
DRAFT
6

Vector, Matrix and Linear Algebraic
Summaries

In this chapter, we show how ideas from the summaries described pre-
viously can be applied directly or adapted to solve problems that arise
in the context of linear algebra: computations on vectors, matrices, and
their generalizations to tensors.

For vectors, many of the summaries apply directly. We can often
think of a vector as being synonymous with a frequency distribution,
where the ith entry in the vector corresponds to the frequency of an el-
ement i. Queries for a particular element of a vector then correspond to
a point query in the frequency distribution. Frequency moments have
a natural interpretation in terms of vector norms. However, there are
some problems over vectors which do not correspond to a natural ques-
tion over frequency distributions, and so require some additional work.

In the case of matrices, many of the ideas and techniques from vector
summaries carry over — in the extreme case, we can think of matrices
as ordered collections of vectors. We typically describe results in terms
of the Frobenius norm ‖M‖F of a matrix M, an “entry-wise” norm which
measures the (square root of the) sum of squares of entries, i.e., ‖M‖F =√∑

i, j M2
i, j.

6.1 Vector Computations: Euclidean Norm and Inner
Product Estimation

Given a high-dimensional vector v, we would like to find its Euclidean
norm, ‖v‖2. This problem is by now very well understood, and several
techniques directly solve it: the AMS Sketch (Section 3.6) in particu-
lar addresses this problem, but more generally, methods that imple-

183



DRAFT

184 Vector, Matrix and Linear Algebraic Summaries

ment the Johnson-Lindenstrauss transform by computing an appropri-
ate “sketch” of the vector can be applied. These find an ε-relative error
approximation of ‖v‖2.

Equipped with such an approximation, we can solve a number of
other problems on vectors. Most immediately, given vectors v and w we
can find the Euclidean distance between them, defined as ‖v−w‖2. Func-
tionally, this can be achieved by building a summary of v, and a sum-
mary of the vector (−w) and applying a MERGE operation to these two.
Because the summaries are linear transformations of the input vectors,
one can more directly think of the summary of v as sk(v), where sk(·) de-
notes the operation of building the (sketch) summary. Then sk(v − w) =

sk(v)− sk(w), and so we can obtain the sketch of the difference by taking
the difference of the sketches. The Euclidean distance can therefore be
estimated with relative error.

We can also use this property to find an estimate of the inner product
between two vectors, albeit with additive error. The inner product be-
tween u and v is given by the sum of products of corresponding indices,
defined as

u · v =
∑

i

uivi

This can also be written in terms of Euclidean norm, using some alge-
bra. Observe that

‖u + v‖22 = ‖u‖22 + ‖v‖22 + 2(u · v).

To see this, note that the contribution to the sum represented by the
left hand side from any index i is u2

i + v2
i + 2uivi. Therefore, we can write

(u ·v) = 1
2 (‖u+v‖22−‖u‖

2
2−‖v‖

2
2). Using sketches, we can estimate the right

hand side as our approximation to the inner product.
This estimate does not provide overall relative error. Each of the com-

ponent quantities is found with relative error, but the additions and
subtractions mean that the error stays of the magnitude of ‖u‖22 + ‖v‖22
(at least, this gives a quick bound). It is reasonable to ask whether a rel-
ative error can be obtained. In particular, there are many applications
where a relative error guarantee for inner product would be most help-
ful. However, there are strong lower bounds (see Section 10.3) show-
ing that such a result cannot be obtained in general. In essence, this is
because such a sketch would allow us to distinguish between vectors
which have inner product zero (i.e., are orthogonal), and which have
inner product very close to zero (almost orthogonal).



DRAFT

6.1 Vector Computations 185

A more careful use of summaries can obtain an improved additive
error bound. Suppose, for the sake of concreteness, that we are using
the AMS Sketch to summarize u and v. Each summary is formed as an
array of d × t counters. A QUERY operation for the inner product takes
the inner product of each of the d rows of the pair of summaries, then
finds the median of these. Then a similar analysis to the original use of
the sketches shows that the result gives an estimate of u ·v with additive
error proportional to 1

√
t
· ‖u‖2‖v‖2, with probability 1− exp(−d). With the

usual setting of t = O(1/ε2) and d = O(log 1/δ), the result gives error
ε‖u‖2‖v‖2 with probability 1 − δ.

Further Discussion. We briefly sketch the outline of the proof,
which can be viewed as a generalization of the proof for the es-
timator for the `2 norm. Recall the construction of the AMS Sketch,
which is defined based on hash functions g and h, which map to ar-
rays of counters C. As before, define X j to be the estimate of u ·v ob-
tained from the j’th row of the sketch, i.e., X j =

∑t
k=1 Cu[ j, k]Cv[ j, k].

It follows quickly that

E[X j] =

t∑
k=1

E[Cu[ j, k]Cv[ j, k]]

=

t∑
k=1

∑
h j(i)=k

uivi +
∑

i,`,h j(i)=h j(`)=k

E[g j(i)]E[g j(`)]uiv`.

The first term in this sum is u · v, and the second term is zero, due
to the random properties of the g j hash functions.

Similarly, for the variance, after expanding out and collapsing
the terms that are zero in expectation, we obtain that

Var[X j] ≤ 4‖u‖22‖v‖
2
2/t

This bound on the variance ensures that the error is at most
ε‖u‖2‖v‖2 with constant probability when we set the parameter t
proportional to 1/ε2. This error probability is reduced to δ when
we choose d = O(log 1/δ) and take medians, following the Cher-
noff bounds argument (Section 1.4).

History and Background. The use of the summary to estimate the in-
ner product of vectors was described in a follow-up work by Alon, Ma-
tias, Gibbons and Szegedy [9], and the analysis was similarly gener-



DRAFT

186 Vector, Matrix and Linear Algebraic Summaries

alized to the fast version of the AMS Sketch by Cormode and Garo-
falakis [62].

6.2 `p norms and Frequency Moments

Recall that, given a vector v, its `p norm is ‖v‖p = (
∑

i vp
i )1/p. For vec-

tors formed as the frequency distribution of a series of updates, the
k’th frequency moment is defined as Fk(v) =

∑
i vk

i . These definitions are
sufficiently similar (up to taking the p’th root) that we will use them
interchangeably. In earlier sections, we have discussed summaries that
allow estimating the `2 norm (AMS Sketch), and other `p norms for
p < 2 (`p sketch). We now consider how to estimate the `p norm for
p > 2.

An elegant solution is provided via the technique of `p sampling. We
provide an outline here, since the details are rather more technical, and
so this approach may be primarily of theoretical interest. In essence, the
idea is to sample each element of vector v with probability proportional
to its contribution to the (squared) `2 norm, i.e., apply an `2-sampling
sketch. Then for each sampled element i, include a contribution as a
function of its weight vi so that in expectation its contribution is vp

i .
Summing expectations over all elements, we will obtain an estimate of
‖v‖pp. The variance of this quantity can be bounded, and so the usual
approach of taking sufficient repetitions via averaging and median can
be used to provide an estimate with accuracy guarantees. The number
of repetitions required is O(n1−2/pε−2), where n represents the dimen-
sionality of the vector v. This polynomial dependence on n for p > 2 is
known to be optimal, and imposes a large space cost (O(n1/3) for p = 3,
for example), which is further compounded since each repetition of the
`2 sampling requires multiple sketches to be kept. Consequently, this
approach seems to need substantial engineering and careful parameter
setting in order to be put into practice.

Further Discussion. We provide more details of the analysis, to
give more insight into the method. Full details are provided in the
references listed below.

Suppose we could sample perfectly according to the `2 distribu-
tion. Then the chance of picking index i from vector v is exactly



DRAFT

6.2 `p norms and Frequency Moments 187

v2
i /‖v‖

2
2. Further, assume that our `p sampling summary allows us

to estimate vi and ‖v‖2 accurately. Then our estimator when we
sample i is X = vp−2

i ‖v‖
2
2. Observe that this is correct in expectation:

E[X] =
∑

i

Pr[i is sampled] · vp−2
i =

∑
i

v2
i

‖v‖22
vp−2

i ‖v‖
2
2 =

∑
i

vp
i = ‖v‖pp

The variance of this estimator can be computed similarly, as

Var[X] ≤ E[X2] =
∑

i

v2
i

‖v‖22
(vp−2

i ‖v‖
2
2)2 =

∑
i

v2
i v2p−4

i ‖v‖22 = ‖v‖2p−2
2p−2‖v‖

2
2

In order to provide a more useful bound, we need to rewrite this
last quantity in terms of E[X]2. First, for any p ≥ 2, we have that
‖v‖2p−2 ≤ ‖v‖p. Via Hölder’s inequality, we can show that ‖v‖22 ≤
n(p−2)/p‖v‖2p. Combining these two facts, we obtain that

‖v‖2p−2
2p−2‖v‖

2
2 ≤ n1−2/p‖v‖2p

p

That is, we have that Var[X] ≤ n1−2/pE[X]2. Taking the average of
n1−2/p/ε2 repetitions reduces the variance by a corresponding fac-
tor. This allows us to apply the Chebyshev inequality to show that
this mean is with an 1 + ε factor of E[X] with constant probability.
Repeating O(log 1/δ) times and taking the median amplifies this to
probability 1 − δ, via the Chernoff bounds argument.

In order to put this into practice, we need to remove the ide-
alized sampling assumption. That is, rather than sampling with
probability exactly v2

i /‖v‖
2
2, we use an `p sampler to sample with

approximately this probability. Similarly, we can only guarantee to
find approximations of vi and ‖v‖2. Putting these approximations
into the analysis complicates the notation, but otherwise does not
change the structure of the argument. Some care is needed in set-
ting the accuracy parameters of the sampling and sketching in or-
der to obtain an overall ε guarantee, but otherwise this is a straight-
forward exercise to analyze the algorithm’s properties.

History and Background. The idea of using `p sampling to estimate `p

norms and frequency moments is due to Coppersmith and Kumar [58],
but it was not until Monemizadeh and Woodruff provided the first
`2 sampling algorithm that this was possible [181]. A more detailed
survey of `p sampling and its applications is given by Cormode and



DRAFT

188 Vector, Matrix and Linear Algebraic Summaries

Jowhari [66]. The presentation here follows outlines due to Andrew Mc-
Gregor presented in slides on “sketches for `p sampling”.

6.3 Full matrix multiplication

Perhaps the most fundamental problem in linear algebra is to perform
matrix multiplication: given matrices A and B, compute their matrix
product AB. Naive computation of the product for square n × n matri-
ces takes time proportional to n3, but faster computation is possible.
Strassen’s algorithm rewrites the computation in terms of a smaller
number of terms to obtain O(n2.807). Theoretical algorithms exist which
have cost O(n2.372), although these are considered far from practical.
These approaches work with the full matrices, and provide exact so-
lutions. However, thanks to summaries, it is possible to provide ap-
proximate answers.

A starting point is to observe that each entry of the matrix product
is an inner product: the entry Ci, j is given by A(i) · B( j), where A(i) de-
notes the i’th row of matrix A, and B( j) the j’th column of B. We can
then use sketches (such as AMS Sketch) to approximate these quanti-
ties. Assume we sketch every row of A and sketch every column of B.
Then we can estimate (with constant probability of success) any desired
entry of C, with error proportional to ε‖A(i)‖2‖B( j)‖2, for sketches of size
O(1/ε2). The space required is O(n/ε2) to store the n sketches of each row
of A and each column of B.

We can therefore take this approach to estimate every entry of C, as
approximate matrix Ĉ, using space O(n/ε2) and taking time O(n2/ε2).
The squared error in each entry is ε2‖A(i)‖22‖B( j)‖

2
2. This may appear some-

what large, but if we sum this over all entries to get the total squared
error, we obtain

‖(Ĉ − AB)‖2F ≤
∑
i, j

ε2‖A(i)‖22‖B( j)‖
2
2 = ε2(

∑
i

‖A(i)‖22)(
∑

j

‖B( j)‖
2
2) = ε2‖A‖2F‖B‖

2
F

where ‖ · ‖F denotes the Frobenius norm as defined at the start of this
chapter. Then we have that

‖(Ĉ − AB)‖F ≤ ε‖A‖F‖B‖F



DRAFT

6.3 Full matrix multiplication 189

Further Discussion. Note that to have this property hold, we re-
quire each entry to meet its guarantee. This is achievable by in-
creasing the size of the sketches by a factor of O(log n). Then each
entry is estimated accurately with probability 1−1/n3, and so all n2

entries are accurate with probability 1 − 1/n, by a union bound.
Intuitively, this increased size of the sketches does not seem nec-

essary: while some entries might exceed their permitted error bounds,
others might lie comfortably within them, and we might expect
this variation to cancel out on average. Essentially this is indeed
the case, although proving it is rather more fiddly.

A first attempt is to consider the total squared error as a random
variable, and apply error bounds to this, rather than the each in-
dividual entry-wise error. We have already calculated the expecta-
tion and variance of the entry-wise errors, so we can immediately
obtain expectation and variance of their sum. It might seem that
we can then immediately apply the Chebyshev and Chernoff ar-
gument to this. However, there is a twist: previously, we were able
to take the median of a (scalar) quantity to obtain an estimate with
high probability of falling within our desired error bounds. But
now, each sketch yields a candidate approximate matrix product:
how should we take the median of a collection of matrices?

One approach is to use the fact that we can accurately estimate
the norms of matrices, and the norm of differences between pairs
of matrices. We can argue that with probability at least 1− δ, one of
our matrices is “central” among the estimates built from sketches:
it is at most a distance of ‖A‖F‖B‖F/2 to each of at least half of the
other estimated matrices. This follows by arguing that there is a
constant probability that each estimated matrix is “good”—that is,
close (as a function of ‖A‖F‖B‖F) to the target C; and therefore, by
the triangle inequality, any pair of “good” matrices must also be
close to each other. Performing this distance test helps to identify
one good matrix, which can be reported as the approximate prod-
uct.

A more direct approach is to go back to the original approach
and argue that the sketches provide a stronger property: that they
estimate not just one inner product accurately with constant prob-
ability, but that (with constant probability) they estimate all inner



DRAFT

190 Vector, Matrix and Linear Algebraic Summaries

products accurately, and so we can work directly with the results
of sketching. This stronger property is referred to as subspace em-
bedding, and is discussed in more detail when we consider the re-
gression problem.

History and Background. The observation that (dense) sketches allow
us to estimate all entries is due to Sarlós [198], and uses an additional
randomized trick to pick the estimate of C that is closest to C. Clarkson
and Woodruff argue that sparse sketches are sufficient, and introduce
the technique based on finding one matrix that is close to a majority of
the others [51]. They also show a stronger bound on sketch estimators,
when constructed with more powerful hash functions. A more thor-
ough survey which expands on the subspace embedding approach is
given by Woodruff [228].

6.4 Compressed matrix multiplication

Given two matrices A and B, both of size n × n, computing their prod-
uct C = AB is a fundamental problem. Despite years of extensive re-
search, exact matrix multiplication remains an expensive operation. In
this section, we present a method that allows us to compute C approx-
imately in a compressed form. More precisely, we first compute the
Count Sketch of each column of A and each row of B. Then from these
sketches we will compute the Count Sketch of C, interpreted as a long
vector of size n2. As a result, all the properties of the Count Sketch from
Section 3.5 apply here. For example, from this sketch, we can estimate
any entry in C with error at most ‖C‖F/

√
t with high probability, where,

as before, ‖ · ‖F denotes the Frobenius norm, i.e., ‖C‖F =
√∑

i, j C2
i, j.

Recall from Section 3.5 that (one row of) the Count Sketch of a vector
v of size n is another vector S (v) of size t � n (both vectors are indexed
starting from 0), where

S (v)[k] =
∑

i∈[n]:h(i)=k

g(i)vi, k = 0, . . . , t − 1.

Here, h : [n] → [t] is a pairwise independent hash function, and g :
[n]→ {−1,+1} is also a pairwise independent hash function. Also recall
that S (v) can be constructed from v easily in one pass; in particular,
this is still true if v is represented in a “compressed form”, i.e., a list of
(index, value) pairs consisting of all the nonzero entries of the vector.



DRAFT

6.4 Compressed matrix multiplication 191

Let u, v be two column vectors of size n. At the heart of the method is
a nice way to compute S (uvT ) from S (u) and S (v), where uvT is the outer
product of u and v, and S (uvT ) is a Count Sketch built on uvT interpreted
as a vector of size n2. Recall that the outer product of u and v is

uvT =


u1v1 u1v2 . . . u1vn

u2v1 u2v2 . . . u2vn
...

...
. . .

...

unv1 unv2 . . . unvn

 .
Let the two hash functions used in constructing S (u) and S (v) be hu, gu

and hv, gv, respectively. The idea is to compute the convolution of S (u)
and S (v). Recall that given two vectors a and b of size n, their convolu-
tion a ∗ b is vector of size 2n − 1, where

(a ∗ b)[k] =

k∑
j=0

a[ j]b[k − j], k = 0, . . . , 2n − 2.

The nice thing about convolution is that it can be computed efficiently
using the Fast Fourier Transform (FFT) in O(n log n) time [59].

Next, we will interpret the convolution S (u) ∗ S (v) as a sketch of a
new object. The convolution yields a vector of size 2t − 1, where for
k = 0, 1, . . . , 2t − 2,

(S (u) ∗ S (v))[k] =

k∑
j=0

S (u)[ j]S (v)[k − j]

=

k∑
j=0

 ∑
i∈[n]:hu(i)= j

gu(i)ui


 ∑

i∈[n]:hv(i)=k− j

gv(i)vi


=

∑
i, j∈[n]:hu(i)+hv( j)=k

gu(i)gv( j)uiv j.

This is exactly a Count Sketch built on uvT , but using hash functions
h(i, j) = hu(i) + hv( j) and g(i, j) = gu(i)gv( j). Since both gu and gv are pair-
wise independent functions mapping [n] to {−1,+1}, g(i, j) = gu(i)gv( j) is
still a pairwise independent function mapping [n] to {−1,+1}. However,
h(i, j) = hu(i) + hv( j) is no longer a pairwise independent function. In
particular, it is not uniform on [2t− 1]. The last trick is to fold S (u) ∗ S (v)
into a vector of size t, getting a true Count Sketch on uvT , where

S (uvT )[k] =

{
(S (u) ∗ S (v))[k] + (S (u) ∗ S (v))[k + t], k = 0, 1, . . . , t − 2;
(S (u) ∗ S (v))[k], k = t − 1.



DRAFT

192 Vector, Matrix and Linear Algebraic Summaries

=
∑

i∈[n]:hu(i)+hv( j) mod t=k

gu(i)gv( j)uiv j.

Observing that h(i, j) = hu(i)+hv( j) mod t is a pairwise independent func-
tion from [n] to [t], we conclude that S (uvT ) is a valid Count Sketch on
uvT .

Finally, to use this technique to compute a Count Sketch on C = AB,
we write A in terms of column vectors a1, . . . , an and B in terms of row
vectors b1, . . . , bn. The matrix product AB can be written as a sum of n
products of these vectors (effectively, these are outer products), as

AB =

n∑
i=1

aibT
i ,

and the fact that the Count Sketch is a linear sketch, we can compute
the Count Sketch of C = AB as

S (C) =

n∑
i=1

S (aibT
i ).

Further Discussion. In practice, one does not have to compute the
convolution S (u) ∗ S (v) in full and then fold the result as described
above. The Count Sketch S (uvT ) can be computed more directly by
slightly adjusting the FFT algorithm. In computing the full convo-
lution, we use the convolution theorem:

S (u) ∗ S (v) = FFT−1
2t (FFT2t(S (u)) · FFT2t(S (v))).

Here, we perform the FFT using the (2t)-th root of unity. However,
if we simply use the t-th root of unity ωt, then the result of the
convolution will be the folded S (uvT ) directly. This is also known
as a circular convolution. The intuition is that since ωt

t = 1, it has
exactly the effect of doing the mod t operation. More detailed argu-
ments can be found in [192].

The algorithm above also easily extends to non-square matrices.
Suppose A is an n1×n2 matrix and B is an n2×n3 matrix, then C = AB
will be a sum of n2 outer products. Although each outer product is
between two vectors of different lengths, this does not affect the
algorithm in any way, as the sketch sizes of the two vectors are
always the same, which is t.

The running time of the algorithm is O(N + n2t log t), where N is



DRAFT

6.5 Frequent directions 193

the number of nonzero entries in A and B. Note that this can be
even smaller than O(n1n3), which is the size of C. This is because
we compute C = AB in a compressed form, represented by the
Count Sketch of C. Reconstructing the full C (approximately) still
takes O(n1n3) time, since we have to query the Count Sketch for
every entry of C. In [192], a method is given to extract the most
significant entries of C more quickly.

History and Background. The algorithm described in this section is
due to Pagh [192]. Subsequent work generalized the approach of taking
convolutions of sketches to quickly build a sketch of the tensor product
of a vector: essentially, a polynomial generalization of the outer prod-
uct [195].

6.5 Frequent directions

Other summaries of matrices are possible, depending on what proper-
ties of the matrix we would like to (approximately) preserve. The Fre-
quentDirections summary captures information about the action of the
summarized matrix on other matrices and vectors. It does so by iter-
atively using the Singular Value Decomposition (SVD) on summaries
computed so far to capture the information needed while keeping the
summary small.

The summary applies to a data matrix A of dimension n × d, where
we assume that n will grow very large, while d is of moderate size. The
matrix A is formed as the collection of n row vectors, each of dimen-
sion d, where each row vector is seen together, i.e., rows arrive one by
one. The summary of A will be a smaller matrix B with up to ` rows of
dimension d, so that B approximates A. We will focus on the action of
A on approximating an arbitrary vector x of dimension d. That is, our
objective is to show that our summary B of matrix A ensures that the
norm of Bx is close to the norm of Ax.

Operations on the summary. To INITIALIZE a new FrequentDirections
summary B, we simply instantiate a new zero matrix of size ` × d. The
UPDATE procedure for a new row vector ai involves the computation of
the SVD of B. We append the new row ai to B to obtain B′, and compute
its SVD. This gives us the decomposition UΣVT = B′, so that UT U = I`
and VT V = Id, i.e., these (singular) vectors are orthonormal. The matrix



DRAFT

194 Vector, Matrix and Linear Algebraic Summaries

Σ is diagonal, consisting of the singular values σ1 . . . σ`, sorted by mag-
nitude (i.e., |σ1| ≥ |σ2| ≥ . . . ≥ |σ` |). We use these values to rescale the
different “directions” in B, and to “forget” the least important direction.
We define a new diagonal matrix Σ′ as

Σ′ = diag
(√

σ2
1 − σ

2
`
,
√
σ2

2 − σ
2
`
. . .

√
σ2
`
− σ2

`

)
.

Equivalently, we can write Σ′ =

√
Σ − σ2

`
I`. This ensures that Σ′`,` = 0. We

use Σ′ as a new set of singular values, and obtain an updated version of
the summary B as B = Σ′VT . Observe that since Σ` = 0, the new B has at
most ` − 1 non-zero rows, so we drop row ` (which is all zeros).

The MERGE procedure builds on the approach of the UPDATE pro-
cedure. Given two summary matrices B and C, both of size ` × d, we
can simply take each row of C in turn and UPDATE B with it. This is
rather slow (requiring ` invocations of the SVD procedure), but we can
observe that this is equivalent to the following method. We begin by ap-
pending B and C to get a new matrix D of size 2` × d. We then compute
the SVD of D and obtain the corresponding UΣVT . We now compute Σ′

based on σ2
` , noting that σ` is the `’th largest of the 2` singular values

in Σ. Then

Σ′ = diag
(√

max(σ2
1 − σ

2
`
, 0),

√
max(σ2

2 − σ
2
`
, 0) . . .

√
max(σ2

2` − σ
2
`
, 0)

)
.

Observe that the first ` values of Σ′ will be non-negative, while the last
` + 1 values are guaranteed to be zero. Then, as before, we compute the
new summary as B = Σ′VT , and keep only the (at most ` − 1) non-zero
rows.

Further Discussion. Recall that we want to show that the final
summary we obtain B is similar to the input matrix A in its action
on a vector x. In particular, we will consider the quantity ‖Ax‖22 −
‖Bx‖22. We can analyze the accuracy of the summary by consider-
ing the effect on the error of answering a particular query. Without
loss of generality, let x be a vector of dimension d, with ‖x‖2 = 1. We
will measure the error in terms of Euclidean norms (of vectors) and
Frobenius norms (of matrices). Consider the quantity Ax, which we
will approximate by Bx for the final summary B. We want to show
that the difference in magnitude of these quantities is not too large,



DRAFT

6.5 Frequent directions 195

i.e., ‖Ax‖22 − ‖Bx‖22 is bounded. For simplicity, we will focus on the
effect of a sequence of UPDATE operations.

A bound on this quantity follows by summing over the error
introduced in each subsequent UPDATE operation. We first show
that the error is non-negative, i.e., that ‖Ax‖22−‖Bx‖22 ≥ 0. We’ll write
B[i] for the summary obtained after the i’th UPDATE row operation
for row ai. We also write C[i] to denote the value ofσ[i]VT

[i] computed
from the SVD in step i. Finally, δi is the value ofσ2

` that is subtracted
from the other singular values in the ith UPDATE operation.

Then we can expand

‖Ax‖22 − ‖B[n]x‖22 =

n∑
i=1

(
(ai · x)2 + ‖B[i−1]‖

2
2x − ‖B[i]x‖22

)
=

n∑
i=1

(
‖C[i]x‖22 − ‖B[i]x‖22

)
≥ 0

This makes use of the fact that C[i] preserves all the information
about B[i−1] and a, so that ‖B[i−1]x‖22 + (ai · x)2 = ‖C[i]x‖22. Meanwhile,
B[i] loses information from C[i], so we have ‖C[i]x‖22 − ‖B[i]x‖22 ≥ 0.

Next, we consider placing an upper bound on the error ‖Ax‖22 −
‖Bx‖22. For step i, let v j[i] denote the j’th column of VT

[i]. Then C[i]x =∑`
j=1 σ jv j · x and:

‖C[i]x‖22 =
∑̀
j=1

σ2
j (v j · x)2

=
∑̀
j=1

(σ′2j + δi)(v j · x)2

=
∑̀
j=1

σ′2j (v j · x)2 + δi

∑̀
j=1

(v j · x)2

= ‖B[i]x‖22 + δi

The final line substitutes the definition of B[i] using the reweighted
values in Σ′, and the fact that VT is a unitary matrix while ‖x‖2 = 1.
We can then sum this over every UPDATE step:

‖Ax‖22 − ‖B[n]x‖22 =

n∑
i=1

(
(ai · x)2 + ‖B[i−1]x‖22 − ‖B[i]x‖22

)



DRAFT

196 Vector, Matrix and Linear Algebraic Summaries

=

n∑
i=1

(
‖C[i]x‖22 − ‖B[i]x‖22

)
≤

n∑
i=1

δi (6.1)

To bound δi, note that the squared Frobenius norm of a matrix is
given by the sum of the squares of its singular values. Hence,

‖C[i]‖
2
F ≥ ‖B[i]‖

2
F + `δi.

In each update, we start by appending the new row ai, which causes
the squared Frobenius norm to increase:

‖C[i]‖
2
F = ‖B[i−1]‖

2
F + ‖ai‖

2
2.

Last, ‖A‖2F =
∑n

i=1 ‖ai‖
2
2. Rearranging and combining these three re-

sults, we obtain that ‖A‖2F ≥ ‖B[n]‖
2
F + `

∑n
i=1 δi. Combining this with

(6.1) above, we have our desired bound on the error,

0 ≤ ‖Ax‖22 − ‖B[n]x‖22 ≤ (‖A‖2F − ‖B‖
2
F)/` ≤ ‖A‖2F/`

Via a slightly longer argument, we can show stronger bounds in
terms of Ak, which is the optimal k-rank approximation of A. Ak can
be found via the SVD of A = UΣVT : defining Uk and Vk as the first
k columns of U and V respectively, and Σk as the diagonal matrix
containing k largest entries of Σ, we have Ak = UkΣkVT

k . Then we
find

0 ≤ ‖Ax‖22 − ‖B[n]x‖22 ≤ ‖A − Ak‖
2
F/(` − k)

That is, provided ` is chosen suitably larger than k, we obtain a
good approximation in terms of Ak.

Properties of the MERGE operation follow similarly, by consider-
ing the accuracy of two summaries, and arguing that the total error
is bounded in terms of the sum of the local errors.

Implementation Issues. Computing the SVD of an ` × d matrix (the
central step in the UPDATE operation) takes time O(d`2). This is quite
time consuming if carried out every step. The cost can be reduced by
reducing the frequency with which SVD is found, but storing some ex-
tra space. Essentially, we keep a buffer of the most recent ` rows, then
perform a MERGE operation with the running summary. This amortizes
the cost of the SVD to O(d`) time per update, and keeps the space used
to O(d`) also.



DRAFT

6.5 Frequent directions 197

History and Background. The FrequentDirections summary was intro-
duced by Liberty [165], taking inspiration from the behavior of frequent
items algorithms, particularly the MG summary. Additional results, in-
cluding lower bounds and the extension to handling a MERGE opera-
tion are due to Woodruff [227] and Ghashami and Phillips [107] respec-
tively. Our presentation follows the outline of Ghashami et al. [106].
Due to its simplicity and flexibility, the summary has been widely used
to summarize large data sets for machine learning, such as in feature
selection, dimensionality reduction and outlier detection.

Available Implementations. The FrequentDirections summary has
garnered a lot of interest since it was first described, and several
implementations exist. A Python implementation due to Liberty
and Ghashami is available, https://github.com/edoliberty/
frequent-directions. A Java implementation is available through
the emerging DataSketches vector library, https://github.com/
apache/incubator-datasketches-vector.

6.6 Regression and Subspace Embeddings

The problem of regression can be expressed in terms of matrices
and vectors. Given a “data” matrix A of size n × d, and a corre-
sponding “response” vector b of dimension n, the aim is to find a
vector x of coefficients so as to minimize the quantity ‖Ax − b‖p.
That is, our goal is to find

arg min
x
‖Ax − b‖p

The norm p to minimize is a parameter of the problem. We will
focus on the common case of p = 2, which gives the Ordinary Least
Squares regression problem.

We make use of a useful concept, an (oblivious) subspace em-
bedding. Given an n × d matrix A, the matrix S is a subspace em-
bedding for A if, for all x ∈ Rd,

(1 − ε)‖Ax‖22 ≤ ‖S Ax‖22 ≤ (1 + ε)‖Ax‖22. (6.2)



DRAFT

198 Vector, Matrix and Linear Algebraic Summaries

In other words, (S A) approximates A in terms of the length of
vectors x under the action of the matrix. We say that the embed-
ding is oblivious if S is sampled at random from a distribution of
matrices, independent of A. That is, we do not have to look at A to
be (almost) certain that a sampled S gives a subspace embedding
for A.

Observe that this definition appears quite similar to that for the
Johnson-Lindenstrauss transform Sparse JLT (Section 5.5), except
that transform does not specify a matrix A. It should therefore not
be surprising that any Johnson-Lindenstrauss transform provides
an oblivious subspace embedding, after some adjustment of pa-
rameters. The Count Sketch gives a weaker result than the Sparse
JLT, but it can also be used for a subspace embedding via a dif-
ferent argument. The necessary size of the summary is somewhat
larger, but we gain in terms of time cost: the Count Sketch is much
faster to apply than even the Sparse JLT, due to its increased spar-
sity.

Given a subspace embedding, we can apply it immediately to
approximately solve a regression problem. We apply the definition
of the subspace embedding (equation 6.2) to the n × (d + 1) matrix
A′ formed by concatenating A with b. This means for any vector y
in the d + 1-dimensional subspace spanned by A′, we have ‖S y‖22 ∈
(1± ε)‖y‖22. In particular, we can consider only those y for which the
final component is fixed to the value of −1. Rewriting, the problem
of least squares regression is to find

arg min
x
‖Ax − b‖22 = arg min

y:yd+1=−1
‖A′y‖22

By the above, we replace A′y with (S A′)y and solve the (smaller)
regression instance

arg min
y:yd+1=−1

‖(S A′)y‖22

using whatever method we prefer. For example, we could use the
closed form x = (AT S T S T A)−1AT S T b, or apply gradient descent.

We can observe that this approach is quite general. For instance,
the problem of constrained regression additionally imposes con-
straints on the solution. That is, x ∈ C for some (usually convex) set
C. Then the same approach works, since additionally constraining
x does not affect the accuracy of S . Hence we just need to be able



DRAFT

6.5 Frequent directions 199

to solve the (smaller) constrained regression instance given by (S A)
and (S b) in place of A and b. For example, the popular LASSO re-
gression model imposes the (L1 regularization) condition ‖x‖1 ≤ τ,
for some parameter τ. This can immediately be applied in this re-
duced dimensionality instance.

History and Background. The notion of using dimensionality re-
duction to speed up regression, and the demonstration of the sub-
space embedding property is due to Sarlós [198]. Clarkson and
Woodruff showed that Count Sketch could give similar results in
time proportional to the input sparsity [51]. Nelson and Nguyen,
and Woodruff and Zhang variously give improved bounds for obliv-
ious subspace embeddings and their applications [187, 230]. A more
detailed discussion, including omitted technical proofs, is given by
Woodruff [228].


