
DRAFT
4

Summaries for Ordered Data

This chapter continues to work on multisets, but in addition we assume
that the items are drawn from an ordered universe U (in this chapter,
we will use U to denote both the domain and its size). As in Chapter 3,
we use a vector representation for the multiset, and the input consists
of (x,w) pairs, where x is an item from U and w is its integer weight.
Some summaries only allow the input to have positive weights, while
others allow both positive and negative weights. Some summaries al-
low only unweighted input, which means w is always taken to be 1. The
multiplicity of x, vx, is the sum of all the weights of x in the input. We
require every vx to be non-negative.

Queries to the summaries will exploit the ordering of items, e.g., find-
ing the median of the multiset. Formally, for an element x, either in the
data set or not, we define rank(x) =

∑
y<x vy to be the total weight of

elements from the data that are strictly less than x. This allows the com-
putation of various “order statistics”. For example, the median will be
largest element whose rank is no greater than W/2, where W is the total
weight of all elements. The summaries discussed in this chapter sup-
port two types of queries. A rank query finds the rank of a given element
x, while a quantile query returns an element with a given rank. These
queries are important in describing the distribution of the underlying
data. As the summaries are lossy, they do not return the exact ranks. Let
ε be an error parameter. For a rank query with a given element x, the
summary will return an approximate rank r̃, such that rank(x) − εW ≤

r̃ ≤ rank(x) + εW. Similarly, for a quantile query with a given rank r, the
summary will return an element x such that r − εW ≤ rank(x) ≤ r + εW.
Note that in a multiset, such an element may not exist, when there is
an x with rank(x) < r − εW and rank(x) + vx > r + εW. In this case the
summary returns x.

126

DRAFT

4.1 Q-Digest 127

In this chapter, we consider four quite distinct approaches to this
problem, which apply to different restrictions on the input data.

• The Q-Digest summary (Section 4.1) is based on maintaining a subset
of simple counters of ranges, when the input is drawn from a fixed
integer domain, and can be weighted.

• The GK summary (Section 4.2) can be viewed as maintaining a (de-
terministic) sample of the input. It is a comparison-based summary,
meaning that it can be applied to any data type for which a compara-
tor is defined, such as real numbers, user-defined types, etc., so it
has a wider applicability than Q-Digest. However, it can only handle
items with unit weights.

• The KLL summary (Section 4.3) is a randomized summary and pro-
vides a probabilistic guarantee, i.e., it answers queries within the ε-
error bound with a high probability, which can be controlled by ap-
propriate parameters. There is always a small chance that the error
may exceed ε. This summary can also handle weighted items.

• The DCS summary (Section 4.4) is a sketching-based summary, so
it can handle both insertion and deletion of items, which is its dis-
tinctive feature. However, it is also a randomized summary with a
probabilistic guarantee. It also requires the input be drawn from a
fixed integer domain. This summary can handle weighted items.

The following table summarizes the various features of these four
quantile summaries:

Summary Domain Guarantee Weights Deletions

Q-Digest Integer Deterministic Yes No
GK Comparison Deterministic No No
KLL Comparison Probabilistic Yes No
DCS Integer Probabilistic Yes Yes

4.1 Q-Digest

Brief Summary. The Q-Digest provides a compact summary for data
drawn from a fixed discrete input domain U, represented by the inte-
gers 0 to U − 1. Each input is an (x,w) pair where w must be positive.
The summary takes space at most O(1

ε
log U), which is fixed and inde-

pendent of the input. Summaries can be easily merged together. The

DRAFT

128 Summaries for Ordered Data

summary works by maintaining a tree-structure over the domain U:
nodes in the tree correspond to subranges of U, and simple statistics
are maintained for a small set of nodes.

Operations on the summary. The Q-Digest structure is represented
as a collection of nodes within a binary tree whose leaves are the or-
dered elements of U. Each node v is associated with a weight wv. Only
nodes with non-zero weight are explicitly stored. The maintenance pro-
cedures on the data structure ensure that the number of nodes stored
is bounded by O(1

ε
log U). The sum of all weights of nodes is equal to

the total weight of the input items summarized, W. The INITIALIZE op-
eration creates an empty Q-Digest, i.e., all the nodes in the binary tree
have (implicit) weight 0.

At any time, there is a notion of the “capacity” C of the non-leaf nodes
in the structure. This capacity is set to be εW/ log U. The intuition is that
error in answering queries will come from a bounded number of nodes
in the tree. By bounding the weight associated with each node, this will
lead to a bound on the error.

UPDATE. Each UPDATE operation of an item x performs a walk down
the tree structure, starting from the root, with the aim of adding the
weight w associated with x to nodes in the tree. The algorithm proceeds
recursively: given a current node v, if the current weight associated with
the node wv is equal to the capacity C, then it finds which child node x
belongs to (either the left or the right child) and recurses accordingly.
When the node is below capacity, the algorithm tries to store the new
weight there. If v is a leaf node, since leaf nodes do not have to enforce
a capacity, we can add w to wv, and finish. For a non-leaf node v, if the
sum of the weights, wv + w is at most the capacity C, then we can safely
update the weight of node v to wv + w and finish. Otherwise, adding
the full weight would take v over capacity. In that case, we update the
weight of v to wv ← C. This leaves w − (C − wv) of the weight of the
update x still unassigned, so we recurse on the appropriate child of v
as before. This procedure will take at most log U steps, since the length
of a path from the root to the leaf level is log U, and the procedure will
always stop when it reaches the leaf level, if not before.

Algorithm 4.1 shows the pseudocode to update the data structure
with an item x of weight w. The central while-loop determines what to
do at a given node v. If v is below capacity, then lines 5–8 put as much of
the weight w there as possible, and adjust w accordingly. If this reduces

DRAFT

4.1 Q-Digest 129

w to zero, then the algorithm can break out of the loop. Otherwise, it
recurses on either the left or right subtree of v (denoted by v.left and
v.right, respectively). Finally, any remaining weight is assigned to node
v in line 14: if v is not a leaf, then w will be 0 at this point.

Algorithm 4.1: Q-Digest: UPDATE (x,w)

1 W ← W + w ;
2 C ← εW/ log U ;
3 v← root ;
4 while v is not a leaf node do
5 if (wv < C) then
6 d ← min(C − wv,w) ;
7 wv ← wv + d;
8 w← w − d;

9 if w = 0 then break;
10 if x is in left subtree of v then
11 v← v.left
12 else
13 v← v.right

14 wv ← wv + w ;

QUERY. A rank query for an element x is answered by computing the
sum of weights of all nodes in the structure which correspond to ranges
of items that are (all) strictly less than x. Note that all the weights stored
in such nodes arose from the insertion of items which were strictly
less than x, so this gives a correct lower bound on the answer. Simi-
larly, nodes in the structure corresponding to ranges of items that are
(all) strictly more than x do not contribute to rank(x). This only leaves
nodes in the structure which include x: the weight of these nodes may
have arisen from items that were below, above, or equal to x. These lead
to the approximation in the answer. Note however that there are only
log U such nodes: only nodes on the root-to-leaf path for x contain x.
As the weight of each non-leaf node is bounded by the capacity C, we
have that the error in the answer is bounded by at most C log U. Since
we require that C ≤ εW/ log U, this error is in turn bounded by εW.

Algorithm 4.2 shows code for the query procedure. The algorithm
proceeds down from the root. It assumes that the values of Wv, the total
weight of all nodes below (and including) node v have already been

DRAFT

130 Summaries for Ordered Data

calculated. This can be done with a single depth-first walk over the data
structure. The algorithm computes the sum of weights of all nodes that
are strictly less than x. The algorithm walks the path from the root down
to x. At each step, if x belongs to the right subbranch of the current node
v, then it adds in the count of all nodes in the left sub-ranch as Wu (line 8)
to the running sum r.

Algorithm 4.2: Q-Digest: QUERY (x)

1 v← root ;
2 r ← 0;
3 while v is not a leaf node do
4 u← v.left ;
5 if x is in left subtree of v then
6 v← u
7 else
8 r ← r + Wu ;
9 v← v.right

10 return (r)

COMPRESS. If we only follow the above procedures, then the number of
nodes stored in the structure can grow quite large. This is because the
capacity C = εW/ log U is growing as more elements are inserted into
the summary, so nodes that are full will become underfull over time.
To counter this, we shall COMPRESS the structure from time to time.
The COMPRESS operation ensures that the number of nodes stored in
the structure is bounded by O(log U/ε), while retaining all the proper-
ties needed to give the accuracy guarantees. The first step is to update
the capacity C as εW/ log U. Then the central idea of COMPRESS is to
ensure that as many nodes in the structure as possible are at full capac-
ity, by moving weight from nodes lower down in the tree up into their
ancestors.

First, we compute for each node v the total weight of the subtree at
v, as Wv. This can be done with a single depth-first walk over the tree.
Then COMPRESS proceeds recursively, starting from the root. Given a
current node v, if it is below capacity, i.e., wv < C, then we seek to in-
crease its weight by “pulling up” weight associated with its descen-
dants. If Wv is sufficient to bring the node up to capacity, then we can
adjust wv up to C. This incurs a “debt” of (C−wv) which must be passed

DRAFT

4.1 Q-Digest 131

on to the descendants of v. This debt is apportioned to the left and right
children of v so that neither child is given a debt that exceeds the weight
of their subtree. One way to do so is to assign as much of the debt as
possible to one of the children (e.g., always the left child), while re-
specting this condition. The procedure continues recursively, although
now the weight Wv of a subtree has to be reduced by the debt inherited
from the parents. If this causes the weight of the subtree to be 0, then
the node, and all its descendants now have zero weight, and so do not
have to be retained. The recursion halts when a leaf node is reached:
leaf nodes have no descendants, so no further weight can be pulled up
from them.

Algorithm 4.3: Q-Digest: COMPRESS (v, d)

1 if wv = 0 then return;
2 if v is a leaf node then
3 wv ← wv − d
4 else
5 if Wv − d > C then
6 d ← d + C − wv;
7 wv ← C ;
8 u← v.left ;
9 COMPRESS (v.left, min(d,Wu)) ;

10 COMPRESS (v.right, max(d −Wu, 0));
11 else
12 wv ← Wv − d ;
13 Set weight of all descendants of v to 0 ;

Algorithm 4.3 outlines the procedure for performing a COMPRESS.
Again, we assume that the values Wv have been computed for each
node as the sum of all weights in the subtree rooted at v. The algo-
rithm is called initially with COMPRESS (v = root, d = 0), where v indi-
cates the node for the algorithm to work on, and d indicates the current
debt inherited from ancestor nodes. At the leaf level, the current debt is
applied to the weight of the current node (line 3). The test at line 5 de-
termines whether the current weight of the subtree, less the inherited
debt, exceeds the capacity of the node v. If so, then the weight of v is
increased to the capacity, and the debt adjusted to reflect this. Then as
much of the debt as possible is passed on to the left subtree (rooted at

DRAFT

132 Summaries for Ordered Data

1 39

2

 2

 2

 2

1

 2

Figure 4.1 Example Q-Digest summary over U = 0 . . . 7

u), which can be up to Wu, by the recursive call in line 9. The remainder
of the debt is passed on to the right subtree in line 10. In the case that the
weight of the tree rooted v less the current debt is below the current ca-
pacity, then line 12 updates the weight of v accordingly. All descendants
of v have had all their weight assigned to ancestors, so their weight is
now set to zero.

It is clear that this COMPRESS operation preserves the property that
the weight associated with each node v is due to input items from the
leaves of the subtree of v: since we can view the movement of weights in
the tree as going towards the root, it is always the case that the weight
of an input item x is associated with a node that is an ancestor of x in the
tree. The COMPRESS operation can be implemented to take time linear
in the number of nodes, since each node is visited a constant number of
times, and is processed in constant time.

MERGE. It is straightforward to perform a MERGE operation on two
Q-Digest summaries over the same domain U. We simply merge the
nodes in the natural way: the weight of node v in the new summary is
the sum of the weights of node v in the two input summaries. Following
a MERGE, it may be desirable to perform a COMPRESS to ensure that the
space remains bounded.

Example. Figure 4.1 shows a schematic illustration of an example Q-
Digest summary. It shows a binary tree structure over the domain 0 . . . 7.
Shaded nodes have non-zero counts, while empty nodes are associated
with zero counts, and are not explicitly represented. Currently, the ca-

DRAFT

4.1 Q-Digest 133

 3

 3

 3

3

6

 3

1

2

Figure 4.2 Example Q-Digest summary after COMPRESS operation with
C = 3

pacity of nodes is set to C = 2. If we perform a rank query operation
for x = 5, we obtain an answer of 14, which is the sum of all nodes
strictly to the left of the 6th leaf (the one with a weight of 3 in the ex-
ample of Figure 4.1). The uncertainty in this answer is 6, given by the
sum of weights on the path from the root to x. Suppose we UPDATE

the summary with an item with x = 6 and w = 1. Then the algorithm
would walk down from the root until it reached the internal node with
weight 1. This is below capacity, and so the weight can be increased to
2. Lastly, suppose we perform a COMPRESS operation on the version
of the summary shown in Figure 4.1 after setting the capacity of nodes
C = 3. Then we obtain the result shown in Figure 4.2. Three units of
weight are taken from the third leaf to bring its ancestors up to the new
capacity. One unit of weight is taken from each of the fifth and sixth
leaves to give to their ancestors. This uses up all of the weight of the
fifth leaf, so it is no longer stored. Thus, the COMPRESS operation has
reduced the number of nodes stored by one.

Further Discussion. Following a COMPRESS operation, the num-
ber of nodes with non-zero count is bounded by O(log U/ε). This
holds because, where possible, nodes now have a weight of C.
Some nodes will have weight below capacity, but these nodes have
no descendants with positive weight: if they did have such de-
scendants, then the COMPRESS algorithm would have taken all this

DRAFT

134 Summaries for Ordered Data

weight and distributed it to the ancestors. Consequently, each node
below capacity can be associated with its parent which is at ca-
pacity; and each node at capacity has at most two children that
are below capacity. Suppose there are nc nodes that are at capacity
C = εW/ log U. Then nc can be at most log U/ε, since the weights
of all nodes sum to W. Thus there can be at most O(log U/ε) nodes
with non-zero count in total. This bounds the space of the data
structure following a COMPRESS operation.

The algorithm above to perform an insert takes time O(log U), as
it performs a walk along the path from the root to x. Studying this
path, it turns out that there should be a prefix of the path where
all nodes have weight C, a suffix where all nodes have weight 0,
and at most one intermediate node with weight between 0 and C.
It is therefore possible to improve the running time to O(log log U),
by performing a binary search along this path to find the transition
between nodes of weight C and nodes of weight 0. This assumes
that the nodes are stored in an appropriate dictionary data struc-
ture, such as a hash table or BloomFilter.

A limitation of the Q-Digest summary is the requirement that
the domain of items U be fixed, and known in advance. The sum-
mary is suitable for dealing with items from a well-understood,
structured domain, such as 32-bit integers or IP addresses. How-
ever, it does not easily apply to arbitrary text strings or arbitrary
precision real numbers. For these cases, other summaries such as
the GK summary can be used.

Implementation Issues. In the initial phase of the algorithm, it is not
sensible to directly follow the UPDATE procedure, since this will lose
too much information. Instead, while W < 1

ε
log U, it is better to simply

buffer the input items (and so provide exact answers to queries). Only
when W exceeds this bound is it suitable to switch from buffering to
using the approximate Q-Digest structure.

For a given element x, let r be the sum of the weights of all nodes that
are strictly less than x, and ∆ be the sum of the weighs of all ancestor
nodes of x. As discussed about, we have r ≤ rank(x) ≤ r + ∆ and ∆ < εW,
and we use r to estimate rank(x). But r + ∆/2 is a better estimate, whose
(two-sided) error is at most ∆/2. Using this estimator, we may double
the threshold C and thus make the summary even more compact.

When there are a series of QUERY operations, we may pre-process
the summary in order to speed up the query process. For each node in

DRAFT

4.1 Q-Digest 135

the summary, we calculate the estimated rank of the largest value in
the range represented by that node. All these ranks can be calculated
with a post-order traversal, which can be done in time linear in the size
of the summary. Now to find the rank of a given element x, we return
the estimated rank of the largest value that is no greater than x; to find
the element with a given rank, we return the item in the list whose
estimated rank is closest to the given one. Both operations can be done
efficiently with binary search.

The summary as defined above does not specify exactly when to per-
form a COMPRESS operation. This can be done whenever needed, with-
out affecting the guarantees of the structure. For example, one could
even perform a COMPRESS after every UPDATE operation, although
this would slow down performance considerably. To keep the space
bounded at O(log U/ε), we could only COMPRESS every time the weight
W doubles: using the analysis from the discussion of COMPRESS, we
still have that each node below capacity C is the child of a node whose
weight is C, and we can have only O(log U/ε) such parents.

An intermediate strategy is to perform a compress operation every
time the capacity C can increase by 1, i.e., every time W increased by
log U/ε. In this case, the amortized cost of an update is dominated by
the cost of the UPDATE procedure, since the amortized cost of COM-
PRESS is O(1) per step. However, in some high-throughput applications,
we may want to ensure a worst-case time performance per update. In
this case, the periodic execution of COMPRESS (as well as the need to
switch over from buffering updates to using the Q-Digest) may cause
an unacceptable delay. This can be resolved by performing small pieces
of the COMPRESS operation with every UPDATE, at the cost of signifi-
cantly complicating the implementation.

History and Background. The Q-Digest summary was first proposed
by Shrivastava et al. in 2004 [204]. This version did not require that
the nodes formed a tree: instead, it was proposed to maintain just a
set of nodes and associated weights. Cormode et al. [67] observed that
the same guarantees could be provided while additionally requiring
that the nodes formed a tree. This simplifies the COMPRESS operation,
and ensures that the space bounds are met following each execution of
COMPRESS. This “top-down” version of the Q-Digest is then quite simi-
lar to a data structure proposed to track the “hierarchical heavy hitters”
in streaming data by Zhang et al. , also in 2004 [234].

DRAFT

136 Summaries for Ordered Data

Available Implementations. Several implementations of Q-Digest
are available across various languages, differing in how they choose
to implement the COMPRESS operation. The implementation from
stream-lib (https://github.com/addthis/stream-lib/tree/
master/src/main/java/com/clearspring/analytics/stream/
quantile) uses a similar root-to-leaf version of COMPRESS as dis-
cussed here.

4.2 Greenwald-Khanna (GK)

Brief Summary. The GK summary provides a compact summary of
data drawn from an ordered input domain U. In contrast with Q-Digest,
the GK summary does not need U to be a domain of integers. It is a
comparison-based algorithm, i.e., it works on any ordered domain U
where a comparison operator is defined. But it only accepts insertions
of unweighted elements. So here the total number of elements inserted
into the summary, N, is the same as the total weight W. This summary
can be merged but its size grows after each MERGE.

Operations on the summary. The GK summary stores information about
its input as a list of triples, of the form (xi, gi,∆i). Here, xi is an item from
the input, gi indicates the total number of items that are represented by
this triple, and ∆i records information about the uncertainty in the po-
sition of xi in the sorted order of the input. The summary ensures that,
at any time, for each triple (xi, gi,∆i), we have that

i∑
j=0

g j ≤ rank(xi) + 1 ≤ ∆i +

i∑
j=0

g j, (4.1)

gi + ∆i < 2εN. (4.2)

As a result, we have that the number of input items between xi−1 and
xi is at most 2εN − 1.

To INITIALIZE a new GK summary, we create a list which contains
only one triple (∞, 1, 0).

To UPDATE the summary with an item x, we find the smallest i such
that x < xi. If gi + ∆i + 1 < 2εN, we simply increase gi by 1, in which case
no extra space is used. Otherwise we insert a new triple (x, 1, gi + ∆i − 1)

DRAFT

4.2 Greenwald-Khanna (GK) 137

right before the i-th triple. Then we try to find an adjacent pair of triples
(x j, g j,∆ j) and (x j+1, g j+1,∆ j+1) such that g j + g j+1 + ∆ j+1 < 2εN. If such
a pair can be found, we remove the first triple, and increase g j+1 by g j,
such that the size of the list will remain the same despite of the new
element. If there is not such a pair, the size of the list is increased by 1.
The pseudocode for UPDATE is shown in Algorithm 4.4.

Algorithm 4.4: GK: UPDATE (x)

1 N ← N + 1;
2 Find the smallest i such that x < xi ;
3 if gi + ∆i + 1 < 2εN then
4 gi ← gi + 1 ;
5 else
6 Insert (x, 1, gi + ∆i − 1) before the i-th triple ;
7 if ∃ j : (g j + g j+1 + ∆ j+1 < 2εN) then
8 g j+1 ← g j + g j+1 ;
9 remove the j-th triple ;

To MERGE two GK summaries, we perform a merge of the sorted
lists of triples. Let the head of the two lists be (x, g,∆) and (x′, g′,∆′),
and assume that x ≤ x′. Then we remove the first triple from its list,
and create a new triple in the output GK structure with (x, g,∆+ g′+∆′).
When one list is exhausted, we just copy over the tail of the other list.
This has the effect of combining the bounds on the ranks in the correct
way. In the end we try to reduce the size by removing some tuples as in
UPDATE. This is spelled out in Algorithm 4.5.

DRAFT

138 Summaries for Ordered Data

Algorithm 4.5: GK: MERGE (S ,T)

1 i← 0;
2 j← 0;
3 R← ∅;
4 while i < |S | and j < |T | do
5 if S i.x ≤ T j.x then
6 R← R ∪ (S i.x, S i.g, S i.∆ + T j.∆ + T j.g − 1);
7 i← i + 1;
8 else
9 R← R ∪ (T j.x,T j.g, S i.∆ + T j.∆ + S i.g − 1);

10 j← j + 1;

11 while i < |S | do
12 R← R ∪ (S i.x, S i.g, S i.∆);
13 i← i + 1;

14 while j < |T | do
15 R← R ∪ (T j.x,T j.g,T j.∆);
16 j← j + 1;

17 while there is j such that g j + g j+1 + ∆ j+1 < 2εN do
18 g j+1 ← g j + g j+1 ;
19 remove the j-th triple ;

To QUERY a GK summary to find the estimated rank of a given item
y, we scan the list of triples to find where it would fall in the summary.
That is, we find triples (xi, gi,∆i) and (xi+1, gi+1,∆i+1) so that xi ≤ y < xi+1.
We have

i∑
j=0

g j − 1 ≤ rank(xi) ≤ rank(y) and

rank(y) ≤ rank(xi+1) ≤
i+1∑
j=0

g j + ∆i+1 − 1.

This bounds the rank of y, and leaves uncertainty of at most gi+1 + ∆i+1.
So we return

∑i
j=0 g j − 1 + (gi+1 + ∆i+1) /2 as the approximate rank of

y. Therefore, the maintenance algorithms ensure that this quantity is
bounded. Similarly, suppose we want to QUERY to find an item of rank
approximately r. Then we seek for a triple (xi, gi,∆i) so that

DRAFT

4.2 Greenwald-Khanna (GK) 139

input N d2εNe GK summary

0 0 (∞, 1, 0)
1 1 1 (1, 1, 0), (∞, 1, 0)
4 2 1 (1, 1, 0), (4, 1, 0), (∞, 1, 0)
2 3 2 (1, 1, 0), (2, 1, 0), (4, 1, 0), (∞, 1, 0)
8 4 2 (1, 1, 0), (2, 1, 0), (4, 1, 0), (8, 1, 0), (∞, 1, 0)
5 5 2 (1, 1, 0), (2, 1, 0), (4, 1, 0), (5, 1, 0), (8, 1, 0), (∞, 1, 0)
7 6 3 (1, 1, 0), (2, 1, 0), (4, 1, 0), (5, 1, 0), (7, 1, 0), (8, 1, 0), (∞, 1, 0)

(1, 1, 0), (2, 1, 0), (4, 1, 0), (5, 1, 0), (8, 2, 0), (∞, 1, 0)
6 7 3 (1, 1, 0), (2, 1, 0), (4, 1, 0), (5, 1, 0), (6, 1, 1), (8, 2, 0), (∞, 1, 0)

(2, 2, 0), (4, 1, 0), (5, 1, 0), (6, 1, 1), (8, 2, 0), (∞, 1, 0)
7 8 4 (2, 2, 0), (4, 1, 0), (5, 1, 0), (6, 1, 1), (7, 1, 0), (8, 2, 0), (∞, 1, 0)

(2, 2, 0), (4, 1, 0), (5, 1, 0), (6, 1, 1), (8, 3, 0), (∞, 1, 0)
6 9 4 (2, 2, 0), (4, 1, 0), (5, 1, 0), (6, 1, 1), (6, 1, 2), (8, 3, 0), (∞, 1, 0)

(4, 3, 0), (5, 1, 0), (6, 1, 1), (6, 1, 2), (8, 3, 0), (∞, 1, 0)
7 10 4 (4, 3, 0), (5, 1, 0), (6, 1, 1), (6, 1, 2), (7, 1, 2), (8, 3, 0), (∞, 1, 0)

(4, 3, 0), (6, 2, 1), (6, 1, 2), (7, 1, 2), (8, 3, 0), (∞, 1, 0)
2 11 5 (2, 1, 2), (4, 3, 0), (6, 2, 1), (6, 1, 2), (7, 1, 2), (8, 3, 0), (∞, 1, 0)

(4, 4, 0), (6, 2, 1), (6, 1, 2), (7, 1, 2), (8, 3, 0), (∞, 1, 0)
1 12 5 (1, 1, 3), (4, 4, 0), (6, 2, 1), (6, 1, 2), (7, 1, 2), (8, 3, 0), (∞, 1, 0)

(1, 1, 3), (4, 4, 0), (6, 2, 1), (7, 2, 2), (8, 3, 0), (∞, 1, 0)

Table 4.1 Example of a GK summary, ε = 1/5

rank(xi) ≥
i∑

j=0

g j − 1 ≥ r − εN and rank(xi) ≤ ∆i +

i∑
j=0

g j − 1 ≤ r + εN.

For such an i, we report xi as the item with approximate rank r:
from (4.1), we have that

r − εN ≤ rank(xi) ≤ r + εN.

Note that we can always find such an xi in the summary. If r + 1 ≤
N − εN (otherwise, picking the maximum value will suffice), then we
consider the first triple such that ∆i +

∑i
j=0 g j > r + 1 + εN. Then, neces-

sarily, rank(xi−1) ≤ r + εN, and

rank(xi−1) ≥
i−1∑
j=0

g j−1 = ∆i +

i∑
j=0

g j−1− (gi +∆i) ≥ (r +εN)− (2εN) = r−εN.

Example. Table 4.1 shows how a GK summary works with input 1, 4, 2,
8, 5, 7, 6, 7, 6, 7, 2, 1. In this example we set ε = 1/5, and after each inser-
tion, we always remove the first triple that can be removed. In the end
we have 6 triples, and Table 4.2 shows the accuracy of this summary.

DRAFT

140 Summaries for Ordered Data

x rank(x) r̃(x) Error

1 0 2 2
2 2 2 0
4 4 5.5 1.5
5 5 5.5 0.5
6 6 8 2
7 8 9.5 1.5
8 11 11.5 0.5

Table 4.2 QUERY with the example GK summary

We need to estimate each rank within error of εN = 2.4, and indeed the
summary can estimate all ranks well.

Further Discussion. The original paper [119] introduced two ver-
sions of the GK summary, a complicated one with a strict bound
on the summary size, and a simplified one without proven guar-
antees on its size (hence also update and query time). The version
introduced above is the second version. Despite the lack of a proof
bounding its size, this version of the GK summary performs very
well in practice, with size often smaller than the strict version. It is
also faster since it is much simpler.

In the strict version, the new triple inserted on the arrival of x
is always (x, 1, b2εN − 1c) regardless of the successor triple. And
the UPDATE algorithm does not attempt to removed tuples im-
mediately. Instead, a COMPRESS procedure is introduced, which
guarantees to reduce the space of the summary to O

(
1
ε

log(εN)
)
.

The COMPRESS procedure essentially takes the search through the
data structure for triples that can be combined out of the UPDATE

procedure, but also enforces some additional restrictions on which
triples can be merged. The interested readers may find the proof
and more details about the strict version in the original paper [119].

The MERGE operation is always guaranteed to be correct, in that
it allows us to answer queries with the required accurate. How-
ever, performing a MERGE operation doubles the size of the sum-
mary. We can then perform a COMPRESS to reduce the size if there
is redundancy, but it is not clear that the size will always be re-
duced substantially. It remains an open question whether the GK
summary can be merged while keeping a small size.

DRAFT

4.2 Greenwald-Khanna (GK) 141

Implementation Issues. The list of triples can be kept sorted in a bi-
nary tree (e.g., using std::map in C++), such that in line 2 of Algo-
rithm 4.4, we may find i by performing a binary search.

The naive implementation of line 7 of Algorithm 4.4 requires a linear
scan of the whole list. Alternatively, we may also maintain an auxiliary
min-heap, which manages the values of g j + g j+1 + ∆ j+1. Now, we can
simply check the minimum value in the heap, and remove the corre-
sponding triple if possible; otherwise it would be safe to claim that no
triples can be merged. For each incoming element, the heap may be up-
dated in the same time as UPDATE, so it will not introduce much over-
head. Additional speed improvements can be achieved (at the expense
of adding some complexity) by standard techniques, such as buffering
the most recent set of new items to add to the structure, then sorting
them and performing a bulk UPDATE at the same time as a COMPRESS.
This will reduce the amortized cost of maintaining the data structure.
To answer multiple queries, we can calculate the prefix sums of the gi’s
with a linear scan. Subsequently, a query can be answered easily by
binary search.

History and Background. The GK summary was introduced by Green-
wald and Khanna in 2001 [119]. It has been widely used: for example,
in systems for large scale log analysis [196], or for summarizing data
arising from networks of sensors [120]. The limitations that no strong
guarantees hold for the size of summaries subject to many MERGE oper-
ations, and requirement for unit weight input, has led to much interest
in generalizations and variations that can overcome these limitations.

While very effective in practice, the bound of O(1
ε

log εn) is unsatisfy-
ing. A lower bound of Ω(1

ε
log 1

ε
), due to Hung and Ting [131], applies

to any deterministic, comparison-based algorithm. The lower bound
takes advantage of the assumed deterministic algorithm, to generate
input sequences that force the algorithm to keep track of sufficiently
much information if it is to give an acceptable algorithm. As shown in
the next section, if a small probability of failure is allowed, then this
lower bound can be broken with a randomized summary whose size is
only O(1

ε
log log 1

ε
).

Available Implementations. Several implementations of GK are
available online, across a variety of languages.

DRAFT

142 Summaries for Ordered Data

4.3 Karnin-Lang-Liberty (KLL)

Brief Summary. The KLL summary provides a summary of data drawn
from an ordered domain U. It is a comparison-based summary, just like

GK. The size of the summary is O
(

1
ε

√
log 1

ε

)
after any number of UP-

DATE and MERGE operations. It is more space- and time-efficient than
the GK summary, but it is a randomized algorithm that may exceed the
ε error bound with a small probability. The version of KLL described
below assumes unweighted items; weighted items can also be handled,
and a pointer is given under History and Background.

Algorithm 4.6: KLL: UPDATE (x)

1 B[0]← B[0] ∪ {x};
2 COMPRESS;

Operations on the summary. The KLL summary consists of a list of
buffers B of varying capacities. Buffer B[l] is said to be at level l, and
all items in B[l] have weights 2l. Intuitively, each item in B[l] represents
2l original input items. The capacity of buffer B[l] is defined to be ch−lk
(but at least 2), where h is the highest level with a non-empty buffer,
k = O

(
1
ε

√
log(1/ε)

)
, and c ∈ (0.5, 1) is a constant. Note that with c < 1,

the buffer capacities decrease as we go down the levels.
The UPDATE procedure is shown in Algorithm 4.6. To UPDATE the

summary with an item x, we simply add it to B[0]. At this point, there
is no loss of information. When B[0] reaches its capacity, we perform
an operation called compaction, (i.e., a COMPRESS routine) which moves
half of the items of B[0] to B[1], while resetting B[0] to empty. This in
turn may cause B[1] to reach or exceed its capacity, and a series of com-
paction operations might be triggered as a result, as shown in Algo-
rithm 4.7. Each compaction introduces some error to the rank estima-
tion, but we will show that the accumulated error for any rank is at
most εN with high probability, where N is the number of items summa-
rized.

The compaction operation is spelled out in line 3–9 of Algorithm 4.7,
where we compact B[l] and move half of items to B[l + 1]. First, we sort
all items in B[l] (ties can be broken arbitrarily). Then with probability
1/2 we take all items at odd positions, and with probability 1/2 take all

DRAFT

4.3 Karnin-Lang-Liberty (KLL) 143

Algorithm 4.7: KLL: COMPRESS

1 for l = 0, . . . , h do
2 if |B[l]| ≥ max{2, ch−lk} then
3 Sort B[l];
4 i← a fair coin toss;
5 if i is heads then
6 B[l + 1]← B[l + 1] ∪ {items at odd positions in B[l]};
7 else
8 B[l + 1]← B[l + 1] ∪ {items at even positions in B[l]};

9 B[l]← ∅;

10 if B[h + 1] has been created then
11 h← h + 1;

items at even positions. These items are added to B[l + 1], while B[l] is
reset to empty.

To MERGE two KLL summaries S 1 and S 2, we first merge the two
buffers at the same level (if they exist). Then we perform a series of
compaction operations in a bottom-up fashion, just like in the UPDATE

algorithm, to make sure that every buffer is below its capacity. See Al-
gorithm 4.8.

Algorithm 4.8: KLL: MERGE (S 1, S 2)

1 for l = 0, . . . ,max{S 1.h, S 2.h} do
2 S .B[l]← S 1.B[l] ∪ S 2.B[l];

3 S .COMPRESS;

To QUERY about rank(x) of an element x, we return the value

r̃(x) =
∑

l

2l rankl(x),

where rankl(x) denotes the number of elements in the buffer B[l] that
are strictly less than x. This can be done with a single pass over the
summary, as shown in Algorithm 4.9. Recall that, each item in B[l] rep-
resents 2l original items, so r̃(x) is really just the rank of x among the
weighted items in all the buffers.

On the other hand, to QUERY for an element whose rank is r, we

DRAFT

144 Summaries for Ordered Data

Algorithm 4.9: KLL: QUERY (x)

1 r ← 0;
2 foreach l do
3 foreach y ∈ B[l] such y < x do
4 r ← r + 2l

5 return r

return an element x in the summary whose estimated rank r̃(x) is closest
to r.

Example. Suppose that the following table represents the current sta-
tus of the KLL summary, where we use k = 8, c = 1/

√
2.

l weight capacity B[l]

5 32 8 33, 71, 105, 152, 165, 184
4 16 6 61, 112, 123, 175
3 8 4 23, 81, 134
2 4 3 92, 142
1 2 2 16
0 1 2 84

First consider a query that asks for the estimated rank of 100. This is
estimated as

r̃(100) = 1 · 1 + 2 · 1 + 4 · 1 + 8 · 2 + 16 · 1 + 32 · 2 = 103.

Next, consider the operation UPDATE(44). We first add 44 to B[0],
which causes a compaction on B[0] = {44, 84}. Suppose we take the odd-
positioned items. Then B[0] = ∅, B[1] = {16, 44} after the compaction.
This in turn will trigger a series of compaction operations, as follows.

1. Compact B[1]: Suppose we take the even-positioned items. Then
B[1] = ∅, B[2] = {44, 92, 142}.

2. Compact B[2]: Suppose we take the odd-positioned items. Then B[2] =

∅, B[3] = {23, 44, 81, 92, 142}.
3. Compact B[3]: Suppose we take the even-positioned items. Then

B[3] = ∅, B[4] = {44, 61, 92, 112, 123, 175}.
4. Compact B[4]: Suppose we take the even-positioned items. Then

B[4] = ∅, B[5] = {33, 61, 71, 105, 112, 152, 165, 175, 184}.

DRAFT

4.3 Karnin-Lang-Liberty (KLL) 145

5. Compact B[5]: Suppose we take the odd-positioned items. Then B[5] =

∅, B[6] = {33, 71, 112, 165, 184}.

After UPDATE(4), h has increased by one, so the capacities of the
buffers will change (but the weights do not), as follows.

l weight capacity B[l]

6 64 8 33, 71, 112, 165, 184
5 32 6 ∅

4 16 4 ∅

3 8 3 ∅

2 4 2 ∅

1 2 2 ∅

0 2 2 ∅

Now on this summary, the result of a rank QUERY for item 100 will
result in 64 ∗ 2 = 128, increased somewhat from before.

Further Discussion. Error analysis. As seen above, each item in
buffer B[l] represents 2l original, potentially different, items, so
there will be some loss of information after each compaction opera-
tion. Consider, e.g., the compaction operation on B[4] = {44, 61, 92, 112, 123, 175}
in the example above by taking the even-positioned items and mov-
ing them to B[5]. Before this operation, B[4] contributed 3 items to
the computation of r̃(100), each with a weight of 16. After this op-
eration, only one item, 61, has survived with a weight of 32, so we
have incurred an error of −16. On the other hand, if we had taken
the odd-positioned items, then two items would survive and we
would incur an error of +16. So, we accumulate an error of +2l or
−2l from this compaction, each with equal probability. More im-
portantly, the expected error is 0, meaning that if r̃(100) was an un-
biased estimator, it would remain so. On the other hand, no new
error will be introduced for queries like r̃(120), whether the odd-
or even-positioned items are taken.

Before doing any compaction operations, r̃(x) is obviously ac-
curate. The observations above then imply that, for any x, r̃(x) is

DRAFT

146 Summaries for Ordered Data

always an unbiased estimator, with error equal to

Err =

h−1∑
l=0

ml∑
i

2lXi,l, (4.3)

where the Xi,l’s are independent random variables, each taking +1
or −1 with equal probability. Here ml is the number of compaction
operations done on level l, and it can be shown [135, 148] that
ml = O((2/c)h−l). This is quite easy to understand: The top level
must have not seen any compactions (otherwise level h + 1 would
have been created), so mh = 0. Level h − 1 have had at most 2/c
compactions, because each compaction at level h−1 promotes ck/2
items to level h, so 2/c compactions will make level h overflow.
In general, because the capacities of two neighboring levels differ
by a factor of c, and each compaction on the lower level promotes
half of it capacity to the higher level, so every 2/c compactions on
the lower level triggers one compaction on the higher level, hence
ml = O((2/c)h−l). This simple analysis ignores rounding issues (the
capacities of the bottom levels are all 2; see the example above),
which are handled in [135].

Next, we apply the Chernoff-Hoeffding bound (Fact 1.4) on (4.3):

Pr[|Err > εN |] ≤ 2 exp
 −2(εN)2∑h−1

l=0 O((2/c)h−l22l)

= 2 exp

 −2(εN)2∑h−1
l=0 O((2/c)h(2c)l)

= 2 exp

(
−2(εN)2

O((2/c)h) · O((2c)h)

)
(Recall c ∈ (0.5, 1))

= 2 exp
(
−2(εN)2

O(22h)

)
.

Since each item on level h represents 2h original items, and B[h] has
a capacity of k, so h will be the smallest integer such that N ≤ 2hk,
or h ≤ log2(N/k) + 1. Thus,

22h ≤ 22 log2 (N/k)+2 = 4 · 2log2 (N/k)2
= 4(N/k)2.

Thus, setting k = O(1
ε

√
log(1/ε)) will reduce the failure probability

Pr[|Err > εN |] to O(ε). By the union bound, with at least constant
probability, the estimated ranks are accurate (within error of εN)
for all the 1/ε−1 elements that rank at εN, 2εN, . . . , (1−ε)N, which is

DRAFT

4.3 Karnin-Lang-Liberty (KLL) 147

enough to answer all rank queries within 2ε error. Rescaling ε can
bring the error down to ε. When all rank queries can be answered
within ε error, all the quantile queries can also be answered with
the desired error guarantee.

Space and time analysis. Because the buffer capacities decrease ge-
ometrically, the total space is dominated by the capacity of the
largest buffer at level h, which is O(k) = O(1

ε

√
log(1/ε)). However,

since the smallest meaningful buffer capacity is 2, there might be a
stack of such small buffers at the lower end, as illustrated in the ex-
ample above, so the total space is O(1

ε

√
log(1/ε)+h) = O(1

ε

√
log(1/ε)+

log(εN)).
To analyze the time costs, observe that if we keep all buffers

sorted, the merge in line 6 or 8 of Algorithm 4.7 can be performed
in time proportional to |B[l]|. After this compact operation, |B[l]|/2
items have been promoted one level higher, so we can change the
cost of each compact operation to the promotion of these items.
Overall, half of the items have been promoted to level 1, 1/4 to
level 2, 1/8 to level 3, . . . , k to level h. Thus, the total cost of pro-
cessing N items is

∑h
l=1

N
2l = O(N), and the amortized cost per item

is O(1). Furthermore, as all the algorithm does is merging of sorted
arrays, this makes the summary very fast in practice due to good
cache locality.

By keeping all buffers sorted, a QUERY can also be done more ef-
ficiently, by doing a binary search in each buffer. The time needed
will be O(log2 1

ε
). For multiple QUERY operations without UPDATE

or MERGE, we may preprocess the summary by assigning each ele-
ment x from B[l] with a weight 2l, sorting elements from all buffers
and calculating prefix sums of the weights. After that a QUERY can
be done by a single binary search, which takes only O(log 1

ε
) time.

Further improvements. One can reduce the size of the summary, by
observing that the stack of capacity-2 buffers are not really nec-
essary. Every time we compact such a buffer, we simply promote
one of its two items randomly, so the stack of buffers can be re-
placed by a simple sampler, which samples one item out of 2h′

items uniformly at random, where h′ is the level of the highest
capacity-2 buffer. This reduces the size of the summary to O(k) =

O(1
ε

√
log(1/ε)). However, this makes the MERGE algorithm more

complicated, as discussed in detail in [148].

DRAFT

148 Summaries for Ordered Data

Furthermore, by replacing the top O(log log(1/ε)) buffers with
the GK summary, the size of KLL can be reduced to O(1

ε
log log 1

ε
)

[148]. This improvement in theory may be of less interest in prac-
tice: for ε = 2−16 (i.e., less than 1 in 65,000), the absolute values of√

log 1/ε = log log 1/ε = 4. Hence, the overhead in costs for the GK
summary are such that we will not see much improvement in space
efficiency unless ε is much, much smaller than this already small
value. Consequently, this optimization may be considered only of
a theoretical interest.

Implementation Issues. As described in [135], there are several tech-
niques that can be applied to improve the practical accuracy and effi-
ciency of KLL. We mention two simple but effective ones here.

First, as observed in the example above, the actual size of the sum-
mary fluctuates over time. In most practical scenarios, we are given a
fixed space budget. Thus, instead of compacting a buffer as soon as it
reaches its capacity, we only have to do so if the total space budget is
also exceeded. This means that sometimes buffers may exceed their ca-
pacities. Note that this will not affect the error analysis; in fact, this will
reduce the error even more, because each compaction will compact a
larger buffer, resulting in smaller ml’s.

The second technique reduces randomness via anti-correlation. Again
consider the error introduced when compacting B[4] = {44, 61, 92, 112, 123, 175}
in the example above. As seen above, this compaction introduces an er-
ror of ±16 to r̃(100), each with equal probability. Suppose at a later time
B[4] becomes {34, 50, 90, 101, 135, 145}, which is about to be compacted
again. Now, instead of making a random choice here, we determinis-
tically choose the opposite decision, i.e., if the last compaction chose
odd-positioned items, we would choose the even-positioned items this
time, and vice versa. This has the effect of canceling the previous error,
resulting in a net error of 0. On the other hand, if the contents of B[4]
are {34, 50, 90, 95, 135, 145}, then this compaction will not cancel the pre-
vious error, but will not introduce new error, either. So, the total error
of the every two compactions is at most ±16, effectively reducing ml by
half. More precisely, we flip a fair coin for every two consecutive com-
pactions: with probability 1/2, we do even→ odd, and with probability
1/2, we do odd→ even.

History and Background. Quantile summaries based on the compaction
operation date back to Munro and Paterson [186], who gave a simple

DRAFT

4.3 Karnin-Lang-Liberty (KLL) 149

algorithm that made multiple passes over the data. By considering the
guarantee from the first pass of the Munro-Paterson algorithm, Manku
et al. [170] showed that this offered an ε accuracy guarantee with a
space bound of O(1

ε
log2(εN)). Manku et al. [171] combined this with ran-

dom sampling, giving an improved bound of O(1
ε

log2 1
ε
). By random-

izing the compaction operation (choose odd- and even-position items
with equal probability), Agarwal et al. [2] pushed the space down to
O(1

ε
log1.5 1

ε
), and they also show how to merge their summaries. The

space was then further improved to O(1
ε

log 1
ε
) by Felber and Ostro-

vsky [99], and finally to O(1
ε

log log 1
ε
) by Karnin, Lang, and Liberty

[148]. The algorithm described in this section is a simpler version of

their algorithm which instead obtains O(1
ε

√
log 1

ε
). The extra O(log log 1

ε
)

factor is due to the requirement that all queries must be correct with a
constant probability. If only a single quantile (say, the median) is re-
quired with probability 1 − δ, then the space needed is O(1

ε
log log 1

δ
),

which is known to be optimal [148].

Finally, the KLL summary can also handle weighted items. The size
remains O(1

ε

√
log(1/ε)) but the time to UPDATE the summary becomes

O(log(1/ε)) [135].

Available Implementations. Implementations of KLL are available
across multiple languages. There is a reference implementation from
the authors themselves in Python (https://github.com/edoliberty/
streaming-quantiles), which shows how the COMPRESS op-
eration can be written very concisely. There is a more robust imple-
mentation in the DataSketches library in Java (https://datasketches.
github.io/docs/Quantiles/KLLSketch.html). The DataS-
ketches implementation is compared with the antecedent method
from Agarwal et al. [2], as well as to various heuristic approaches.
Heuristic methods for quantile tracking, such as t-digest and mo-
ment sketch, have been widely implemented, but are shown to
have poor performance on some input data sets that can occur.
The implementation of KLL is shown to have strong accuracy in
practice, while performing tens of millions of updates per second.

DRAFT

150 Summaries for Ordered Data

4.4 Dyadic Count Sketch (DCS)

Brief Summary. The DCS summary provides a compact summary of
data drawn from an integer domain [U] = [0, 1, . . . ,U − 1]. It takes (x,w)
pairs as input where w can be an integer that is either positive or nega-
tive. But the multiplicity of x for any x in the data set must remain non-
negative when the summary is queried for it to be meaningful. It is a
randomized algorithm. This summary takes space O(1

ε
log1.5 U log1.5 log U

ε
),

and returns all ranks within εW error with constant probability, where
W is the total weight of input integers. The summary works upon a
dyadic structure over the universe U and maintains a Count Sketch
structure for frequency estimation in each level of this dyadic structure.

Operations on the summary. The DCS structure is represented as log U
levels of sub-structures. Each one supports point queries over a parti-
tion of [U] into subsets, which we refer to as a “reduced domain of [U]”.
These log U levels make up a dyadic structure imposed over the uni-
verse. More precisely, we decompose the universe U as follows. At level
0, the reduced domain is [U] itself; at level j, the universe is partitioned
into intervals of size 2 j, and the projected domain consists of U/2 j ele-
ments which are intervals in [U]: [0, 2 j−1], [2 j, 2·2 j−1]], . . . , [U−2 j,U−1];
the top level thus consists of only two intervals: [0,U/2−1], [U/2,U−1].
Each interval in every level in this hierarchy is called a dyadic interval.
Each level keeps a frequency estimation sketch that should be able to
return an estimate of the weight of any dyadic interval on that level.
Specifically, the DCS makes use of a Count Sketch at each level but
with a different set of parameters. Note that in the j-th level, an element
is actually a dyadic interval of length 2 j, and the frequency estimation
sketch summarizes a reduced universe [U/2 j]. So for j such that the
reduced universe size U/2 j is smaller than the sketch size, we should
directly maintain the frequencies exactly, rather than using a sketch.
We call a level a lower level if it maintains a Count Sketch, and an upper
level if it maintains the frequencies exactly.

Recall that the Count Sketch consists of an array C of ω × d counters.
For each row, we use pairwise independent hash functions: hi : [U] →
{0, 1, . . . , ω− 1}maps each element in [U] into a counter in this row, and
gi : [U] → {−1,+1} maps each element to −1 or +1 with equal probabil-
ity. To update with (x,w) in the sketch, for each row i, we add gi(x) · w
to C[i, hi(x)]. To estimate the frequency of x, we return the median of

DRAFT

4.4 Dyadic Count Sketch (DCS) 151

gi(x) · C[i, hi(x)], i = 1, . . . , d. Note that the Count Sketch has size ω · d,
which can be large. For the highest (upper) levels of aggregation, it is
more space efficient to simply keep exact counts. So we only use such a
sketch for levels 0, 1, 2, . . . , s = blog(U

ω·d)c.
The INITIALIZE operation creates a dyadic structure over the uni-

verse U. For each upper level j, we allocate an array D j[.] of U/2 j coun-
ters for recording frequencies of all dyadic intervals. For each lower
level j, we allocate a Count Sketch structure, i.e., an array C j[., .] with

parameters ω = 1
ε

√
log U log (log U

ε
), d = log (log U

ε
).

The UPDATE operation of item x with weight w performs an update
on each of the log U levels. An update operation on level j consists of
two steps: (1) map x to an element on this level, denoted by k; and (2)
update the element k in the Count Sketch or the frequency table. In step
(1), the element on level j corresponding to x is simply encoded by the
first log U − j bits of x. In step (2), when level j is an upper level, we
add the weight w to the counter D j[k]; otherwise, we add w · gi(x) to
each C j[i, hi(k)] for 1 ≤ i ≤ d just as performing an update in the Count
Sketch.

Algorithm 4.10: DCS:UPDATE (x,w)

1 for j← 0 to dlog Ue do
2 if (j > s) then
3 D j[x]← D j[x] + w ;
4 else
5 for 0 ≤ i ≤ d do
6 C j[i, hi(x)]← C j[i, hi(x)] + w · gi(x) ;

// UPDATE the jth Count Sketch

7 x← bx/2c;

Algorithm 4.10 shows the pseudocode to update the data structure
with an item x of weight w. The for-loop traverses the dyadic levels
from bottom to top. Within this loop, it updates the structures on each
level. At the start x is the full item identifier; after each step it updates
x to be the index for the next level, by halving it and ignoring any re-
mainder. If the level index j > s, it simply adds the weight w to the x-th
counter of D, else it updates d counters in the sketch array C.

Rank Queries. The routine “rank QUERY” takes a parameter x ∈ U, and
returns the (approximate) rank of x. We first decompose the interval
[0, x − 1] into the disjoint union of at most log U dyadic intervals, at

DRAFT

152 Summaries for Ordered Data

most one from each level; then we estimate the weight of the interval
from each level, and add them up. More precisely, we can view this
dyadic structure as a binary tree. The rank QUERY procedure can be
carried out by performing a binary search for x, which yields a root-
to-leaf path in the binary tree. Along this path, if and only if a node
is a right child, its left neighbor corresponds to a dyadic interval in
the dyadic decomposition of range [0, x). For these dyadic intervals,
we can query them from the corresponding frequency estimation struc-
tures: for the k-th dyadic interval on an upper level j, its frequency is
D j[k]; and for the k-th dyadic interval on a lower level j, its frequency
is median1≤i≤d{C j[i, hi(k)]g j(k)}.

Algorithm 4.11: DCS:rank QUERY (x)

1 R← 0 ;
2 for i← 0 to dlog Ue do
3 if x is odd then
4 if j > s then
5 R← R + D j[x − 1] ;
6 else
7 R← R + median0≤i≤d{C j[i, hi(x − 1)] · gi(x − 1)} ;

8 x← bx/2c;

9 return R;

Algorithm 4.11 shows the pseudocode to query for the rank of x for
an given item x. The algorithm proceeds down from the top level. It
uses a variable R recording the sum of weights of all dyadic intervals
in the dyadic decomposition of [0, x − 1]. When this algorithm halts, R
gives an estimate of the rank of the queried item.

Quantile query. However, for a quantile query, we want to find which
item achieves a particular rank. So we provide a second “quantile QUERY”
function that takes parameter φ ∈ [0,W − 1] as the desired rank, and re-
turns the integer x whose rank is approximately φ. We still view this
dyadic structure as a binary tree. The quantile QUERY can be carried
out by performing a binary search. More precisely, supposing the pro-
cedure arrives at a node u, it computes the rank of u’s right child in the
reduced universe on that level from the corresponding frequency esti-
mation structures, and check whether it is smaller than φ. If yes, it visits
u’s right child; otherwise it visits u’s left child. At the end, this proce-

DRAFT

4.4 Dyadic Count Sketch (DCS) 153

0: 4 1: 1 2: 1 3: 3 4: 3 5: 0 6: 1 7: 2Level 0

Level 1

Level 2

Insert(4, 1)

0 ∼ 1: 5 2 ∼ 3: 4 4 ∼ 5: 3 6 ∼ 7: 3

0 ∼ 3: 9 4 ∼ 7: 6

query rank(6)query quantile(7)

Figure 4.3 Example DCS summary over U = 0 . . . 7

dure reaches a leaf corresponding to an integer x at the bottom level,
which is then returned.

Algorithm 4.12: DCS:quantile QUERY (φ)

1 x← 0;
2 R← 0 ;
3 for j← dlog Ue down to 0 do
4 x← 2 · x ;
5 if j > s then
6 M ← D j[x];
7 else
8 M ← median0≤i≤d{C j[i, hi(x)]gi(x)};

9 if R + M < φ then
10 x← x + 1;
11 R← R + M;

12 return x;

Algorithm 4.12 shows the pseudocode to query for the integer x whose
(approximate) rank interval contains the given rank φ. The algorithm
proceeds down from the top level. It uses a variable x to indicate the in-
dex of the node visited by it, and uses another variable R recording the
rank of the visited node in its reduced universe. In addition, another
variable M is used to store the (approximate) weight of the left child of
the current visited node. Obviously, if R + M < φ, the rank of its right
child is smaller than φ and it should go to the right child, i.e., update x
and R; else it goes to the left child with no change to x and R.

Example. Figure 4.3 shows a DCS summary. It maintains a dyadic struc-
ture over the domain 0 . . . 7. The j-th row consists of all dyadic intervals
of the form [b · 2 j, (b + 1)2 j − 1] for b = 0, 1, . . . , 8/2 j − 1, and maintains
a Count Sketch for the reduced universe consisting of all the dyadic

DRAFT

154 Summaries for Ordered Data

intervals. Each rectangle in the figure corresponds to a dyadic interval,
labeled by its dyadic range and its estimated weight from the Count
Sketch and the stored counts in arrays D j. Suppose we UPDATE the
summary with an item 4 with weight 1. The algorithm walks down the
levels, and at each level it finds the rectangle where the item 4 falls into.
In this example, the dyadic intervals that need to be updated are those
labeled (4 ∼ 7) on level 2, labeled (4 ∼ 5) on level 1, and labeled 4 on
level 0. Suppose we QUERY the rank of a given integer x = 6 on the sum-
mary. The algorithm again walks down these levels and visits the rect-
angles labeled (4 ∼ 7) on level 2, labeled (6 ∼ 7) on level 1 and labeled
6 on level 0. For each rectangle, the algorithm checks whether it corre-
sponds to an odd number in the reduced universe. If yes, it adds the
weight of its left neighbor to the final estimation. In this example, the
rectangles on level 2 and 1 satisfy this condition, so it adds the weights
of rectangle labeled (0 ∼ 3) on level 2 and rectangle labeled (4 ∼ 5) on
level 1 together and return 12 as the estimation. Suppose we QUERY the
quantile of a given rank φ = 7 on this summary. This algorithm walks
down these levels by performing a binary search and visits the rectan-
gles labeled (0 ∼ 3) on level 2, labeled (2 ∼ 3) on level 1 and labeled 3
on level 0, and reaches element 3 on the bottom level.

Further Discussion. In principle, any summary that provides good
count estimation for multisets could be used in place of the Count
Sketch, such as the Count-Min Sketch. However, the Count Sketch
is chosen as the workhorse of this summary as it has additional
properties that allow it to obtain a better space/accuracy trade off.
Specifically, rather than just add up the accuracy bounds of the dif-
ferent sketches pessimistically, we combine them together to give
a tighter analysis of the distribution of the errors.

It should be clear that the DCS summary has space cost O(ω · d ·
log U) = O(1

ε
log1.5 U log1.5(log U

ε
)) and its update time is O(log U log(log U

ε
)).

Next we analyze its accuracy when answering a rank QUERY. An
each level, note that the Count Sketch produces an unbiased es-
timator. Since we add up the estimates from log U sketches, it is
likely that some of the positive and negative errors will cancel each
other out, leading to a more accurate final result. Below, we formal-
ize this intuition. Let us consider the estimator Yi = gi(x) ·C[i, hi(x)]
on each level. Clearly each Yi is unbiased, since gi(x) maps to −1

DRAFT

4.4 Dyadic Count Sketch (DCS) 155

or +1 with equal probability. Let Y be the median of Yi, i = 1 . . . , d
(assuming d is odd). The median of independent unbiased esti-
mators is not necessarily unbiased, but if each estimator also has
a symmetric pdf, then this is the case. In our case, each Yi has a
symmetric pdf, so Y is still unbiased. To keep the subsequent anal-

ysis simple, we let ε′ = ε

/√
log U log (log U

ε
) . Then using the same

Markov inequality-based argument as for the Count-Min sketch,
we have

Pr[|Yi − E[Yi]| > ε′W] < 1/4.

Since Y is the median of the Yi’s, by a Chernoff bound, we have

Pr[|Y − E[Y]| > ε′W] < exp(−O(d)) = O
(

ε

log U

)
.

Now consider adding up log U such estimators; the sum must
still be unbiased. By the union bound, the probability that every
estimate has at most ε′W error is at least 1−O(ε). Conditioned upon
this event happening, we can use Hoeffding’s inequality (Fact 1.4)
to bound the probability that the sum of log U such (independent)
estimators deviate from its mean by more than t = εW as

2 exp
(
−

2t2

(2ε′W)2 log U

)
= 2 exp

−2t2 log (log U
ε

)
(2εW)2

 = O
(

ε

log U

)
.

We can understand a quantile query in terms of this analysis
of rank queries: we obtain a sufficiently accurate approximation
of each quantile under the same conditions that a rank query suc-
ceeds, and so each quantile is reported accurately except with prob-
ability O(ε/ log U). Applying another union bound on the 1/ε dif-
ferent quantiles, the probability that they are all estimated correctly
is at least a constant. We can further increase d by a factor of log 1/δ
to reduce this error probability to δ.

Implementation Issues. In a DCS structure, at each level, it uses a
Count Sketch that is ω × d array of counters. The above settings of ω
and d is chosen to ensure that the analysis will go through. In practice,

it is usually sufficient to set parameters smaller, with ω =

√
log U
ε

and
d = 5 or 7.

DRAFT

156 Summaries for Ordered Data

History and Background. The general outline of using a dyadic struc-
ture of aggregations, and expressing a range in terms of a sum of a
bounded number of estimated counts has appeared many times. The
choice of which summary to use to provide the estimated counts then
has knock-on effects for the costs of the compound solution. Gilbert et
al. [114] first proposed the random subset sum sketch for this purpose,
which results in an overall size of O(1

ε2 log2 U log(log U
ε

)). The disadvan-
tages of this method are that the time to update was very slow, and
the leading factor of 1

ε2 is very large, even for moderate values of ε.
Cormode and Muthukrishnan introduced the Count-Min sketch and
showed how when used within the dyadic structure it can reduce the
overall size by a factor of 1

ε
[72]. This use of DCS was proposed and an-

alyzed in [224]. Directly placing the Count Sketch in the dyadic struc-
ture and applying its standard bounds would not provide the right de-
pendence in terms of ε, so a new analysis was made that reduced the
overall size to O(1

ε
log1.5 U log1.5(log U

ε
)). Further applications of dyadic

decompositions with summaries are discussed in Section 9.3.

Available Implementations. Compared to the other summaries
surveyed in this chapter, the DCS has attracted fewer implementa-
tions, to the extent that there do not appear to be any conveniently
available online. Code generally implementing dyadic sketches for
range queries is available, for example in the Apache MADlib li-
brary, https://github.com/apache/madlib.

