
DRAFT
PART TWO

ADVANCED SUMMARIES AND
EXTENSIONS

DRAFT

DRAFT
5

Geometric Summaries

This chapter deals with data in a multidimensional space, that is, how
to summarize a point set P in the d-dimensional Euclidean space Rd. As
many geometric summaries are just (carefully chosen) subsets of the
points in P that approximately preserve certain properties of P, they
are often called the coresets of P (for the respective properties).

We assume that the coordinates of the points in the data set are real
numbers. For simplicity, we will assume that all computations involv-
ing real numbers are exact; in actual implementation, using floating
point numbers (single or double precision) usually works fine; when
rounding errors may cause robustness issues, or a higher precision is
desired, some exact computation package (such as the one provided in
CGAL) can be used. In this chapter, ‖ · ‖ always denotes the Euclidean
norm.

5.1 ε-Nets and ε-Approximations

Brief Summary. ε-nets and ε-approximations are small summaries about
a set of points P with respect to a certain class of ranges R. In the plane,
for example, R can be all the orthogonal rectangles, or all the half-
planes1. Let |P| = n. Given 0 < ε < 1, a set N ⊆ P is called an ε-net
for P with respect to R if, for any range R of Rwith |R∩P| ≥ εn, we have
N ∩ R , ∅, i.e., N “hits” every range in R that contains at least a fraction
of ε of the points of P. This allows us to perform one-sided threshold
tests for the ranges in R: For any R ∈ R, we simply check if R contains
any point of N. If no, we are certain that R contains less than εn points

1 A halfplane is the region on either side of an infinite straight line.

159

DRAFT

160 Geometric Summaries

of P; but if yes, R may or may not contain at least εn points of P. In
other words, an ε-net can be used to detect all the “heavy” ranges on P,
although it might return some false positives.

A set A ⊆ P is called an ε-approximation for (P,R) if, for any R ∈ R,∣∣∣∣∣ |R ∩ P|
|P|

−
|R ∩ A|
|A|

∣∣∣∣∣ ≤ ε,
i.e., the fraction of points of P contained in R is approximately the same
(at most ε apart) as that of A. Therefore, we can approximately count
the number of points of P inside any range R by simply counting the
number of points in R ∩ A and scaling back. The additive error will be
at most εn.

Note that an ε-approximation is also an ε-net, but not vice versa.
The easiest way to construct ε-nets and ε-approximations is by sim-

ply drawing a random sample from P, and remarkably, the sample size
only depends on ε and d, but not n, for almost all natural geometric
range spaces (the notion will be made more precise below).

Operations on the summary. Suppose the range spaceR has VC-dimension
d (see precise definition below), a random sample of size d

ε
(log 1

ε
+2 log log 1

ε
+

3) from P is an ε-net for (P,R) with probability at least 1−e−d, and a ran-
dom sample of size O(1

ε2 (d + log 1
δ
)) is an ε-approximation with proba-

bility at least 1−δ. Then one can simply use the random sampling algo-
rithms to CONSTRUCT, UPDATE, or MERGE ε-nets or ε-approximations.
Please refer to Section 2.2.

Note that although a random sample of a certain size is an ε-net or
an ε-approximation with high probability, it is very expensive to actu-
ally verify that the obtained sample is indeed one [108]. In practice, we
can only increase the sample size to reduce the probability of failure.
Alternatively, there are deterministic algorithms for constructing ε-nets
and ε-approximations, but they are also expensive and complicated, as
mentioned under “History and Background” below.

Further Discussion. The proofs for the claimed bounds above are
quite technical; below we give proofs for slightly weaker results,
which nevertheless still capture all the basic ideas.

Consider ε-nets first. For any particular range R with |R ∩ P| ≥
εn, a randomly sampled point from P hits R with probability at
least ε, thus if we sample s points to form N, then N misses R with

DRAFT

5.1 ε-Nets and ε-Approximations 161

probability at most (1 − ε)s ≤ e−εs. This means that with a sample
size of O(1/ε), we can hit R with constant probability. However,
the challenge is that there are infinitely many ranges in R. A first
observation is that if two ranges R and R′ contain the same set of
points in P, the two can be considered as the same. Let πR(n) be
the maximum number of distinct ranges for any P with |P| = n.
Clearly, πR(n) depends on R: For halfplanes, πR(n) = O(n2), as each
distinct halfplane must be uniquely defined by two points on its
boundary; for ellipses, the problem is more complicated. In order
to derive a general result, we need the concept of VC-dimensions
for range spaces.

Consider a range space R. A set of points X ⊂ Rd is shattered by R
if all subsets of X can be obtained by intersecting X with members
of R, i.e., for any Y ⊂ X, there is some R ∈ R such that Y = X ∩ R.
For example, if R consists of all the halfplanes in two dimensions,
then the following figure shows 3 point sets that can be either shat-
tered or not shattered, respectively. On the other hand, ifR is all the
ellipses, then all 3 point sets can be shattered. Thus intuitively, el-
lipses are more powerful, hence have higher complexity, than half-
planes.

(i) (ii) (iii)

Shattered by halfplanes Not shattered by halfplanes

The Vapnik-Chervonenkis dimension, or VC-dimension, of a range
spaceR captures this complexity, and is defined to be the size of the
largest point set X that can be shattered by R. It can be verified that
no 4-point set can be shattered by halfplanes, so the range space of
halfplanes has VC-dimension 3. On the other hand, the range space
of all ellipses has VC-dimension at least 4. (To be precise, the actual
VC-dimension of ellipses is 5: The 5 points on a regular pentagon
is shattered by ellipses, and no 6 points can be shattered). Figuring
out the exact VC-dimension for any given range space may not be

DRAFT

162 Geometric Summaries

easy, but luckily for most natural geometric range spaces, the prob-
lem has already been studied. As a rule of thumb, if the ranges are
defined by some shape of constant description size (e.g., simplices,
balls, but not, say, arbitrary convex sets), then the VC-dimension is
also a constant.

If there is no assumption on R, πR(n) can be as high as 2n. It
turns out if R has bounded VC-dimension, πR(n) can be effectively
bounded.

Fact 5.1 For any range space R of VC-dimension d, πR(n) = O(nd).

A proof of this fact can be found in [220]. Intuitively, each dis-
tinct range can be characterized by up to d points in P, so πR(n) ≤(

n
0

)
+

(
n
1

)
+ · · · +

(
n
d

)
= O(nd). Note that, however, Fact 5.1 may not

give the tightest bound on πR(n). For example, halfplanes have
VC-dimension 3, but πR(n) is actually only O(n2). Nevertheless, this
does not affect the bounds on ε-nets and ε-approximations asymp-
totically.

Now with Fact 5.1, we can continue the analysis on the size of
ε-net from above. Since a random sample of size s misses any par-
ticular heavy range with probability at most e−εs, it misses any one
of the ≤ πR(n) heavy ranges with probability at most nde−εs, by a
simple union bound. Thus, setting s = O(d

ε
log n

δ
) suffices for the

random sample to hit all heavy ranges, i.e., become an ε-net, with
probability at least 1 − δ.

The analysis for ε-approximations is similar. First, consider any
particular range R, and suppose |R∩P|

n = β. Recall that for a ran-
dom sample A of size s to be an ε-approximation of P, |A∩R|

s should
be within β ± ε, which translates to (β − ε)s ≤ |A ∩ R| ≤ (β + ε)s.
However, each sampled point falls inside R with probability β, so
we have E[|A ∩ R|] = βs. Since each sampled point being inside R
or not is an independent Bernoulli event, we can use the Chernoff
bound (Fact 1.5) to bound its probability that |A ∩ R| deviates from
its expectation by more than εs as

exp

−O

(εβ
)2

βs

 = exp
(
−O

(
ε2s
β

))
≤ exp(−O(ε2s)).

By the union bound, the probability that A deviates from the cor-
rect fraction for any of the πR(n) ranges is at most nd exp(−O(ε2s)).

DRAFT

5.1 ε-Nets and ε-Approximations 163

Thus, choosing s = O(d
ε2 log n

δ
) gives us an ε-approximation with

probability at least 1 − δ.
To get the tighter bound as mentioned previously, one has to

use more careful analysis than simply applying the union bound.
In particular, to remove the dependency on n, one has to more
carefully bound the number of distinct ranges where two ranges
should be considered the same if they differ by no more than εn
points. Some pointers are given in the “History and Background”
section below.

Finally, it is worth pointing out that all the analysis in this section
can be carried over to any set system (P,R), where P is any set
of objects and R is a collection of subsets of P. For instance, we
can define P to be all lines in the plane, and define R to be all the
subsets of the following form: Each subset Ps included in R is the
set of lines intersected by some segment s. This set system has VC-
dimension 4, and all the results in this section continue to hold
with d = 4.

History and Background. The notion of VC-dimension originated in
statistics, introduced by Vapnik and Chervonenkis [220], who also es-
tablished initial random sampling bound for ε-approximations. It has
been subsequently applied and further developed in many areas such
as computational learning theory, computational geometry, and com-
binatorics. The O(1

ε2 (d + log 1
δ
)) bound was proved by Talagrand [210]

and Li et al. [164], who also showed that it is optimal within a constant
factor.

The notion of ε-net is due to Haussler and Welzl [126]. The depen-
dence on d was subsequently improved by Blumer et al. [30] and by
Komlós et al. [155], who gave the result mentioned above, which is al-
most tight.

The easiest way to construct an ε-net or an ε-approximation is by ran-
dom sampling. By using more careful constructions and/or exploiting
the special properties of the range space, asymptotically smaller ε-nets
and ε-approximations can be obtained. In one dimension with all the
intervals as the range space, we can simply sort all the points of P and
take every (εn)-th point. It is easy to see that this gives us an ε-net as
well as an ε-approximation. So for this range space, the size of ε-net or
an ε-approximation is Θ(1/ε). Note that such an ε-approximation is also
a summary that supports ε-approximate rank and quantile queries as
in Chapter 4, but this summary cannot be updated or merged.

DRAFT

164 Geometric Summaries

Figure 5.1 The minimum enclosing ball in two dimensions is defined by
either 3 points (the example on the left) or 2 points (the example on the
right) of P, assuming no 4 points are on the same circle.

In two and higher dimensions, asymptotically smaller ε-nets and ε-
approximations are also known, but these results are mostly of a theo-
retical nature and the corresponding algorithms are quite complicated.
For orthogonal rectangles in the plane, an ε-net of size O(1

ε
log log 1

ε
) can

be constructed [15, 191], while an ε-approximation of size O(1
ε

log2.5 1
ε
)

exists [206]. For a general range space with VC-dimension d, the size of
an ε-net cannot be improved, but ε-approximations can be reduced to
size O(1/ε2−2/(d+1)) [172], where the hidden constant depends on d. With
some extra logarithmic factors, such ε-approximations can be updated
and merged [2, 207].

5.2 Coresets for Minimum Enclosing Balls

Brief Summary. Let Bo,r be the ball of radius r centered at point o ∈ Rd,
i.e., Bo,r = {p ∈ Rd : ‖p − o‖ ≤ r}. Let P be a set of n points in Rd. The
minimum enclosing ball of P, denoted as MEB(P), is the minimum-radius
ball containing P. Note that the center of MEB(P) may not be a point
of P. Figure 5.1 gives two examples of MEBs in two dimensions. In
general, in d dimensions, the MEB is defined by up to d + 1 points of P.
As it turns out, if some approximation is allowed, this number can be
made independent of d, which is captured by the notion of an ε-coreset.

Given ε > 0, a subset K ⊆ P is an ε-coreset (for MEB) of P if P ⊂
Bo,(1+ε)r, where Bo,r = MEB(K), i.e., the (1 + ε)-factor expansion of the
MEB of K contains P. It turns out that such a coreset of size O(1/ε)
exists, which is independent of both n and d. This makes it especially
appealing for large high-dimensional data. In particular, many kernel

DRAFT

5.2 Coresets for Minimum Enclosing Balls 165

Algorithm 5.1: ε-coreset for MEB: CONSTRUCT(P)

1 K ← {p}, where p is an arbitrary point in P;
2 while true do
3 Bo,r ← MEB(K);
4 if P ⊂ Bo,(1+ε)r then return K;
5 q← arg maxx∈P ‖o − x‖;
6 K ← K ∪ {q};

Algorithm 5.2: ε-coreset for MEB: UPDATE(p)

1 A← A ∪ {p};
2 if A is not full then return;
3 if A *

⋃u
i=1(1 + ε)Bi then

4 K′ ← CONSTRUCT (
⋃u

i=1 Ki ∪ A);
5 B′ ← MEB(K′);
6 foreach Ki ∈ K do
7 if r(Ki) ≤ ε/4 · r(B′) then Remove Ki from K ;

8 Renumber the indexes of K if necessary;
9 Append K′ to K ;

10 A← ∅;

methods in machine learning can be equivalently formulated as MEB
problems in high dimensions, and much faster machine learning algo-
rithms have been designed by using this coreset [219].

Operations on the summary. For a ball B, we use (1 + ε)B to denote
its (1 + ε)-expansion, and use r(B) to denote the radius of B. To CON-
STRUCT the ε-coreset of P, we start with K = {p}, where p is an arbitrary
point in P. Then we add points from P into K iteratively. In each itera-
tion, we first check if (1 + ε) MEB(K) encloses all points of P. If yes, we
are done and the current K must be an ε-coreset of P. Otherwise, we
pick the furthest point in P from the center of MEB(K) and add it to K.
The pseudocode of this algorithm is given in Algorithm 5.1. It has been
shown that the algorithm always finishes in at most 2/ε iterations, so
the resulting coreset has size as most 2/ε [39].

To be able to UPDATE the ε-coreset, we maintain a sequence of core-
sets K = (K1, . . . ,Ku). We maintain their MEBs explicitly Bi = MEB(Ki)

DRAFT

166 Geometric Summaries

oi oi+1di

q

H+

p

ri

Figure 5.2 Algorithm 5.1 in the (i + 1)-th iteration.

for i = 1, . . . , u. The sequence is ordered such that r(Bi) < r(B j) for all
i < j. There is also a buffer A for new points. Initially, the buffer is
empty and u = 0. To UPDATE the summary with a new point p, we
first add it to the buffer A. When the size of the buffer reaches a cer-
tain limit, we perform the following procedure. If all the points in A
are inside

⋃u
i=1(1 + ε)Bi, we just clear A and we are done. Otherwise,

we CONSTRUCT an (ε/3)-coreset K′ on
⋃u

i=1 Ki ∪ A, and add it K . Let
B′ = MEB(K′). Then we clear A. Finally, we delete all Ki’s inK for which
r(Bi) ≤ ε

4 r(B′). This removes a prefix of K , so we need to renumber the
indexes of the Ki’s. The pseudocode of this algorithm is given in Al-
gorithm 5.2. The limit on the buffer A controls the tradeoff of the size
of the summary and update time, and can be usually set to 1

ε
log 1

ε
. To

query the summary for the MEB of all the points P that have ever been
added, we first flush the buffer A by following the procedure above, and
then return MEB

(⋃u
i=1 Bi

)
. However, this only returns an (1.22 + O(ε))-

approximation of MEB(P), namely, we no longer have an ε-coreset for
P. In fact, there is a lower bound stating that any summary that main-
tains an ε-coreset under insertions must have size Ω(exp(d1/3)) [4].

It is not known if this summary can be merged.

DRAFT

5.2 Coresets for Minimum Enclosing Balls 167

Further Discussion. Now we show that Algorithm 5.1 always ter-
minates in at most 2/ε iterations, resulting in a coreset of size at
most 2/ε.

Fact 5.2 For any set of n points P in Rd, Algorithm 5.1 terminates in at
most 2/ε iterations.

Proof We follow the argument in [39]. Let Ki be the coreset after
the i-th iteration, let Boi,ri = MEB(Ki), and let Bo∗,r∗ = MEB(P). In
the (i + 1)-th iteration, the algorithm adds q, the furthest point in P
from oi, to Ki. Please refer to Figure 5.2. We must have ‖q− oi‖ > r∗,
otherwise Boi,‖q−oi‖ would have been the MEB of P. Consider the
distance that the center oi moves in this iteration di = ‖oi+1 − oi‖. If
di = 0, then the algorithm terminates, since MEB(Ki+1) = Boi,‖q−oi‖

encloses all points of P. If di > 0, consider the hyperplane H that
passes through oi and is orthogonal to oioi+1. Let H+ be the closed
halfspace bounded by H that does not contain oi+1. Since Boi,ri is the
MEB of Ki, there must be a point p ∈ Ki∩H+ that lies on the surface
of Boi,ri (see e.g., [116] for a proof for this property of MEBs). So

we have ‖oi − p‖ = ri and ri+1 ≥ ‖oi+1 − p‖ ≥
√

r2
i + d2

i . In addition,
r∗ ≤ ‖oi − q‖ ≤ di + ‖oi+1 − q‖ ≤ di + ri+1. Therefore,

ri+1 ≥ max
{
r∗ − di,

√
r2

i + d2
i

}
. (5.1)

The RHS of (5.1) is minimized when

r∗ − di =

√
r2

i + d2
i ,

or

di =
r∗ − r2

i /r
∗

2
.

So we have

ri+1 ≥ r∗ −
r∗ − r2

i /r
∗

2
=

r∗ + r2
i /r
∗

2
. (5.2)

Setting ri = λir∗ for all i, (5.2) becomes

λi+1 ≥
1 + λ2

i

2
. (5.3)

DRAFT

168 Geometric Summaries

Substituting λi = 1 − 1
γi

in recurrence (5.3), we get

γi+1 ≥
γi

1 − 1
2γi

= γi

1 +
1

2γi
+

1
4γ2

i

+ · · ·

 ≥ γi +
1
2
.

Since λ0 = 0, γ0 = 1, so γi ≥ 1 + i/2 and λi ≥ 1 − 1
1+i/2 . Therefore, to

get λi > 1 − ε, it is enough that 1 + i/2 ≥ 1/ε, or i ≥ 2/ε. �

The analysis of Algorithm 5.2 is more involved. For the proofs of
the following fact, we refer the reader to [4, 47].

Fact 5.3 Algorithm 5.2 maintains O(log(1/ε)) coresets K1,K2, . . . , such
that P ⊂ MEB

(⋃
i MEB(Ki)

)
, whose radius is at most 1.22 + O(ε) times

that of MEB(P).

Implementation Issues. There are various ways to implement the al-
gorithm efficiently with little or no impact on the quality of the result-
ing coreset. To start with, instead of initializing the algorithm with an
arbitrary point p (line 1 of Algorithm 5.1), we can find the furthest
neighbor of p in P, i.e., the point that maximizes the distance from p,
say q, and start the algorithm with K = {q}. This usually reduces the
size of the resulting coreset by 1.

Computing the MEB (line 3 of Algorithm 5.1) can be formulated as
a quadratic programming problem, for which many efficient solvers
are available. Most of them use some iterative method to gradually ap-
proach the optimal solution, which is the MEB in our case. For the pur-
pose of this algorithm, finding the exact MEB is unnecessary. Kumar et
al. [156] proved that it suffices to find the MEB in each iteration of the
algorithm up to error O(ε2) to still guarantee that the resulting K is an
ε-coreset , while in practice it seems that an error of ε works just fine.
Moreover, since only one point is added to K in each iteration, the cor-
responding quadratic program only changes slightly. So one can use
the MEB solution obtained from the previous iteration as the starting
point, so that the quadratic programming solver can converge quickly.

Finally, instead of finding the furthest neighbor from the center of
MEB(K) (line 5 of Algorithm 5.1), which requires O(n) time, we can take
a random sample of the points in P, and choose the furthest one in
the sample. This may increase the size of the resulting coreset slightly,
but can significantly improve the running time. When all the sampled
points are within the (1 + ε)-expansion of MEB(K), we still have to ex-

DRAFT

5.3 ε-Kernels 169

amine all points in P. But when this happens, the algorithm will usually
soon terminate in a few more iterations.

History and Background. The notion of ε-coreset for MEBs, as well
as Algorithm 5.1 for constructing ε-coresets, was proposed by Bădoiu
et al. [41], who showed that this algorithm terminates in O(1/ε2) rounds.
Later, Bădoiu and Clarkson [39] improved the bound to 2/ε as described
above. Independently, Kumar et al. [156] also showed an O(1/ε) bound,
as well as an efficient implementation with some experimental results.
Their experimental results suggest that for typical inputs, the algorithm
returns coresets that are much smaller than the 2/ε bound. Bădoiu and
Clarkson [40] later gave an example on which the coreset has size 1/ε,
and presented an algorithm that always finds a coreset at most this size,
so this problem can be considered as completely solved even up to the
constant. But the new algorithm usually returns the same coreset as the
one produced by Algorithm 5.1.

Algorithm 5.2 was proposed by Agarwal and Sharathkumar [4]. They
showed that this algorithm maintains a sequence of O(log 1

ε
) coresets

(thus using space O(d
ε

log 1
ε
)) and returns a 1+

√
3

2 +ε = (1.366+ε)-approximation
to the MEB. The approximation ratio (of the same algorithm) was sub-
sequently improved to 1.22 + ε by Chan and Pathak [47]. On the other
hand, Agarwal and Sharathkumar [4] proved that any summary that
returns a 1+

√
2

2 (1−2/d1/3)-approximation of the MEB while being able to
support the addition of new points has to have size Ω(exp(d1/3)), which
rules out any small ε-coresets for MEBs in high dimensions. For low
dimensions, ε-coresets that support addition of new points are known;
please see the next section.

5.3 ε-Kernels

Brief Summary. Let P be a set of n points in Rd. The ε-kernel is an
approximation of the convex hull of P. Unlike the convex hull itself
which can have as many as n points, its ε-kernel has a small size which
is independent of n. In this section, d is assumed to be a constant.

Let u be a unit directional vector in d dimensions, i.e., u ∈ Rd with
‖u‖ = 1. For any direction u, define the directional width of P in direction
u, denoted by ω(u, P), to be

ω(u, P) = max
p∈P
〈u, p〉 −min

p∈P
〈u, p〉,

DRAFT

170 Geometric Summaries

ω(u, P)

ω(u,Q)

u

Figure 5.3 An example of a point set P and its ε-kernel (circled points).
For any direction u, the width of the circled points (spanned by the two
dashed lines) is only a (1 + ε)-factor smaller than the width of the whole
point set.

where 〈·, ·〉 is the inner product. The directional width of P is thus the
span of P when projected onto u. Let ε > 0 be an error parameter. A
subset Q ⊆ P is called an ε-kernel of P if for every direction u,

(1 + ε)ω(u,Q) ≥ ω(u, P).

Clearly, ω(u,Q) ≤ ω(u, P). Please refer to Figure 5.3 for an example.
The ε-kernel is a coreset for many measures on P that depend on the

convex hull of P, such as diameter (the distance between the two fur-
thest points), width (maximum directional width), radius of the min-
imum enclosing ball, and the volume of the minimum enclosing box,
etc.

Operations on the summary. There are two steps to CONSTRUCT an ε-
kernel. In step one, we compute an affine transformation π so that π(P)
is an α-fat point set, namely, P is contained in [−1, 1]d but its convex hull
encloses [−α, α]d, where 0 < α < 1 is a constant. This is done by finding
a bounding box C (not necessarily orthogonal) of P, as follows. Find
the two furthest points p, q ∈ P. The segment pq defines the direction
and length of one side of C. Then project all points in P into the (d − 1)-
dimensional hyperplane perpendicular to pq, and repeat the process
above to find the remaining sides of C. The affine transformation π is
thus the one that maps C to [−1, 1]d. Please see Figure 5.4 for an example
in two dimensions. This transformation gives a fatness α of at least 1/2.

In step two, we compute the ε-kernel of π(P). To compute the ε-kernel
of an α-fat point set, we set δ =

√
εα, and consider the sphere S of radius

√
d +1 centered at the origin. We place a set R of O(1/δd−1) = O(1/ε(d−1)/2)

DRAFT

5.3 ε-Kernels 171

p1

p2

p3

p4

p4

p2

p3

p1⇒

Figure 5.4 Transforming P into a fat point set in two dimensions. First,
identify the two furthest points p1 and p2 ∈ P, which defines the first side
of C. Then project all points onto the line p1 p2 and find the two furthest
points on this line, p3 and p4, which defines the second side of C. Finally,
we take the affine transformation π that maps C to the unit square, and
apply it to all points of P.

“equally spaced” points on the sphere such that for any point x on the
sphere S , there is a point y ∈ R such that ‖x−y‖ ≤ δ. Then, for each point
in R, we find its nearest neighbor in π(S) and add it to Q. The resulting
set of chosen points Q becomes the ε-kernel of π(P). Finally, we map the
points in Q back to the original space by applying π−1. Note that the
size of the ε-kernel is O(1/ε(d−1)/2). Figure 5.5 shows an example of how
to construct an ε-kernel for a fat point set.

C

S

Figure 5.5 Constructing the ε-kernel for a fat point set in two dimensions:
The points on the circle S are equally spaced and the distance between
any two of them is at least δ. Each point on S picks its nearest neighbor in
π(P) (the circled points) and they form the ε-kernel of P. Note that multiple
points in R on the sphere S can pick the same point in P as their nearest
neighbor. In this case, it is stored only once in the ε-kernel.

DRAFT

172 Geometric Summaries

To be able to UPDATE the ε-kernel, we apply a general method that
only relies on the CONSTRUCT procedure, known as the logarithmic method.
For simplicity we assume that 1/ε is an integer. Let a/ε(d−1)/2 be the max-
imum size of the ε-kernel built by the CONSTRUCT algorithm above, for
some constant a. For i ≥ 1, define ρi = ε/i2. Instead of maintaining one
kernel, we maintain a series of kernels, each associated with a rank. To
INITIALIZE the summary, we create only one kernel Q0 = ∅ and set its
rank to be 0. To UPDATE the summary with a new point p, we first add
it to Q0. If |Q0| ≤ a/ε(d−1)/2, we are done. Otherwise we CONSTRUCT a ρ1-
kernel of Q0, denoted by Q′, and set its rank to 1. Then we clear Q0 = ∅.
Next, we check if there is another kernel Q′′ in the summary with rank
1. If not, we are done; otherwise, we union Q′ and Q′′ together, and con-
struct a ρ2-kernel of their union, set its rank to 2, and delete Q′ and Q′′.
We carry out this procedure iteratively: Whenever there are two ker-
nels Q′ and Q′′ of the same rank i, we CONSTRUCT a ρi+1-kernel of their
union, set its rank to i + 1, and delete Q′ and Q′′. Eventually, there is at
most one kernel left for each rank. It should be clear that there are at
most O(log n) kernels in the summary after n points have been inserted.
To extract a kernel for all these points, we can simply return the union
of these O(log n) kernels, of total size O(log n/ε(d−1)/2). If a smaller size is
desired, we can CONSTRUCT an ε-kernel of the union of these O(log n)
kernels.

Two ε-kernel summaries as described above can be similarly merged.
We first merge the two kernels of rank 0 in the two summaries. If the re-
sulting kernel has size more than a/ε(d−1)/2, we CONSTRUCT a ρ1-kernel
for it and assign it rank 1. Next, we consider each rank i in the increas-
ing order iteratively. For each rank i, there can be 0, 1, 2, or 3 (in case a
new kernel of rank i has just been constructed by merging two kernels
of rank i − 1) kernels. Whenever there are 2 or 3 kernels of rank i, we
merge them together, and construct a ρi+1-kernel on their union. In the
end, we still have at most one kernel at each rank.

Further Discussion. Below, we briefly sketch the proof that the
CONSTRUCT algorithm computes a subset Q ⊆ P that is an ε-kernel
of P, following the argument in [231]. We assume that P is α-fat
for some constant α. We also assume that in the last step of the
algorithm, we find the exact nearest neighbors of the points in R.
Fix a direction u ∈ Sd−1. Let σ ∈ P be the point that maximizes 〈u, p〉

DRAFT

5.3 ε-Kernels 173

u
σ

x

y

S

B

z
w

h

Figure 5.6 Correctness proof of the CONSTRUCT algorithm.

over all p ∈ P. Suppose the ray emanating from σ in direction u hits
the sphere S at a point x. We know that there exists a point y ∈ R
such that ‖x − y‖ ≤ δ. Let ϕ(y) denote the nearest neighbor of y in P.
If ϕ(y) = σ, then σ ∈ Q and

max
p∈P
〈u, p〉 −max

q∈Q
〈u, q〉 = 0.

Now suppose ϕ(y) , σ. Let B be the d-dimensional ball of radius
‖y−σ‖ centered at y. Since ‖y−ϕ(y)‖ ≤ ‖y−σ‖, ϕ(y) ∈ B. Let us denote
by z the point on the sphere ∂B that is hit by the ray emanating from
y in direction −u. Let w be the point on zy such that zy ⊥ σw and h
the point on σx such that yh ⊥ σx; see Figure 5.6.

The hyperplane perpendicular to u and passing through z is tan-
gent to B. Since ϕ(y) lies inside B, 〈u, ϕ(y)〉 ≥ 〈u, z〉. Moreover, it can
be shown that 〈u, σ〉 − 〈u, ϕ(y)〉 ≤ αε. Thus, we can write

max
p∈P
〈u, p〉 −max

q∈Q
〈u, q〉 ≤ 〈u, σ〉 − 〈u, ϕ(y)〉 ≤ αε.

Similarly, we have minp∈P〈u, p〉 −minq∈Q〈u, q〉 ≥ −αε.
The above two inequalities together imply thatω(u,Q) ≥ ω(u, P)−

2αε. Since [−α, α]d is contained in the convex hull of P, ω(u, P) ≥ 2α.
Hence ω(u,Q) ≥ (1 − ε)ω(u, P). For sufficiently small ε (and also by
scaling ε slightly), this is essentially (1 + ε)ω(u,Q) ≥ ω(u, P).

Analysis of the UPDATE and MERGE algorithm. We will only need the
following two properties of kernels.

DRAFT

174 Geometric Summaries

1. If P2 is an ε1-kernel of P1, and P3 is an ε2-kernel of P2, then P3 is
an (1 + ε1)(1 + ε2) − 1 = (ε1 + ε2 + ε1ε2)-kernel of P1;

2. If P2 is an ε-kernel of P1, and Q2 is an ε-kernel of Q2, then P2∪Q2

is an ε-kernel of P1 ∪ Q1.
By simple induction, we can show that the kernel at rank i has

error
i∏

l=1

(1+ρi)−1 =

i∏
l=1

(
1 +

ε

l2

)
−1 ≤ exp

 i∑
l=1

ε

l2

−1 ≤ exp
(
π2ε

6

)
−1 = O(ε).

So, the union of all the O(log n) kernels, or after another CONSTRUCT

algorithm, still has error O(ε).
The total size of the data structure is
blog ε(d−1)/2nc+1∑

i=0

O
(
1/ρ(d−1)/2

i

)
=

blog ε(d−1)/2nc+1∑
i=0

O
(

id−1

ε(d−1)/2

)
= O

(
logd n
ε(d−1)/2

)
.

Implementation Issues. The CONSTRUCT algorithm can be implemented
with different choices in the various steps that can significantly reduce
its running time without affecting the quality of the resulting kernel
too much. In computing the bounding box C, we do not have to find
the exact diameter of P (two furthest points), which takes O(n2) time, in
deciding each side of C. Instead, one can use the following simple O(n)-
time algorithm to find a constant-approximation of the diameter [91].
Pick an arbitrary point p ∈ P. Find its furthest neighbor q ∈ P. Then find
the furthest neighbor of q in P, denoted by q′. Note that q, q′ must be
the two furthest points along the direction qq′, which can then be used
to decide one side of C.

Placing equally spaced points on a circle in 2D is easy, but the prob-
lem becomes nontrivial in higher dimensions. A good way is to start
with an arbitrary set of k points on the sphere, regarding each point as
an electron, and then using the gradient descent method to minimize
the total potential energy of the point set by repeatedly fine-tuning the
position of each point. The final configuration tends to be a regular dis-
tribution on the sphere. This method also gives us an explicit control on
the kernel size, and there is no need to compute the actual value of α.
The weaknesses of this approach are that it does not give a guarantee
on the error of the resulting ε-kernel, and that it can be slow in high di-
mensions or when k is large. But since this procedure is independent of
the point set, it just needs to be performed once, possibly in an offline
stage, for each desired kernel size.

DRAFT

5.4 k-Center Clustering 175

Finally, in the last step of the CONSTRUCT algorithm, we do not have
to find the exact nearest neighbors of the points in R; some approxima-
tion can be tolerated. One can for example use the ANN package [185]
for approximate nearest neighbor search.

History and Background. The notion of ε-kernels was introduced by
Agarwal et al. [3]. The construction algorithm described above was pro-
posed independently by Chan [46] and Yu et al. [231]. The O(1/ε(d−1)/2)
size of the resulting ε-kernels is optimal in the worst case. The practical
methods presented here are from [231]; while theoretically, an ε-kernel
can be constructed in time O(n + 1/εd−3/2) [46]. The experimental results
in [231] show that the algorithm works extremely well in low dimen-
sions (≤ 4) both in terms of the kernel size/error and running time.
However, it does not scale to high dimensions due to the exponential
dependency on d.

The UPDATE algorithm is also described in [3], which is a modifica-
tion of the logarithmic method of Bentley and Saxe [24]. This algorithm
is simple and practical, but it raises the theoretical question whether
it is possible to maintain an ε-kernel using space that is independent
of n. Chan [46] answered the question in the affirmative, by presenting
an algorithm that uses 1/εO(d) space. This result has been subsequently
improved by Agarwal and Yu [5] and Zarrabi-Zadeh [232], ultimately
yielding an algorithm using O(1/ε(d−1)/2 log(1/ε)) space.

5.4 k-Center Clustering

Brief Summary. Let Bo,r be the ball of radius r centered at point o ∈ Rd.
Let P be a set of n points in Rd. In the k-center clustering problem, we
wish to find the minimum radius r and k balls with radius r centered at
o1, . . . , ok ∈ R

d, such that Bo1,r∪· · ·∪Bok ,r contain all points in P. Note that
when k = 1, this degenerates to the minimum enclosing ball problem
discussed in Section 5.2. However, unlike the minimum enclosing ball
problem which can be solved in polynomial time, the k-center cluster-
ing problem is NP-hard. There is a simple 2-approximation algorithm
for the k-center clustering problem: Let O = ∅ be a collection of centers.
In each step, find the point p ∈ P with the largest d(p,O) and add it
to O, where d(p,O) denotes the minimum distance from p to any cen-
ter in O. This step is repeated k times so that we have k centers in O
in the end. This algorithm requires us to keep the entire set of points

DRAFT

176 Geometric Summaries

P. Below, we show how to turn this idea into a small summary of size
O(k/ε · log(1/ε)) that maintains a (2 + ε)-approximation of the optimal
k-center clustering.

Operations on the summary. If we knew the optimal radius rOPT, we
could turn the 2-approximation algorithm above into a summary of size
k, as shown in Algorithm 5.3. It is easy to see why the summary size, |O|,
never exceeds k when r ≥ rOPT. This is because all points can be covered
by k balls with radius r, and the algorithm never adds more than one
point from each ball into O. Meanwhile, we must not have seen any
point that is 2r away from any center in O (otherwise the algorithm
would have added it to O), so all points can be covered by balls with
radius 2r centered at the centers in O. Thus, if we ran Algorithm 5.3
with r = rOPT, we would find a 2-approximation of the optimal k-center
clustering.

Algorithm 5.3: k-center-with-r: CONSTRUCT(r, P)

1 O← ∅;
2 for p ∈ P do
3 if d(p,O) > 2r then O← O ∪ {p};

4 return O;

However, the problem is that we do not know rOPT in advance. Fur-
thermore, when more points are added to the set of points on which we
wish to summarize, rOPT will gradually increase . Therefore, the idea is
to run multiple instances of Algorithm 5.3 with different values of r. For
j = 0, 1, . . . , jmax−1 where jmax = dlog1+ε(1/ε)e, instance j maintains a col-
lection of centers O j with radius r j. The r j’s will be a (1 + ε)-factor apart
from each other. When more points are added, rOPT will increase, and
some instances will fail, i.e., having more than k centers. When |O j| > k
for some j, we re-run the algorithm with a larger r j ← r j/ε on O j. If
with the new r j, O j still has more than k centers, we increase r j again.

A technical problem is from what value of r we should start. If n ≤ k,
then the optimal clustering is just to put each point in a cluster on its
own. When n = k + 1, we find the closest pair of points, say p1, p2, and
set r0 = d(p1, p2)/2, r j = (1 + ε) jr0 to start running the algorithm.

The complete algorithm is shown in Algorithm 5.4. The algorithm
starts with n = 0 and P = ∅. Upon a QUERY, we return the O j with the
smallest r j.

DRAFT

5.4 k-Center Clustering 177

Algorithm 5.4: k-center: UPDATE(p)

1 n← n + 1;
2 if n ≤ k + 1 then P← P ∪ {p};
3 if n = k + 1 then
4 p1, p2 ← the two closest points in P;
5 r0 ← d(p1, p2)/2;
6 O0 ← CONSTRUCT (r0, P);
7 for j = 1, . . . , jmax − 1 do
8 r j = (1 + ε)r j−1;
9 O j ← CONSTRUCT (r j, P);

10 else
11 for j = 0, . . . , jmax − 1 do
12 if d(p,O j) > 2r j then O j ← O j ∪ {p};
13 while |O j| > k do
14 r j ← r j/ε;
15 O j ← CONSTRUCT (r j,O j);

It is not known if this summary can be merged.

Further Discussion. Now we show that Algorithm 5.4 returns a
(2 + ε)-approximation of the optimal k-center clustering. It is suffi-
cient to prove the following:

Fact 5.4 For any O j maintained by Algorithm 5.4,
⋃

o∈O j
Bo,(2+3ε)rOPT

covers all points.

Proof Algorithm 5.4 is actually running jmax instances indepen-
dently. Instance j starts with r j = (1 + ε) jr0, and increases r j ← r j/ε

and reconstructs O j from O j itself whenever |O j| > k. Suppose

r0(1 + ε) j−1/εi ≤ rOPT < r0(1 + ε) j/εi,

for some integers 0 ≤ j ≤ jmax−1, and i ≥ 0. Note that such i, j must
exist as we set jmax = dlog1+ε(1/ε)e. Then instance j must succeed,
i.e., |O j| ≤ k when it reaches r j = r0(1 + ε) j/εi. Below we argue that
the balls centered O j must be able to cover all points with a certain
radius. Recall the earlier argument. If we had run the instance with

DRAFT

178 Geometric Summaries

r j = r0(1 + ε) j/εi from the beginning, then a radius of 2r j is enough.
However, every time we rebuild O j with r j = r0(1 + ε) j/εt, we do
not have all points available, so have only built it from O j itself.
Nevertheless, observe that any point must be within a distance of
2r0(1 + ε) j/εt−1 of the centers in O j. Carrying out this argument in-
ductively and using the triangle inequality, we will need in total a
radius of

i∑
t=0

2r0(1 + ε) j/εt = 2r0(1 + ε) j 1/εi − 1
1/ε − 1

≤ 2r0(1 + ε) j−1/εi · (1 + ε)
1

1/ε − 1

≤ 2rOPT ·
1 + ε

1 − ε
≤ 2(1 + 3ε)rOPT, (assuming ε < 1/4)

to cover all points. �

If we replace ε with ε/3 to run the algorithm, then a (2 + ε)-
approximation is guaranteed.

History and Background. The algorithm presented in this section and
its analysis is from [122].

5.5 The (Sparse) Johnson-Lindenstrauss Transform

Brief Summary. The (Sparse) Johnson-Lindenstrauss transform (Sparse
JLT) transforms a set of n points in Rd to a set P′ of n points in Rk for
k = Θ(1/ε2 log n), such that the pairwise distance of the points are pre-
served up to a multiplicative error of 1 + ε. More precisely, it states that
for any ε > 0, there exists a linear transform f : Rd → Rk such that for
all x, y ∈ P,

(1 − ε)‖x − y‖ ≤ ‖ f (x) − f (y)‖ ≤ (1 + ε)‖x − y‖.

It is thus a summary that reduces dimensionality, not the number of
points in the data set P. It is a fundamental result concerning low-
distortion embeddings of points from high-dimensional to low dimen-
sional Euclidean space.

It turns out that the linear transform f can be obtained by simply

DRAFT

5.5 The (Sparse) Johnson-Lindenstrauss Transform 179

picking a random k × d matrix S from a properly designed probabil-
ity distribution. It can be shown that for such a random S and k =

Θ(1/ε2 log(1/δ)), we have

Pr[(1 − ε)‖x‖ ≤ ‖S x‖ ≤ (1 + ε)‖x‖] > 1 − δ (5.4)

for any x ∈ Rd. Note that the transform S is independent of P and (5.4)
holds for any x ∈ Rd. Therefore, we can set δ = 1/n2, pick an S , and
apply (5.4) to each of the

(
n
2

)
pairs of the points in P so that all pairwise

distances are preserved with probability at least 1/2.

Operations on the summary. We now specify how the Sparse JLT lin-
ear transform S is decided. Let x1, . . . , xd denote the d coordinates of a
point x ∈ Rd. We use y to denote the transformed point y = S x, which
has k coordinates, for some k = Θ(1/ε2 log(1/δ)). Set r = Θ(1/ε log(1/δ))
such that it divides k. We will view the k coordinates of y as an r × k/r
array, i.e. r rows each of size k/r. The array is initialized to all 0. For
each row j of the array, we use a 2 log(1/δ)-wise independent hash func-
tion h j : [d] → [k/r], and a log(1/δ)-wise independent hash function
g j : [d] → {−1,+1}. For each coordinate xi of x and for each row j
of the array, we add xig j(i)/

√
r to y j,h j(i). From the right perspective,

the Sparse JLT of a single point is essentially the same as the Count
Sketch summary for that point, except that (1) the array has dimension
Θ(1/ε log(1/δ)) × Θ(1/ε) as opposed to Θ(log(1/δ)) × Θ(1/ε2) for Count
Sketch; (2) we use hash functions of a higher degree of independence;
and (3) we divide the values by

√
r to give the correct scaling factor, as

we do not take a median across rows but (effectively) average. Thus,
this summary of a point can be updated and merged in basically the
same way as with the Count Sketch, covered in Section 3.5. Finally, the
QUERY function provides an estimate of ‖x‖ by simply computing the
norm of y, i.e., taking the squared sum of all entries in the array, as op-
posed to taking the median of the rows as in Count Sketch. Distances
between points can similarly be computed by performing the corre-
sponding operations between their Sparse JLT transformations, then
applying the QUERY function.

Note that the Count Sketch also provides a summary that preserves
pairwise Euclidean distances between points with the same sketch size.
The time to perform an update is actually faster (it does not have the
factor of 1/ε), but since it uses the median operator to produce an es-
timate, it does not offer an embedding in to a lower-dimensional Eu-
clidean space, which is needed in certain applications such as nearest-

DRAFT

180 Geometric Summaries

neighbor search and some machine learning applications. For this rea-
son, the Sparse JLT may often be preferred due to its stronger mathe-
matical guarantees, even though the cost of UPDATE operations is higher.

Further Discussion. The analysis of this technique is not hugely
difficult to understand, but involves some concepts from combina-
torics and coding theory that go beyond the scope of this volume.
Consequently, we choose to sketch out the outline.

A first step is to assume that we are dealing with an input vec-
tor x with ‖x‖2 = 1. This is because the transformation is linear, so
any scalar multiple of x is passed through the estimation process.
Assuming ‖x‖2 = 1 threatens to make the analysis redundant, since
the objective is to form an estimate of ‖x‖2, but of course, the algo-
rithm does not rely on this assumption, and so we can proceed.

As noted above, this version of a Sparse JLT transform is very
similar in operation to the Count Sketch and the AMS Sketch. Con-
sequently, we use the same notation to describe its analysis. As in
Section 3.6, we can define a random variable X j as the estimate ob-
tained of ‖x‖22 from the jth row, as

X j =

k/r∑
p=1

C[j, p]2 =

k/r∑
p=1

1
r

 ∑
i:h j(i)=p

x2
i + 2

∑
i,`,h j(i)=h j(`)=p

g j(i)g j(`)xix`


where, C[j, p] denotes the contents of the pth cell in the jth row of
the sketch; xi are the entries of vector x; h j is the hash function as-
signing indices to cells in row j; and g j provides the {+1,−1} value
for each index in row j.

Observe that by the assumption that ‖x‖2 = 1, we can write a
random variable Z for the total error in estimation as

Z =
1
r

r∑
j=1

(X j − 1) =
2
r

r∑
j=1

k/r∑
p=1

∑
i,`,h j(i)=h j(`)=p

g j(i)g j(`)xix`

The analysis proceeds by bounding this random variable Z. For
the analogous quantity in the analysis of AMS Sketch, it was pos-
sible to bound the second moment (i.e., to bound E[Z2]) in order
to show a constant probability of deviating far from zero error.
This was done by expanding out the square of Z, and arguing that

DRAFT

5.5 The (Sparse) Johnson-Lindenstrauss Transform 181

terms were bounded due to the independence properties of the
hash functions. The approach in this case is essentially the same,
but now we need to show a bound directly in terms of δ, rather
than a constant probability. This requires taking a higher moment
of Z — we apply Markov’s inequality to show that

Pr[|Z| > ε] < ε−qE[Zq]

where q is chosen to be an even number greater than log(1/δ).
However, Zq does not lend itself to direct expansion and bound-

ing, and so instead, we need a much more involved argument. The
high level idea is to use a graph representation of the polynomial
to encode the terms that arise: nodes represent indices, and edges
link indices that appear in the expansion of the polynomial Zq. This
allows a more convenient notation and bounding of the terms that
arise, so the desired inequality can be proven.

History and Background. The JL lemma was established by Johnson
and Lindenstrauss [142] in 1984. There have been a number of different
proofs of this lemma, based on different constructions of the transform
matrix S . Early constructions had S very dense – for example, where
every entry is drawn independently from a Gaussian or Rademacher
(Bernoulli with +1 or −1 values) distribution [134]. In this case UP-
DATE operations take time O(k) for each coordinate that is updated.
This construction remains of importance, as it leads to results in the
relatively new area of compressed sensing [85]. For a concise proof for
this Johnson-Lindenstrauss transform, see the proof of Gupta and Das-
gupta [78].

Due to the importance of the transform, considerable effort has been
invested in making it fast, by sparsifying the matrix S . We avoid a com-
plete history, and highlight some key points along the way. An initial ef-
fort was by Achlioptas [1], whose construction had entries chosen inde-
pendently from {−1, 0,+1}. This achieved a constant degree of sparsity,
i.e., a constant fraction of the entries were non-zero. Ailon and Chazelle
achieved a much faster result by introducing more structure into the
transformation. The “fast Johnson-Lindenstrauss” transform [8] writes
the matrix S as the product of three matrices, S = PHD. P is a sparse
matrix where only a roughly log2 n/d fraction of the entries are non-
zero: the non-zero entries are chosen independently from a Gaussian
distribution. If we applied P directly on the input, we would achieve
the desired result (preservation of the Euclidean norm) — if the input

DRAFT

182 Geometric Summaries

vector was dense (i.e., had few zero entries, and no particularly large
entries). The other parts of the transform are designed to preserve the
Euclidean norm of the vector, while (almost certainly) giving the dense
property. D is a diagonal matrix whose entries are randomly chosen as
{−1,+1}. Observe that this does not change the norm of the vector, and
is very similar to steps in the Count Sketch and Sparse JLT described
above that randomly flip signs of entries. H is the Hadamard transform
— this is an instance of a Fourier transform and so has some useful
properties: (1) it is an orthonormal basis transformation, so again does
not change the Euclidean norm of the vector (2) it can be computed
quickly using a Fast Fourier Transform algorithm, in time O(d log d).
The Hadamard transform ensures that if x was sparse in the original
space, it will be dense in the transformed space. The result of this con-
struction is an instance of a Johnson-Lindenstrauss transform that can
be computed for a vector of dimension d in time O(d log d). However,
this relies on computing the transformation for a whole vector in one
go. When the vector is being defined incrementally, the cost of a single
UPDATE operation is not guaranteed to be fast.

This limitation prompted the study of sparse JL matrices. The ver-
sion presented here is given by Kane and Nelson [146]. They also de-
scribe alternative approaches based on how the mapping to the sketch
allows overlaps, with differing guarantees and proofs. It is natural to
ask whether the sparsity can be reduced below the 1/ε dependency, or
whether the number of dimensions k can be reduced below 1/ε2. Both
questions have been answered in the negative. The number of dimen-
sions of the reduced space k = Θ(1/ε2 log(1/δ)) has been shown to be
optimal [140]. Nelson and Nguyen show no construction can achieve
sparsity less than 1/ε, as this would give too high a probability that
significant entries of the input vector are not picked up by the trans-
form [188].

