C[ j, h j(i)] + w × g j(i);

For each UPDATE operation to item i with weight w (which can be
either positive or negative), the item is mapped to an entry in each row
based on the hash functions h, and the update applied to the corre-
sponding counter, multiplied by the corresponding value of g. That is,
for each 1 ≤ j ≤ d, h j(i) is computed, and the quantity wg j(i) is added
to entry C[ j, h j(i)] in the sketch array. Processing each update there-
fore takes time O(d), since each hash function evaluation takes constant
time. Each UPDATE shown in Algorithm 3.11 computes h j(i) and g j(i)
for each row j, and updates the corresponding entry of the array.

Algorithm 3.12: Count Sketch: QUERY (x)

1 for j← 1 to d do
2 h j(x) = (a j × x + b j mod p) mod t ;
3 g j(x) = 2 × ((c j × x + d j mod p) mod 2) − 1 ;
4 e j ← g j(x) ×C[ j, h j(x)]) ;

5 return median(e)

The QUERY operation on item x extracts the count associated with
x in each row, and returns the median of these. That is, in row j it
computes g j(i)C[ j, h j(i)] as the estimate for that row. This generates d
estimates, and the median of these is the final estimate. Therefore, the
QUERY time is also O(d). For a QUERY operation in Algorithm 3.12, the
procedure is quite similar to an UPDATE. A vector of estimates e is built,
and the median of this vector is returned as the final answer.

To MERGE two Count Sketch summaries, they must have the same
parameters, i.e., they must have the same t and d values, and use the
same sets of hash functions h and g. Then they can be merged by sum-
ming the corresponding entries in the arrays. This works since the re-
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Figure 3.2 Count Sketch data structure with t = 9 and d = 4

sulting sketch is identical to the one obtained if all UPDATE operations
had been made to a single sketch.

Example. Figure 3.2 shows an example of the Count Sketch: during an
UPDATE operation, an item is mapped into one entry in each row by
the relevant hash function, and multiplied by a second hash function
g. The figure serves to emphasize the similarities between the Count
Sketch and Count-Min Sketch: the main difference arises in the use of
the g j functions.

Further Discussion. As with the Count-Min Sketch summary, the
accuracy of the estimate obtained is analyzed by considering the
distribution of the “noise” of other items that affect the estimate.
This is shown to be very likely to be small, under the random
choice of the hash functions. Let v denote the characteristic vec-
tor of the multiset summarized, so that vi is the total weight of all
update to entry i. Then we can write the sketch C as

C[ j, k] =
∑

1≤i≤M:h j(i)=k

g j(i)vi.

So the kth entry in the jth row is a sum of frequencies of items i
mapped to k by the jth hash function h j, where each is multiplied
by either +1 or −1, according to g j. The intuition is that by hashing
to different entries, i is unlikely to collide with too much “weight”
from other items. Further, the use of g j functions is intended to
help the colliding items to ‘cancel’ out with each other.

L1 error bound. Formally, let v̂i, j = g j(i)C[ j, h j(i)] be the estimator in
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the j-th row for vi. We consider the random variable |vi− v̂i, j|, which
is the absolute error in the estimator. Its expectation is

E[|vi − v̂i, j|] = E


∣∣∣∣∣∣∣∑
`,i

I(h j(`) = h j(i)) · v` · g j(i) · g j(`)

∣∣∣∣∣∣∣


≤
∑
`,i

E[|I(h j(`) = h j(i)) · v` · g j(i) · g j(`)|]

=
∑
`,i

|v` | · E[I(h j(`) = h j(i))]

=
1
t

∑
`,i

|v` | ≤ ‖v‖1/t.

Applying the Markov inequality to the (non-negative) variable
|vi − v̂i, j|, we have that the error in this estimate is at most 3‖v‖1/t
with probability at least 2/3. Taking the median of O(log 1/δ) repe-
titions reduces this failure probability to δ, via a Chernoff bounds
argument. So we have an L1 error bound for the Count Sketch that
is asymptotically the same as the Count-Min Sketch:

Fact 3.4 The error in the estimate of vi from a Count Sketch is at most
ε‖v‖1 with probability 1 − δ from a sketch with parameters t = O( 1

ε
) and

d = O(log 1/δ).
Although the Count Sketch has asymptotically the same L1 er-

ror guarantee as the Count-Min Sketch, the hidden constants are
worse. This is due to the use of the median operator to select one
out of the d rows to return as the final estimate. The estimate will
be outside of the error interval as long as half of the d estimates are
outside. This is to be contrasted with the Count-Min Sketch, which
uses the min operator, and thus fails only if all the d estimates ex-
ceed the error limit. In addition, to be able to use the Chernoff
bound argument, the success probability of each individual esti-
mate has to be strictly greater than 1/2, whereas in the case of the
Count-Min Sketch, any constant will do.

L2 bound. The Count Sketch can similarly provide an L2 error guar-
antee. First, we show that the estimator from each row is unbiased:

E[v̂i, j] = E[g j(i) ·C[ j, h j(i)]] = E

g j(i)
∑

1≤`≤M:h j(i)=h(`)

g j(`)v`
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= (g j(i))2vi + E

∑
`,i

g j(i)g j(`)v`


= vi +

∑
`,i

v`(Pr[g j(i)g j(`) = +1] − Pr[g j(i)g j(`) = −1])

= vi.

This analysis breaks the expectation of the result into two pieces:
the contribution from vi, and the contribution from the other items.
Whatever the value of g j(i), we obtain a contribution of vi from
this term. For the second term, the expectation is multiplied by
g j(i)g j(`). Since we chose g j from a pairwise independent family of
hash-functions, over this random choice, the product is +1 half the
time, and −1 the rest of the time, and so is zero in expectation. Of
course, while this product is zero in expectation, it is never actually
zero (it is either +1 or −1), and so we consider the variance of the
estimator from row j in order to study its accuracy.

Var[v̂i, j] = Var[g j(i)
∑

1≤`≤M:h j(`)=h j(i)

g j(`)v`]

= Var[v` + g j(i)
∑
`,i

g j(`)v`I(h j(`) = h j(i))]

=
∑
`,i

Var[g j(i)g j(`)v`I(h j(`) = h j(i))]

=
∑
`,i

v2
`Var[I(h j(`) = h j(i)] ≤

‖v‖22
t
.

This analysis uses the standard properties of variance (Section 1.4),
along with the fact that the events of two items both being mapped
to h j(i) have zero covariance, due to the independence properties of
the hash functions. Thus, applying a Chebyshev bound (Fact 1.3),
we have (for any row j)

Pr
[
|v̂i, j − vi| >

2‖v‖2
√

t

]
≤

1
4
,

showing that the estimate is within two times the standard devi-
ations of its expectation with probability at least 3/4. Taking the
median of O(log 1/δ) repetitions and applying a Chernoff bounds
argument (Section 1.4.1) reduces the probability to δ.

We can also observe that the random variable v̂i, j has a pdf that
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is symmetric around its expectation, so the median of an odd num-
ber of such estimators retains the expectation. So the Count Sketch
returns an unbiased estimator.

Fact 3.5 The Count Sketch returns an unbiased estimator for any point
query. The error in the estimate, with parameters t = O(1/ε2) and d =

O(log 1/δ), is at most ε‖v‖2 with probability at least 1 − δ.

Note that the Count Sketch achieves both the L1 and the L2 er-
ror guarantees with the same QUERY algorithm, namely, the esti-
mate returned always obeys the smaller of the two error guaran-
tees. This can be considered as an additional benefit of the Count
Sketch over the Count-Min Sketch, which needs to use different
QUERY algorithms for achieving different error guarantees.

L2 residual bound. We can also express the error in terms of ‖v‖res(k)
2 ,

the residual L2 norm, after removing the k largest (absolute) entries
of v. This follows by adjusting the argument used to show Fact 3.5.
Consider the estimate of v̂i, j from row j. The probability that the
heaviest item collides with i in row j of the sketch is at most 1

t ,
using the pairwise independence of the hash functions. This also
holds for the rest of the k heaviest items. The probability that all k of
these items avoid i in row j is at least 1− k

t , using a union bound. So
for k = O(t), this holds with at least constant probability. If we con-
dition on this event, then the variance of the estimator is reduced
to ‖v‖res(k)

2 /t. Applying the Chebyshev bound to this case, there is

constant probability that the estimate is at most
√
‖v‖res(k)

2 /t from
its expected value. This constant probability captures the proba-
bility of avoiding collisions with the k heaviest items, and then of
the conditioned random variable falling close to its expectation.
Thus, with some rescaling of constants, we also have that a sketch
of width t = O(1/ε2) and d = O(log 1/δ) estimates vi with error at
most ε‖v‖res(k)

2 /t for k = O(t).

Converting Count-Min Sketch to Count Sketch. A different QUERY

algorithm on the Count-Min Sketch can actually turn the Count-
Min Sketch into a Count Sketch. We use the following estimator:

v̂i, j = C[ j, h j(i)] −C[ j, h j(i) + 1 − 2(h j(i) mod 2)],

where the term 1− 2(h j(i) mod 2) has the result of picking a neigh-
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boring entry in the sketch. The effect of this is to produce an es-
timate which is identical to that arising from the Count Sketch of
size t/2: the effect of the subtraction is to mimic the role of the hash
function g j. Consequently, a Count-Min Sketch structure can simu-
late a Count Sketch and provide the same guarantees as the Count
Sketch, though at the cost of twice the space.

Implementation Issues. The pairwise hash functions needed are very
simple: picking parameters a and b uniformly in the range 1 to p for
a prime p, then computing ((ax + b) mod p) mod t is sufficient (Sec-
tion 1.4.2). Still, in some high performance cases, where huge amounts
of data is processed, we wish to make this part as efficient as possible.
One way to reduce the cost of hashing is to compute a single hash func-
tion for row j that maps to the range 2t, and use the last bit to determine
g j (+1 or −1), while the remaining bits determine h j. This is essentially
equivalent to the above observation that a Count Sketch is equivalent
to taking a Count-Min Sketch of twice the width, and computing the
differences of pairs of adjacent entries.

History and Background. The Count Sketch summary was first pro-
posed by Charikar, Chen and Farach-Colton in 2002 [49], although tech-
nically it can be thought of as an extension of the earlier AMS Sketch [10],
which also used the idea of +1/-1 hash values to provide an unbiased
estimator. The key innovation is the use of hashing in the Count Sketch
to select a cell in each row, instead of averaging all cells. This means
that the UPDATE operation is much faster than in the AMS sketch.

The Count Sketch has found many practical uses, due to its relative
simplicity, and good accuracy. It is implemented in various tools for
manipulating large data, such as the Sawzall system at Google for ana-
lyzing log structured data [196]. The simple structure has also allowed
it to be extended to solve other problems. Pagh [192] showed that one
could rapidly construct a Count Sketch of the product of two matri-
ces, without explicitly performing the matrix multiplication; this is ex-
plained in Section 6.4. For similar reasons, it is possible to efficiently
build a Count Sketch of polynomial kernels used in machine learn-
ing [195].

The Count Sketch is a key tool in the design of advanced algorithms
for problems in high dimensional data analysis. Many problems in ran-
domized numerical linear algebra such as regression can be approxi-
mately solved using Count Sketch [198, 51]. Problems relating to com-
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pressed sensing — recovering approximately sparse vectors from few
linear measurements — make use of the Count Sketch [113]. Lastly, the
Count Sketch is the core part of a general approach to approximately
computing functions over high dimensional vectors [36].

3.6 (Fast) AMS Sketch for Euclidean norm

Brief Summary. The AMS Sketch summary maintains an array of counts
which are updated with each arriving item. It gives an estimate of the
`2-norm of the vector v corresponding to the multiset being summa-
rized, by computing the norm of each row, and taking the median of all
rows. Given parameters ε and δ, the summary uses space O(1/ε2 log 1/δ),
and guarantees with probability at least 1 − δ that its estimate is within
relative ε-error of the true `2-norm, ‖v‖2.

Algorithm 3.13: AMS Sketch: QUERY (x)

1 for j← 1 to d do
2 e j ← 0 ;
3 for k ← 1 to t do
4 e j ← e j + (C[ j, k])2 ;

5 return median(e)

Operations on the summary. The AMS Sketch summary is almost iden-
tical to the Count Sketch summary, with one key difference—sometimes
the terms Count Sketch and AMS Sketch are used interchangeably. It is
represented as a compact array C of d × t counters, arranged as d rows
of length t. In each row j, a hash function h j maps the input domain U
uniformly to {1, 2, . . . t}. A second hash function g j maps elements from
U uniformly onto {−1,+1}. So far, this is identical to the description of
the Count Sketch. An additional technical requirement is that g j is four-
wise independent (Section 1.4.2). That is, over the random choice of g j

from the set of all possible hash functions, the probability that any four
distinct items from the domain get mapped to {−1,+1}4 is uniform: each
of the 16 possible outcomes is equally likely.

The INITIALIZE, UPDATE and MERGE operations on the AMS Sketch
summary are therefore identical to the corresponding operations on the
Count Sketch summary (Section 3.5). Hence the algorithms for INITIAL-
IZE and UPDATE match those given in Algorithms 3.10 and 3.11, the
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difference being the stronger requirements on hash functions g j. Only
QUERY is different. Here, the QUERY operation takes the sum of the
squares of row of the sketch in turn, and finds the median of these
sums. That is, for row j, it computes

∑t
k=1 C[ j, k]2 as an estimate, and

takes the median of the d such estimates. Algorithm 3.13 gives code for
the QUERY operation on AMS Sketch summaries: each estimate e j is
formed as the sum of squares of the jth row, and the median of these
is chosen as the final estimate. The QUERY time is linear in the size of
the sketch, O(td). The time for INITIALIZE and MERGE operations is the
same, O(td). Meanwhile, UPDATE operations take time O(d).

Further Discussion. To understand the accuracy of the estimates,
consider the expectation and variance of the result obtained from
each row. Let X j denote the estimate obtained from row j, i.e., X j =∑t

k=1 C[ j, k]2. We have

E[X j] =

t∑
k=1

E[C[ j, k]2]

=

t∑
k=1

E


 ∑

i:h j(i)=k

vig j(i)


2

=

t∑
k=1

E

 ∑
i:h j(i)=k

v2
i + 2

∑
i,`,h j(i)=h j(`)=k

g j(i)g j(`)viv`


=

t∑
k=1

∑
i:h j(i)=k

v2
i =

∑
i

v2
i = ‖vi‖

2
2,

because the expectation of terms in g j(i)g j(`) is zero: this product is
+1 with probability 1

2 and −1 with probability 1
2 . For the variance,

we have

Var[X j] = Var

 t∑
k=1

C[ j, k]2


= Var

‖v‖22 + 2
t∑

k=1

∑
i,`

g j(i)viI(h j(i) = k) · g j(`)v`I(h j(`) = k)


= Var[2

∑
i,`

g j(i)vig j(`)v`I(h j(i) = h j(`))].
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We will use random variables Yi,` = g j(i)vig j(`)v`I(h j(i) = h j(`))
to simplify this expression. Note that E[Yi,`] = 0, by the pairwise
independence of g j. We will use the fact that Yi,` is independent
from Yq,r when all four of {i, `, q, r} are different, using the four-wise
independence property of g j. That implies Cov[Yi,`,Yq,r] = 0 under
this condition. Then

Var[X j] = Var

2 ∑
i,`

Yi,`


= 4

∑
i,`,q,r,h j(i)=h j(q)

Cov[Yi,`,Yq,r]

= 4
∑
i,`

Cov[Yi,`,Yi,`] + 4
∑

i,`,i,q

Cov[Yi,`,Yi,q]

= 4
∑
i,`

E[Y2
i,`] + 0

= 4
∑
i,`

v2
i v2
`/t ≤ ‖v‖

4
2/t.

Here, we use the fact that E[Yi,`Yi,q] = 0 when i , q, ` , q (again,
using the four-wise independence of g j), and hence Cov[Yi,`,Yi,q] =

0 also.
To summarize, we have that E[X j] = ‖v‖22 and Var[X j] ≤ 4‖v‖42 ≤

4E[X j]2/t. Thus, via the Chebyshev inequality, the probability that
|X j − E[X j]| ≥ ‖v‖22/

√
t is at most a constant. Taking the median of d

repetitions drives this probability down to δ. So we conclude

Fact 3.6 The error in the estimate of ‖v‖22 from an AMS Sketch with pa-
rameters t = O(1/ε2) and d = O(log 1/δ) is at most ε‖v‖22 with probability
at least 1 − δ.

Equivalently, we have that the estimate is between (1−ε)‖v‖22 and
(1 + ε)‖v‖22. Taking the square root of the estimate gives a result that
is between (1−ε)1/2‖v‖2 and (1+ε)1/2‖v‖2, which means it is between
(1 − ε/2)‖v‖2 and (1 + ε/2)‖v‖2.

Note that since the input to AMS Sketch can be general, it can
be used to measure the Euclidean distance between two vectors v
and u: we can build an AMS Sketch of v and one of −u, and MERGE

them together. Note also that a sketch of −u can be obtained from
a sketch of u by negating all the counter values.
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Implementation Issues. For the analysis, we required that the random
variables Yi,` and Yq,r have zero covariance. This requires that the ex-
pectation of terms in g j(i)g j(`)g j(q)g j(r) are zero. For this to hold, we re-
quired that the hash functions g j are drawn from a family of four-wise
independent hash functions. This can be achieved by using polynomial
hash functions, g j(x) = 2((ax3 + bx2 + cx + d mod p) mod 2) − 1 (Sec-
tion 1.4.2).

History and Background. The AMS Sketch was introduced in the work
of Alon, Matias and Szegedy in 1996 [10]. That version had the same
size, but was structured differently. Instead of hashing into a row of
t entries, all entries are used to make a single estimator (with hash
functions g mapping to +1/-1 values). The average of O(1/ε2) estimates
was taken to reduce the variance, then the median of O(log 1/δ) repe-
titions used to drive down the error probability. The idea to use hash-
ing instead of averaging to achieve the same variance but with a lower
UPDATE time cost is seemingly inspired by the Count Sketch sum-
mary (the hashing-to-replace-averaging technique is also referred to as
“stochastic averaging” in the earlier work of Flajolet and Martin [103]).
Several works adopted this idea, notably that of Thorup and Zhang [214].
The version with hashing to a row of t counters is often referred to as
the “fast AMS Sketch” summary (see Cormode and Garofalakis [62]).
The AMS Sketch has many other applications, due to the importance of
estimating the `2 norm (i.e., the length of a vector in Euclidean space).
In particular, its application to estimating the inner-product between
pairs of vectors is discussed in Section 6.1.

3.7 Lp sketch for vector norm estimation

Brief Summary. An `p sketch gives an estimate of the `p-norm of the
vector v corresponding to the multiset being summarized. It is similar
in nature to the AMS Sketch, in that it builds a set of estimates, where
each estimate is a projection of the input vector, and the median of all
the estimates gives an approximation to the desired `p norm. Given
parameters ε and δ, the summary uses space O(1/ε2 log 1/δ), and guar-
antees that its estimate is within relative ε-error of the true `p norm ,
‖v‖p.
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Operations on the summary. The `p sketch is based on taking projec-
tions with vectors whose entries are randomly chosen from so-called
“stable” distributions. Each entry of the projection vector is drawn in-
dependently from an identically distributed symmetric and strictly sta-
ble distribution. Stable distributions are parameterized by α, where Gaus-
sian distributions are stable with parameter α = 2, and Cauchy distribu-
tions are stable with parameter α = 1. The class of stable distributions
are defined by the property that if X and Y are independent random
stable variables with parameter α, then aX +bY is distributed as a stable
distribution scaled by (|a|α+|b|α)1/α. So to estimate ‖v‖p, we take the inner
product of v with a vector s whose entries are sampled iid p-stable. The
result is then distributed as ‖v‖p scaling a p-stable variable. We repeat
this multiple times to estimate the scaling parameter, which we report
as the answer.

To INITIALIZE the sketch, we initialize the seeds for k = O( 1
ε2 log 1

δ
)

independent repetitions, and create an empty sketch of k entries, all set
to 0.

Algorithm 3.14: `p sketch: UPDATE (i,w, p)

1 for j← 1 to k do
2 C[ j]← C[ j] + w ∗ stablep(i, j)

To process an UPDATE to the sketch, we make use of a function stablep(i, j),
which consistently draws a random value from a stable distribution
with parameter p. We assume that stablep(i, j) gives the same value ev-
ery time it is called with the same values of i, j, and that stablep(i, j) is
independent of stablep(i′, j′) if i , i′ or j , j′.

To QUERY a sketch, we compute the scaled median of the (absolute)
stored values, i.e., median j=1...k |C[ j]|/βp. Here, βp is the median of abso-
lute values drawn from the p-stable distribution.

Finally, to MERGE two sketches together which are built using the
same stablep(i, j) values, we simply have to add together their sketch
vectors C.

Example. Consider the input vector
v = [1, 2, 3,−4]

so we have that ‖v‖1 = 10.
We will sample from the Cauchy distribution, since this distribution
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is stable with parameter 1, and has β1 = 1. We draw the following sets
of four random values from iid Cauchy random variables for k = 3:

−1.639 −1.722 0.338 −0.238
0.450 −0.015 −0.212 −7.742
−1.641 12.280 −1.048 7.914

Taking the inner product of v with each row of these draws generates
{3.117, 30.752,−11.81}. We can observe that there is quite high variation
among these three estimates, but that taking the median of the absolute
values returns 11.81, which is tolerably close to the true value of 10.

Further Discussion. The sketch relies on the fact that linear scal-
ing composes with the operations of taking absolute values and
taking medians. That is, we have that for a random variable X,

median(|sX|) = s median(|X|).

In particular,

median(|‖v‖pXp|) = ‖v‖p median(|Xp|).

Combined with the defining properties of stable distributions, we
have that each random projection yields an estimate centered on
our target value of ‖v‖p.

The repetitions allow us to invoke concentration of measure re-
sults, and give bounds on the repetitions. The analysis follows us-
ing an additive Chernoff-Hoeffding bound (Fact 1.4) in a variant of
the standard median argument (Section 1.4.1). We outline the steps.
Let τ be the value so that Pr[X ≤ τ] = 1

2 −ε, and consider the median
of k copies of the estimator defined above. A necessary condition
for this empirical median to fall below τ is for more than half the
samples to fall below τ. The probability of each one falling below τ

is captured by a Bernoulli random variable with probability 1
2 − ε.

Applying the Chernoff-Hoeffding bound to these k = O( 1
ε2 log 1/δ)

Bernoulli variables gives us a probability of at most δ/2 for this
failure mode. The case for the estimate going above τ′ such that
Pr[X ≤ τ′] = 1

2 + ε is symmetric. This ensures that, with probabil-
ity at least 1 − δ, we obtain an estimate which is close to the true
median.
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This argument shows that the estimate is close to the true me-
dian in terms of the quantiles of the distribution. It is desirable to
transform this into being close in absolute value. This is done by
arguing that the relevant stable distribution is not flat close to the
median. That is, that τ and τ′ are both close to the median of the
distribution. This can be verified analytically for the Cauchy dis-
tribution (stable with p = 1), and empirically for other values of
p.

Implementation Issues. The key technical step needed is to sample
from a stable distribution. We first observe that certain stable distribu-
tions have a closed form. The Gaussian distribution is 2-stable, while
the Cauchy distribution is 1-stable. We can sample from the Cauchy
distribution by transforming a uniform distribution. If U is a uniform
random distribution over [0, 1], then tan(π(U− 1

2 )) follows a Cauchy dis-
tribution.

For other p values in the range 0 < p < 2, a transformation due to
Chambers, Mallows and Stuck [45] generates a sample from a stable
distribution using two random variables. Let U and V be independent
uniform variables from [0, 1]. Define the transform θ(U) = π(U − 1

2 ).
Then the value

Xp =
sin(pθ(U))

cos1/p(θ(U))

(
cos((1 − p)θ(U))

− ln V

) 1−p
p

is distributed according to a p-stable distribution.
We also need to compute βp = median |Xp|, the median of absolute

values drawn from the p-stable distribution. For p = 1, the Cauchy dis-
tribution yields β1 = 1 (and similarly, for p = 2, β2 = 1 for the Gaussian
distribution). For other values of p, βp can be found with high accuracy
by sampling a large enough number of values, and taking the median
of them.

A practical consideration is that for very small values of p, approach-
ing 0, the values sampled from stable distributions are typically very
large in magnitude, and can exceed the capacity of fixed-size variables.
Consequently, working with small p requires higher precision arith-
metic, and the true space cost grows larger as p gets asymptotically
close to zero. Note that p close to zero is interesting, since it tends to flat-
ten out the contribution of each non-zero value, and so approximately
counts the number of non-zero values.

When k the number of projections is large, the UPDATE procedure can
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be rather slow, since O(k) time is needed each update. Li [163] proposes
a sparse random projection, where many entries in the projection ma-
trix are chosen to be 0, and we only need to process the non-zero entries.
Formally, Li shows that it suffices to ensure that only a 1/

√
M fraction

of the entries need to be non-zero, where M is the dimensionality of the
input vector. Li also shows that a modified estimation procedure based
on taking the geometric mean of the individual estimates, rather than
the median, provides accurate guarantees.

History and Background. Stable distributions have been extensively
studied within the statistics literature – see the book by Zolotarev [236].
Their use in data summarization was pioneered by Indyk [132]. Exper-
iments on the use of stable distributions with low p values are given
in [60]. Extensions on the method for p = 1 to obtain fast, small sum-
maries are due to Nelson and Woodruff [189].

3.8 Sparse vector recovery

Brief Summary. A SparseRecovery structure summarizes a multiset A
of items under insertions and deletions of items. It allows the multiset
to be recovered in its entirety, but only when the number of distinct
items in the multiset is small. It is of value when at some intermediate
point the multiset A may be very large, but due to deletions it later be-
comes small again. The structure is defined based on a parameter s, so
that when the multiset has at most s distinct items, it will almost cer-
tainly recover them correctly; when the number of items is more than s
then no guarantee is made (the structure may return FAIL indicating it
could not recover the full multiset). The summary keeps structures sim-
ilar to the sketches discussed previously, and uses extra information to
retrieve the identity and count of items currently in the multiset.

Operations on the summary. The sparse recovery structure resembles
the BloomFilter as described in Section 2.7. As with the BloomFilter, we
use k hash functions h1, . . . , hk to map each item to k locations in the ar-
ray. For technical reasons, we will need these k hash functions to map
any item to distinct locations. Unlike the BloomFilter, which uses a sim-
ple bit array, SparseRecovery uses an array C of t cells, where each
cell stores more information about the elements that are mapped there.
Specifically, each cell contains three pieces information: a count of the
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items that have been mapped to that location, a sum of all the item iden-
tifiers, and a fingerprint (Section 3.1) of the collection of items there.

Algorithm 3.15: SparseRecovery: INITIALIZE (t)

1 for j← 1 to t do
2 C[ j].count← 0;
3 C[ j].sum← 0;
4 C[ j].fingerprint.INITIALIZE ();

To INITIALIZE the structure (Algorithm 3.15), the array is created,
with all counts and sums set to zero; the fingerprints are initialized to 0
or 1 depending on which version of Fingerprint is used (see Section 3.1).

Algorithm 3.16: SparseRecovery: UPDATE (i,w)

1 for j← 1 to k do
2 C[h j(i)].count← C[h j(i)].count + w;
3 C[h j(i)].sum← C[h j(i)].sum + w · i;
4 C[h j(i)].fingerprint.UPDATE(i,w);

Each UPDATE maps the given item to its corresponding locations in
the array, and updates the sums, counts and fingerprints there based on
the weight w (w can be either positive or negative). The count is mod-
ified by adding on w, while the sum is updated by adding on w times
the item identifier i. We invoke the procedure to update the fingerprint
as described in Section 3.1. Pseudocode is shown in Algorithm 3.16.

As with the BloomFilter, the procedure to MERGE two SparseRecov-
ery structures requires that they are created with the same parameters
(the same t and the same hash functions h j). Then we merge the sets of
sums, counts and fingerprints. That is, pairs of corresponding sums are
added, as are counts. The MERGE procedure for pairs of corresponding
fingerprints is applied (Algorithm 3.2).

The QUERY process is a bit involved. The idea behind QUERY is that
if the size of the multiset stored in the structure is small, then we can
search the array and pick out the entries one by one, potentially uncov-
ering more as we go. In particular, if there is some entry of the array
that only stores information about a single item, then we use the infor-
mation to retrieve the identifier and weight of that item. In this case, the
total weight w can be read directly from the count value of the cell. Us-
ing standard arithmetic, since the sum contains i ·w, we can divide it by
w to find i. However, there are additional issues to be concerned with:
we need some way to know for sure whether a particular cell contains



DRAFT

3.8 Sparse vector recovery 113

a single item, or contains a mixture of different items. Simply checking
that the sum is an integral multiple of the count is not sufficient — it is
possible that a mixture of different items add up to give the impression
of a single one. A simple example is if one copy of each of items with
identifiers 1 and 3 are placed in the same cell, then it would appear
that there are two copies of the item with identifier 2 in the cell. This is
why we also store the fingerprint: we attempt to recover an item from
the cell, then compute the fingerprint corresponding to the conjectured
item and weight. If it matches the stored fingerprint, then we are (al-
most) certain that this is a correct decoding, else we assume that it is an
error.

The key observation behind the ability to recover many items is the
following: Once an item has been recovered, it can be removed from
the other cells in which it has been placed. That is, we can perform the
operation UPDATE (i,−w) on the item i with weight w. This can cause
more cells to become decodable (removing colliding items and leaving
a single undecoded item left in the cell). This process is repeated until
no more items can be identified and removed. At this point, either the
structure is empty (i.e., all items have been recovered and every cell in
the array is empty), or some items remain and have not been identified.
In this case, the process might output FAIL. This approach is sometimes
called “peeling”, since once an item is found, it is “peeled” away from
the structure. This peeling process can also be implemented to run effi-
ciently in O(t) time, and the full pseudocode is provided in Algorithm
3.17.

The analysis presented below argues that the size of the array C just
needs to be O(s) to allow this recovery to happen almost certainly, if no
more than s items are stored in the structure. It has been suggested to
use some k between 3 and 7, which will make the failure probability
O(t−k+2) as long as t > ck s, where ck is some constant depending on
k. The precise values of ck are known, and are actually quite small, as
given in Table 3.1.

Example. A small example is shown in Figure 3.3 with 6 elements in an
array with 8 cells and k = 3. For simplicity, the figure shows in each cell
the set of elements that are mapped there, rather than the correspond-
ing sums, counts and fingerprints. Successive rows show the state of
the structure after successive steps of peeling have recovered one or
more items from the structure. Initially, only item 2 can be recovered,
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Algorithm 3.17: SparseRecovery: QUERY ()

1 Q← empty queue;
2 for j← 1 to t do
3 if C[ j].count ≥ 1 and

(C[j].fingerprint = fingerprint of (C[j].sum / C[j].count, C[j].count))
then

4 Q.enqueue(C[ j].sum/C[ j].count, C[ j].count)

5 while Q , ∅ do
6 (i,w)← Q.dequeue();
7 output (i,w);
8 for j← 1 to k do
9 C[h j(i)].count← C[ j, h j(i)].count − w;

10 C[h j(i)].sum← C[ j, h j(i)].sum − w · i;
11 C[h j(i)].fingerprint.UPDATE(i,−w);
12 if C[h j(i)].count ≥ 1 and

(C[h j(i)].fingerprint = fingerprint of (C[h j(i)].sum/C[h j(i)].count,C[h j(i)].count))
then

13 Q.enqueue(C[h j(i)].sum/C[h j(i)].count, C[h j(i)].count)

k 3 4 5 6 7

ck 1.222 1.295 1.425 1.570 1.721

Table 3.1 Values of ck for k = 3, 4, 5, 6, 7.

as all other cells have more than one items mapped there. However, as
the peeling proceeds, we are able to recover all items eventually.

3, 4 1, 3, 4, 6 2 1, 5 2, 3, 5 1, 4 2, 6 5, 6 2 recovered

3, 4 1, 3, 4, 6 1, 5 3, 5 1, 4 6 5, 6 6 recovered

3, 4 1, 3, 4 1, 5 3, 5 1, 4 5 5 recovered

3, 4 1, 3, 4 1 3 1, 4 1, 3 recovered

4 4 4 4 recovered

Figure 3.3 An example on the peeling process.
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Implementation Issues. Remember that we require the k hash func-
tions to map each item to distinct locations. There are three ways to
implement this.

The strictest way to follow this requirement is to have a single hash
function h that maps the universe of items to the range {0, 1, ...,

(
t
k

)
− 1}.

Note that there are a total of
(

t
k

)
subsets of k distinct locations in an array

of size t, so this hash function will pick one subset uniformly at random.
For any item i, the k actual locations can be then extracted from the hash
value h = h(i) as follows. The first location is h1 = h mod t. Then we
update h← h− t · h1. The second location is h2 = h mod (t− 1), counting
from the beginning of the array but skipping location h1. So we need to
add 1 to h2 if h1 ≤ h2. Then we update h ← h − (t − 1)h2. This process
continues until we get hk.

Alternatively, one can have k separate tables each of size t, with hash
function h j mapping items to the j-th table. This will also ensure that
any item is hashed to k distinct locations. However, the downside is
that the structure size is now k times larger. It is believed that using this
version, the size of each table can be smaller than ck s, but no formal
analysis is known so far.

Finally, one can simply discard the duplicated hash values returned
by the k hash functions, that is, an item may be mapped to fewer than k
locations when there are duplicated hash values. Strictly speaking, the
analysis below does not hold for this version, but empirically this may
not lead to much difference for t not too small.

There are cases where the SparseRecovery structure can be further
simplified. If we are not dealing with a multiset but a set, i.e., at most
one copy of each item can exist in the structure, then the sum field can
be replaced by the XOR of all the item identifiers mapped there. This
eliminates any concern of bit overflow. Second, if we are dealing with
a set and we are guaranteed that there will be no extraneous deletions,
i.e., deleting a nonexistent item, then the fingerprint field is not needed.
We simply check if the count is 1 for a cell, and recover the item from
the cell if it is.

Further Discussion. The analysis relies on the connection between
the peeling process and the existence of a 2-core in a random hy-
pergraph. A hypergraph G = (V, E) is similar to a standard graph,
the only difference being that an edge in a standard graph connects
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two vertices but a hypergraph edge (or ‘hyperedge’) may connect
any number of vertices, i.e., each edge is now any subset of V .

To make the above connection, think of the cells as being ver-
tices in the hypergraph, and the items as being hyperedges, with
the vertices for an edge corresponding to the cells that the item is
mapped to. In our case, each edge covers k randomly chosen ver-
tices in the hypergraph. The 2-core is the largest sub-hypergraph
that has minimum degree at least 2, i.e., each vertex must be cov-
ered by at least 2 edges. The peeling process for SparseRecovery
is then exactly the same as the standard peeling algorithm to find
the 2-core of a hypergraph: while there exists a vertex with degree
1, delete it and the corresponding hyperedge. The equivalence be-
tween the peeling process and the QUERY algorithm for SparseRe-
covery is thus immediate.

We can recover the vector completely if the 2-core of the corre-
sponding hypergraph is empty. This is determined by the random
choice of the hash functions, which we can treat as generating a
random hypergraph. Prior studies on the 2-core in a random hy-
pergraph have established tight bounds on its existence probabil-
ity. Let t be the number of vertices and s the number of hyper-
edges. If t > (ck + ε)s for any constant ε > 0 and the values of ck

in Table 3.1, then the probability that a non-empty 2-core exists is
O(t−k+2), which yields the claimed bounds above.

A full analysis on the existence probability of 2-cores is rather
technical and can be found in [83, 180]; here we just provide some
intuition. First let us consider the probability that any two given
hyperedges form (part of) a 2-core. For this to happen, they must
cover exactly the same set of k vertices, which happens with prob-
ability O(t−k). As there are O(s2) = O(t2) pairs of hyperedges, by
the union bound, the probability that there exists a 2-core with 2
hyperedges is O(t−k+2).

The full analysis will similarly examine the probability that there
exists a 2-core with j hyperedges, for j = 3, 4, . . . , s, and the cal-
culation is quite involved. What has been shown is that, when
t > (ck + ε)s, these larger 2-cores are unlikely to occur, and the total
probability of their existence is dominated by that of a 2-hyperedge
2-core.

History and Background. Structures which allow the recovery of a
small number of items have appeared in many different problems within
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computer science. For example, many problems in coding theory re-
late to sending information (a bit string), which is corrupted in a small
number of places. The difference between the transmitted and received
bit string can be interpreted as a set of locations, and the goal of er-
ror correction is to identify these locations, and correct them. Hence,
many techniques from coding theory, such as Reed-Solomon and Reed-
Muller codes [183], can be adapted to solve this sparse recovery prob-
lem.

More recently, interest in problems of “compressed sensing” have
also produced algorithms for sparse recovery. The area of compressed
sensing is concerned with defining a matrix M so that given the product
Mx for a vector x, x can be recovered accurately. Note that exactly re-
covering x is impossible unless M has many rows, in which case simply
setting M to be the identity matrix would solve the problem. Instead, it
is usually assumed that x is ‘sparse’ in some sense, in which case much
more compact matrices M can be defined. This sparsity could manifest
in the sense that few entries of x are large and most are small (but non-
zero). The case when only k entries are non-zero and the rest are zero is
known as the strict k-sparsity or exactly k sparse case. The idea of using
sum and count in this way to simply decode an isolated item seems to
have appeared first in the work of Ganguly [105]. This technique can
also be understood as a limiting case of Reed-Solomon coding, when
two polynomial extensions of the input are taken, corresponding to the
sum and count of the symbols.

Most recently, there has been a line of work developing “invertible
Bloom look-up tables” (IBLT) [94, 118]. The goal of these is to func-
tion as a BloomFilter but with the additional property of being able to
recover the encoded set when the number of items is small enough.
In some cases, the focus can be limited to where the input describes
a set rather than a multiset (i.e., the multiplicity of each item is re-
stricted to 1); this slightly simplifies the problem. Our description of the
SparseRecovery structure is close to that of Eppstein and Goodrich [94],
though the simple (slightly weaker) analysis was presented in [61]. A
distillation of these ideas appears in the form of “Biff codes”, whose
name acknowledges the Bloom Filter [179]. The key idea is to use an
IBLT data structure to act as the error correcting part of a code, to handle
character errors (or erasures). The resulting code is considered to be at-
tractive, as encoding and decoding is very fast – encoding is essentially
linear in the size of the input, while error correction takes time propor-
tional to the number of errors. Although the constant factors that result
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for using the Biff code are not the smallest possible, the fast operation
and simple algorithm make the code attractive for settings where there
are large volumes of data in large blocks, and quite low error rates,
which is a common scenario.

3.9 Distinct Sampling / `0 Sampling

Brief Summary. An `0-sampler structure summarizes a multiset A of
items under insertions and deletions. It allows one (or more) items to
be sampled uniformly from those items currently in A, i.e., those that
have non-zero count. Formally, if |A| denotes the distinct cardinality of
the multiset, that is, the number of items with non-zero count, then the
summary promises to sample each item with probability (1 ± ε)/|A| ± δ,
for parameters ε and δ. With ε and δ sufficiently small, this sampling
is approximately uniform. The structure is based on multiple instances
of a SparseRecovery structure, where each instance samples its input
with decreasing probability.

Operations on the summary. The sampling process is applied to items
drawn from a known universe of possibilities, denoted U. The `0-sampler
structure consists of m SparseRecovery data structures, where m = log n
and n = |U | is the size of the set of possible items in the multiset A (or
a bound on the largest value of |A|). The i’th SparseRecovery struc-
ture is applied to a subset of U where items are included in the subset
with probability 2−i+1, which we call “level i”. If we write S i to denote
the i’th SparseRecovery structure, then S 1 applies to all possible items,
S 1 applies to half, S 3 to a quarter, and so on. Let Ui be the subset of
the universe selected at level i, and we write Ai to denote the input
multiset restricted to Ui. The idea is that there is some level i where
0 < |Ai| < k, where k is the parameter of the SparseRecovery structures.
At this level, we can recover Ai exactly, and from this we can sample
an item. The subsequent analysis shows that this is sufficiently close to
uniform.
Algorithm 3.18: `0-sampler: INITIALIZE (n, δ)

1 m← log n;
2 for j← 1 to m do
3 S j ← SparseRecovery.INITIALIZE (log2 1/δ) ;

4 h← randomly chosen hash function ;
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To INITIALIZE the structure, we fix the value of m, and INITIALIZE m
SparseRecovery data structures. We also initialize the mechanism that
will be used to determine the mapping of items to subsets. This is done
with a hash function (so the same item is mapped consistently). Picking
a hash function h that maps to the range [0 . . . 1], we define Ai to contain
all those items j so that h( j) ≤ 2−i+1.

Algorithm 3.19: `0-sampler: UPDATE ( j,w)

1 for i← 1 to m do
2 if h( j) ≤ 2−i+1 then
3 S i.UPDATE ( j,w)

The UPDATE procedure applies the hash function to map to levels.
Given an update to an item j and a change in its weight w, we apply
the hash function h to determine which levels it appears in, and update
the corresponding SparseRecovery structures. Algorithm 3.19 makes
this explicit: h( j) is evaluated, and compared against 2−i+1 to determine
if j ∈ U j.

Algorithm 3.20: `0-sampler: QUERY ()

1 for i← 1 to m do
2 Ai ← S i.QUERY ();
3 if Ai , FAIL and Ai , ∅ then
4 j← random item from Ai ;
5 return (j) ;

To QUERY the structure, we iterate over each level, and find the first
level at which we can successfully retrieve the full set Ai (i.e., the size
of Ai is not too large). Then a random element from this set is returned
(Algorithm 3.20). For this to work, we have to ensure that there is some
Ai for which Ai is not too large and is not empty. This is determined by
the analysis. Lastly, to MERGE two `0-sampler structures (provided they
were initialized with the same parameters, and share the same h func-
tion) we just have to MERGE corresponding pairs of SparseRecovery
structures.

Example. Figure 3.4 shows a schematic of how the `0-sampler structure
stores information. Each level is shown with the list of items that are
stored at that level. The input describes the set A = {3, 6, 7, 8, 10, 14, 18, 19, 20},
which is also represented as A1. About half of these elements are also
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3, 8, 10, 14, 20

3, 10, 14

14

Level 1:

Level 2:

Level 4:

3, 6, 7, 8, 10, 14, 18, 19, 20

Level 3:

Figure 3.4 Example of `0-sampler structure with four levels

represented in A2 = {3, 8, 10, 14, 20}. At level 5 and above, no elements
from A are selected, so A5 = ∅ (not shown).

Suppose we set the parameter k of the SparseRecovery structure to
be 4. Then it is not possible to recover A1 or A2 — their cardinality is
too large. However, A3 can be recovered successfully, and one of these
items can be picked as the sample to return.

If occurrences of items 3, 10 and 14 happened to be deleted, then level
A4 and A3 would become empty. However, it would now be the case
that |A2| = 3, and so A2 could be recovered and sampled from. The
analysis detailed below argues that it will be possible to return a sample
with good probability whatever the pattern of updates.

Further Discussion. The analysis has two parts. The first part is
to argue that with a suitable setting of the parameter k for the
SparseRecovery structures, there will be a level at which recov-
ery can succeed. The second is to argue that the item(s) sampled
will be chosen almost uniformly from A.

Given a particular input A, consider the event that some item is
returned by the structure in response to a QUERY. For a level i, let
the random variable Ni = |Ai| be the number of (distinct) elements
from the input that are mapped there. For the structure to succeed,
we need that 1 ≤ N j ≤ k. Observe that

E[Ni] =
∑
j∈A

Pr[ j ∈ Ai] =
∑
j∈A

2−i+1 =
|A|

2i−1 ,

by linearity of expectation since the chance that any item is in-
cluded in Ai is 2−i+1.

To ensure that there is at least one level with sufficiently many
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items, consider the level i such that

k
4
≤ E[Ni] ≤

k
2

We will be able to successfully recover Ai if its size is not too far
from its expected size. Specifically, we need that the absolute dif-
ference between Ni and E[Ni] is at most E[Ni]. If we assume that the
choices of which items get included in Ai are fully independent,
then we can apply Chernoff bounds of the form stated in Fact 1.5,
and obtain that the probability of this event is exponentially small
in k, i.e., Pr[1 ≤ Ni ≤ k] ≥ 1 − exp(−k/16). We note that it is not
necessary to assume that the choices are fully independent; similar
results follow assuming only k-wise independence [201, 61].

For the second part, we want to show that the sampling is almost
uniform. This requires an argument that the items which survive
to level i or above are uniformly selected from all items. This is the
case when the selection is done with full independence, and this
also holds approximately when limited independence is used. The
fact that the sampling may fail with some small probability may
also bias the distribution, but this gives only a very small distor-
tion. Consequently, it holds that each item is sampled with prob-
ability (1 ± ε)/|A| ± δ, where both ε and δ are exponentially small
in k [61]. Equivalently, if we pick k to be log 1/δ, then the sampling
probability is 1/|A| ± δ.

Implementation Issues. As discussed in the analysis, an implementa-
tion must use hash functions to select items to level i that have only
limited independence. The analysis shows that it is sufficient to have
small (log 1/δ) independence for the guarantees to hold. Further, rather
than map to {0 . . . 1}, it is more common to have hash functions that map
to integers and select items that hash to a 2−i+1 fraction of the range.
However, provided the range of the integers is sufficiently large (say,
more than n3 given the bound n on the size of the input), this does not
affect the selection probabilities. For the analysis to hold, it seems that
we should select the level i such that k

4 ≤ |A|/2
i−1 ≤ k

2 to perform the
recovery. This requires knowing a good estimate of |A|. However, it is
seen that simply greedily picking the first level where recovery suc-
ceeds does not substantially affect uniformity, and does not decrease
the failure probability [61].

The discussion and analysis has assumed the case where the goal is to



DRAFT

122 Summaries for Multisets

recover a single sample. However, when the goal is to recover a larger
set of size s, the structure is almost identical. The only changes needed
are to increase the size of k proportional to s [20].

History and Background. The notion of `0-sampling was first intro-
duced under the name of distinct sampling, in order to solve problems
in geometric data analysis [104] and to capture properties of frequency
distributions [74]. Variations on the basic outline followed above have
been presented, based on how sampling to levels is performed, and
what kind of sparse recovery is applied. The underlying concept, of
hashing items to levels and using recovery mechanisms, is universal [104,
74, 181, 144]. More recently, the variant where multiple items must be
recovered has also been studied using similar constructions [20].

The notion has a surprising number of applications in computer sci-
ence, although mostly these are more theoretical than practical. The
chief surprise is that graph connectivity can be tracked in near-linear
space, as edges are added and removed. This construction, reliant on `0

sampling, is described in Section 7.1. Other applications of `0 sampling
appear in computational geometry, where they can be used to track the
width (a measure of spread) of a pointset [14], the weight of a span-
ning tree in Euclidean space [104], and for clustering high dimensional
data [34].

3.10 Lp sampling

Brief Summary. An `p-sampler structure summarizes a multiset A of
items under insertions and deletions. It allows items to be sampled
from those currently in A according to the `p distribution, where each
item is weighted based on the p’th power of its current frequency. For-
mally, the objective is to sample each element j whose current frequency

is v j with probability proportional to (1 ± ε)
vp

j

‖v‖pp
± δ, where ε and δ are

approximation parameters. The structure is built on top of the Count
Sketch data structure which allows items to be selected based on the `2

distribution. With appropriate re-weighting, this achieves the desired
sampling distribution.

Operations on the summary. The `p-sampler structure uses a hash func-
tion u to re-weight the input, where each hash value u( j) is treated as
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a uniform random real number in the range 0 to 1. We describe the
method that works for 0 < p < 2.

Algorithm 3.21: `p-sampler: INITIALIZE (p, ε, δ)

1 k ← 2dlog(2/ε)e ;
2 u← random k-wise independent hash function to [0, 1];
3 if p = 1 then
4 m← O(log 1/ε)
5 else
6 m← O(ε−max(0,p−1))

7 Count Sketch.INITIALIZE (m,log 1/δ);
8 `p sketch.INITIALIZE ()

To INITIALIZE the structure (Algorithm 3.21), we sample the neces-
sary hash function u, and initialize the sketches that will be used to
track the frequencies.

Algorithm 3.22: `p-sampler: UPDATE ( j,w)

1 Count Sketch.UPDATE ( j, u( j)−1/p · w) ;
2 `p sketch.UPDATE ( j,w, p)

To UPDATE the structure (Algorithm 3.22), we update the associated
sketches: we use the hash function u to adjust the update to the Count
Sketch, and we update the `p sketch to estimate the `p norm of the
(unadjusted) input.

To query the structure and attempt to draw a sample according to
the `p distribution, we try to identify the largest element in the rescaled
vector. If the input defines a vector v, let z be the vector so that z j =

v j/u( j)1/p. We use the Count Sketch to find the (estimated) largest entry
of z, as zi, and also estimate ‖v‖p by setting r = `psketch.QUERY (). We
also use the Count Sketch to find the m largest entries of z, and esti-
mate the `2 norm of the vector z after removing these (approximated)
entries as s. We apply two tests to the recovered values, whose pur-
pose is explained further below. These tests require s ≤ ε1−1/pm1/2r and
|zi| ≥ ε−1/pr. If these tests pass, we output i as the sampled index; oth-
erwise, we declare that this instance of the sampler failed. To ensure
sufficiently many samples are generated, this process is repeated inde-
pendently in parallel multiple times.

Example. Consider the vector v = [1, 2, 3,−4], so that ‖v‖1 = 10. We con-
sider trying to `1 sample from this vector with ε = 1

2 . For simplicity of
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presentation, we assume that we obtain m = 1, and the sketch correctly
find the largest items.

Suppose that the hash function u gives us a random vector

u = [0.919, 0.083, 0.765, 0.672].

Then we have the rescaled vector z as

z = [1.08, 24.09, 3.92,−5.95]

The largest magnitude entry of z is z2 = 24.09. Suppose our estimate
of ‖v‖1 gives r = 11.81, and we find s (the 2-norm of z after removing
z2) as 6.67. Our two tests are that ‖1.08, 3.92,−5.45‖2 = 6.67 ≤ 11.81 and
24.09 ≥ 2 · 11.81. Consequently, both tests pass, and we output 2 as the
sampled index.

Further Discussion. The essence of the `p sampling algorithm is
that the values of u( j)1/p give a boost to the probability that a small
value becomes the largest entry in the rescaled vector z. It is chosen
so that this probability corresponds to the desired sampling distri-
bution. However, reasoning directly about an element becoming
the largest in the rescaled vector is a little tricky, so we modify the
requirement to considering the probability that any given element
takes on a value above a threshold τ, and that no other element
also exceeds that threshold.

We start by observing that the probability that the reciprocal of
a uniform random value ui in [0, 1] exceeds a threshold τ is exactly
1/τ. That is, Pr[u−1

i ≥ τ] = 1/τ. Now set τ = ‖v‖pp/|vi|
p and substitute

this in: we get

Pr[u−1
i ≥ ‖v‖

p
p/|vi|

p] = |vi|
p/‖vi‖

p
p.

Rearranging, we have

Pr[|vi|
p/ui ≥ ‖v‖

p
p] = |vi|

p/‖vi‖
p
p

and so Pr[|vi|/u
1/p
i ≥ ‖v‖p] = |vi|

p/‖vi‖
p
p

This looks promising: the quantity |vi|/u
1/p
i corresponds to the

entries of the rescaled vector z, while |vi|
p/‖vi‖

p
p is the desired `p

sampling probability for element i.
However, there are some gaps to fill, which the formal analy-

sis takes account of. First, we are not working with the exact vec-



DRAFT

3.10 Lp sampling 125

tor of vi/u
1/p
i values, but rather a Count Sketch, with u given by a

hash function. This is addressed in the analysis, using similar argu-
ments based on properties of limited independence hash function
and concentration of measure that we have seen already. Secondly,
it turns out that using the threshold of ‖v‖p is not desirable, since
it could be that multiple indices pass this threshold once rescaled
by u. This is handled by raising the threshold from ‖v‖p to a higher
value of ‖v‖p/ε1/p. This decreases the chance that multiple indices
exceed the threshold. However, this also lowers the chance that
any one index does pass the threshold. The analysis shows that the
probability of returning any index from the structure is approxi-
mately proportional to ε. By repeating the procedure O(1/ε log 1/δ)
times, the method returns a sample according to the desired distri-
bution with probability at least 1 − δ.

The formal analysis is rather lengthy and detailed, and can be
found in the references below.

History and Background. The notion of `p sampling was foreshad-
owed in some early works that provided algorithms for `0 sampling
by Cormode et al. [74] and Frahling et al. [104]. The first solution to the
more general problem was given by Monemizadeh and Woodruff [181],
and subsequently simplified by Jowhari et al. [144]. More recently, Ja-
yaram and Woodruff [136] showed that `p-sampling can be done per-
fectly, i.e., achieving ε = 0 in the sampling distribution, only using poly-
logarithmic space, although the summary is allowed to fail (i.e., not re-
turning a sample) with a small probability.
`p sampling has numerous applications for computational problems.

It can be applied to sampling rows and columns of matrices based on
their so-called leverage scores, which reduces to `2 sampling [86], allow-
ing the solution of various regression problems. More complex norms
of data, known as “cascaded norms” can be approximated by `p sam-
pling [181]. `2 sampling can also be used as the basis of estimating `q

norms for q > 2, as first observed by Coppersmith and Kumar [58]. In
graph algorithms, `2 sampling can be used to sample “wedges” nearly
uniformly, as part of an algorithm to count triangles: a wedge is a pair
of edges that share a vertex [173]. For a more comprehensive survey of
`p sampling and its applications, see [66].


